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ABSTRACT 

First of all, we introduce the repeated measurements model and discuss the degrees of freedom 

of its coefficients in the structure of Stein's unbiased risk estimate (SURE). By assuming that the 

design matrix has full columns rank, the following results are concluded. First one, the number 

of non-zero coefficients is an unbiased estimate for degrees of freedom of lasso solution. Second 

one, the unbiased estimator of these non-zero coefficients is asymptotically consistent. In 

addition, It is concluded that the same above results will be obtained if there are no especial 

assumption on the design matrix. With all above results the optimal lasso solution can be 

obtained by using several model selection criteria such as 𝐶𝑝, 𝐴𝐼𝐶 and 𝐵𝐼𝐶.  Moreover, 𝐵𝐼𝐶-

lasso shrinkage will be chosen if the variable selection is the main choice in applying lasso 

problem. 

 
1. Introduction 

 

Many scientists and researchers have been given a definition for the repeated measurements in 

the different periods of  time. Vonesh and chinchilli [19] were defined as term used to describe 

the data  in which observations of response variable are measured repeatedly for each 

experimental unit under different experimental conditions. While (Keseliman) [5] explained that  

the repeated measurements require two or more independent groups between the most of known 

experimental designs in the set of different researches type. In the other words, in the  repeated 

measurements , the observations of experimental units are measured repeatedly in the time unit. 

High dimensional data means that the number of coefficients which are to be estimated is 

greater than the number of observations. In other words, the number of coefficients denoted by 

𝑘 , are larger than the sample size which denoted by 𝑁. In this case, more dimensions will be 

added to a data set which leads to more difficult to predict certain quantities. By high 

dimensional is meant that measures and the total sample size grow together but either one would 

be greater than the other. In this case, the traditional methods like ordinary least squares is not 

unique and we must use another method to treat with this problem. These methods are called 

penalized least squares methods. they are common and sufficient to treat with high dimensional 
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data to find acceptable solution.                                                                                                      

Tibshirani (1996) [14] proposed a penalty function for the linear regression model called 'Lasso' 

which is abbreviated to 'least absolute shrinkage and selected operator'. The lasso method is 

based on the idea that minimizing the residual sum of squares plus the sum of absolute value of 

coefficients. It is used to estimate coefficients and selected variable simultaneously.   

In this paper, we will study the degrees of freedom of the lasso estimator in the framework of 

Stein's unbiased risk estimation (SURE) [13] for the high dimensional repeated measurements 

model and discuss their properties according to the rank of design matrix is equal to 𝑘 with 𝑘 ≤
𝑁. We will  derive degrees of freedom via continuous and almost differential function and apply 

Stein's formula. This has an  advantage, that is, lasso provides an asymptotic distribution of the 

degrees of freedom of lasso coefficients. Furthermore, we investigate the performance of 

degrees of freedom of lasso with respect to model selection according to some information 

criterion such as: Akaike information criteria (AIC) (Akaike (1973)), Bayes information criteria 

(Shwartz (1978)) and Mallows 𝐶𝑝 (Mallows (1973)) which is very similar to  AIC. The degrees 

of freedom is defined as the trace of the first derivative of the fitted value with respect to 

response variable. On the other words, it can be defined as (Efron  [3], Hastie and Tibshirani  

[18]) a sum of covariance between each point of the response variables and its corresponding 

fitted values and dividing the result by the variance. It is also can be defined as the trace of the 

'hat matrix' of the fitted values which is a function of response variable. The concept of degrees 

of freedom is connection with the complexity of the model. In the sense that, it plays an 

important role in determination and selection the statistical model and commonly used to 

quantify the actual complexity of a regression method  look at e.g. Hastie and Tibshirani  [7]. 
Generally speaking, Descriptions of degrees of freedom extremely pertinent for objectives such 

as model selection and model comparisons, look at, e.g. Efron (1986), Hastie and Tibshirani 

(1990), Tibshirani and Taylor (2012) and Tibshirani (2014). The degrees of freedom had been 

discussed and given the basic results for linear regression by Zou, Hastie and Tibshirani (2007). 

They showed that if the response variable follows a normal distribution with spherical 

covariance , fixed design matrix and penalty parameter such that the rank of design matrix is 

equal to 𝑘 then the degrees of freedom is equal to expectation of active set of the unique lasso 

solution with respect to response variable. Moreover, the degrees of freedom is characterized by 

estimating the prediction accuracy of the fitted model which supports us to select the optimal 

model among all the candidates. In the sense that, it is selected the optimal choice of 𝜆 in the 

lasso.                                                                                                                                        

Generally speaking, the important use of regularization is to overcome the complexity of the 

fitted model. It is known that the main toll of the regularization is the penalty parameter which is 

denoted by 𝜆. There are two cases which are very explicitly to describe the regularization. One 

of these is the least regularized lasso (𝜆 = 0) corresponds to ordinary least squares. The second 

one is most regularized lasso uses (𝜆 = ∞), which leads to a constant fit. Therefore the model 

complexity is decreased via shrinkage.    

The rest of paper is organized as follows. In section two, we present statistical model for which 

the degrees of freedom and other properties will be studied. In section three, we will introduce 

preliminary material which are considered as the basic subjects to compute the degrees of 

freedom of lasso by using Stein's formula. Lastly, By using degrees of freedom, we construct the 

adaptive model selection criteria such as 𝐶𝑝,  AIC and 𝐵𝐼𝐶 in section five.  

2. Setting Model  
Suppose 𝑌𝑖𝑡 is the value of response variable for 𝑖𝑡ℎ unit at 𝑡 time,  𝑋𝑗(𝑖𝑡) is the explanatory 

variables, 𝜇, 𝛽𝑗,  are fixed parameters, 𝑉𝑖 is the random effect with 𝑉𝑖~𝑁(0, 𝜎𝑣
2), 휀𝑖𝑡 is the error 

term with 휀𝑖𝑡~𝑁(0, 𝜎𝜀
2), where 𝑖 = 1,… ,𝑁, 𝑗 = 1,… , 𝑘, 𝑡 = 1,… , 𝑇. Then the repeated 

measures model is given by 

   𝑌𝑖𝑡 =  𝜇 + ∑ 𝛽𝑗𝑋𝑗(𝑖𝑡) + 𝑉𝑖 + 휀𝑖𝑡.
𝑘
𝑗=1                                                                                            (1)          

 Let 𝜔𝑖𝑡 = 𝑉𝑖 + 휀𝑖𝑡 with 𝜔𝑖𝑡~𝑁(0, 𝜎𝜔
2),  𝜎𝜔

2 = 𝜎𝑣
2 + 𝜎𝜀

2,  then the model (1) can be rewritten as 

𝑌𝑖𝑡 =  𝜇 + ∑ 𝛽𝑗𝑋𝑗(𝑖𝑡) + 𝜔𝑖𝑡.
𝑘
𝑗=1                                                                                                     (2)      
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By using matrix notation, then the model (2) becomes 

𝑌 = 𝐺𝜃 + 𝜔,                                                                                                                                 (3)       

where  𝐺 = [𝑒 , 𝑋],    𝑒 = [1, 1, … , 1]′ has length NT,  

 𝑌 = [𝑌11, … , 𝑌1𝑇 , 𝑌21, … , 𝑌2𝑇 , … , 𝑌𝑁1, … , 𝑌𝑁𝑇]′ has length 𝑁𝑇, 𝑋 = [𝑋1, … , 𝑋𝑁]′ is a 𝑁𝑇 × 𝐾 

design matrix of fixed effect,  𝜃 = [𝜇, 𝛽1, 𝛽2, … , 𝛽𝑘]
′ has length 𝑘 + 1, and 

  𝜔 = [𝜔11, … , 𝜔1𝑇, 𝜔21, … , 𝜔2𝑇 , … , 𝜔𝑁1, … , 𝜔𝑁𝑇]
′ has length 𝑁𝑇, or equivalently  

[

𝑌11

𝑌21

⋮ 
𝑌𝑁1

𝑌12

𝑌22

⋮ 
𝑌𝑁2

⋯ 𝑌1𝑇

⋯ 𝑌2𝑇

⋮    ⋮ 
⋯ 𝑌𝑁𝑇

] =

[
 
 
 
 1 

1 

⋮ 
1 

𝑋1(11)

𝑋1(21)

⋮ 
𝑋1(𝑁1)

𝑋2(12) ⋯ 𝑋𝑘(1𝑇)

𝑋2(22) ⋯ 𝑋𝑘(2𝑇)

⋮     ⋯     ⋮ 
𝑋2(𝑁2) ⋯ 𝑋𝑘(𝑁𝑇)]

 
 
 
 

[
 
 
 
 
𝜇
𝛽1

𝛽2

⋮
𝛽𝑘]

 
 
 
 

+ [

𝜔11

𝜔21

⋮ 
𝜔𝑁1

𝜔12

𝜔22

⋮ 
𝜔𝑁2

⋯ 𝜔1𝑇

⋯ 𝜔2𝑇

⋮      ⋮ 
⋯ 𝜔𝑁𝑇

] 

From model (3) we have    𝑌~𝑁𝑁𝑇(𝐺𝜃, Σ), where  Σ = 𝜎𝜀
2𝑄 + 𝜎1

2𝑃,  𝜎1
2 = 𝜎𝜀

2 + 𝑇𝜎𝑉
2 , 𝑄 =

(𝐼𝑁⨂𝐸𝑇),           𝐸𝑇 = 𝐼𝑇 − 𝐽𝑇, 𝑃 = 𝐼𝑁⨂𝐽𝑇 and  Σ−1 =
𝑄

𝜎𝜀
2 +

𝑃

𝜎1
2.  

    We will study the degree of freedom or the effective number of coefficients in ℓ1 penalized 

repeated measurements linear model.  From (3) The Lasso problem can be written as                                                   

    

  𝜃 ∈ argmin
𝜃∈𝑅𝑘+1

1

2
‖𝑌 − 𝐺𝜃‖2

2 + 𝜆‖𝜃‖1,                                                                                          (4)            

where 𝜆 ≥ 0 is tuning parameter.                                                                                                                       

   First, we will assume that 𝑌 follows a normal distribution with spherical covariance, 

𝑌~𝑁(𝜇, 𝜎2𝐼), and 𝐺, 𝜆 are considered fixed with  rank(𝐺) = 𝑘.  In this case 

   𝜎𝜔(Σ1 2⁄ )−1𝑌~𝑁𝑁𝑇(𝜎𝜔(Σ1 2⁄ )−1𝐺𝜃, 𝜎𝜔
2𝐼),   𝑌∗~𝑁𝑁𝑇(𝜇⋇, 𝜎𝜔

2𝐼),                                               (5) 

where 𝑌∗ = 𝜎𝜔(Σ1 2⁄ )−1𝑌,   𝜇⋇ = 𝜎𝜔(Σ1 2⁄ )−1𝐺𝜃,  

 and Σ = 𝜎𝜀
2𝑄 + 𝜎1

2𝑃 with  Σ−1 =
𝑄

𝜎𝜀
2 +

𝑃

𝜎1
2.  

Therefore, (3) can be rewritten as  

     𝑌⋇ = 𝐺𝜃 + 𝜔                                                                                                                           (6)            

 This assumption must be used so as to apply Stein's unbiased risk estimate for degrees of 

freedom in repeated measurements model.               

 

3. Preliminary material 
We will introduce the following three sections which are essential and important subjects to 

describe and discuss the degrees of freedom  of the lasso problem in repeated measurements 

model.  

  

3.1 Unbiased risk estimate of Repeated measurements model and degrees of 

freedom 

   It is known that Stein's (1981) [13] Suggested for a linear regression model a new risk 

estimate by using a particular unbiased estimate of degrees of freedom. Moreover, Stein's 

framework requires two important assumption. One of these assumption is that the response 

variable 𝑌 ∈ 𝑅𝑁 must be followed  an normal distribution with spherical covariance, i.e. 

𝑌~𝑁(𝜇, 𝜎2𝐼). The second assumption is that the function of response variable 𝑌 must be 

continuous and almost differentiable.                                                                    

  To apply Stein's formula for our model (3), we must have the above two assumptions.  

Therefore,  we must use the transformation (5).  

i.e.   𝑌∗~𝑁𝑁𝑇(𝜇⋇, 𝜎𝜔
2𝐼),  where  𝑌∗ = 𝜎𝜔(Σ1 2⁄ )−1𝑌,  𝜇⋇ = 𝜎𝜔(Σ1 2⁄ )−1𝐺𝜃.  

Given samples  𝑌∗~𝑁𝑁𝑇(𝜇⋇, 𝜎𝜔
2𝐼) and Consider a function  �̂�⋇ ∶ 𝑅𝑁 → 𝑅𝑁  such that from 𝑌⋇, 

provides an estimate �̂�⋇(𝑌⋇) of the underlying unknown mean 𝜇⋇ . In this case it can be used �̂�⋇ 

to refer to this estimate and function itself. An unbiased risk estimate for repeated measurements 

model starts by expanding              

 𝐸‖𝜇⋇ − �̂�⋇‖ 
2 = 𝐸‖𝜇⋇ − 𝑌⋇ + 𝑌⋇ − �̂�⋇‖2

2 

 = 𝑁𝜎𝜔
2 + 𝐸‖𝑌⋇ − �̂�⋇‖ 

2 + 2(𝜇⋇ − 𝑌⋇)′(𝑌⋇ − �̂�⋇) 
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 = 𝑁𝜎𝜔
2 + 𝐸‖𝑌⋇ − �̂�⋇‖ − 2(𝑌⋇ − 𝜇⋇)′(𝑌⋇ − �̂�⋇) 

 = 𝑁𝜎𝜔
2 + 𝐸‖𝑌⋇ − �̂�⋇‖ 

2 − 2𝑁𝜎𝜔
2 + 2∑ 𝑐𝑜𝑣(𝑁

𝑖=1 𝑌𝑖𝑡
⋇ , �̂�𝑖𝑡

⋇ ),   𝑡 = 1,… , 𝑇  

 = −𝑁𝜎𝜔
2 + 𝐸‖𝑌⋇ − �̂�⋇‖ 

2 + 2∑ 𝑐𝑜𝑣(𝑁
𝑖=1 𝑌𝑖𝑡

⋇ , �̂�𝑖𝑡
⋇ ),                                                                     (7)    

where 𝐸‖𝑌⋇ − �̂�⋇‖2 is the expected training error of �̂�⋇. 

 For �̂�⋇ (𝑌⋇) = (�̂�1𝑡
⋇ (𝑌 

⋇),… , �̂�𝑁𝑡
⋇ (𝑌 

⋇) ) ′, 𝑡 = 1,… , 𝑡, recall that the degrees of freedom is 

defined as,  

 𝑑𝑓(�̂�⋇) =
1

𝜎2
∑ 𝑐𝑜𝑣(𝑁

𝑖=1 𝑌⋇
𝑖𝑡, �̂�𝑖𝑡

⋇ ).                                                                                               (8) 

This is explained as the "effective number of coefficients" used by the function  �̂�⋇.  

It can be noted that for the repeated measures linear model of 𝑌 
⋇ onto the fix and full rank 

design matrix 𝑀, we have that �̂�⋇ (𝑌⋇) = �̂�⋇ = 𝑀𝑌⋇ for some matrix 𝑀 independent of 𝑌⋇, then 

we have that                    𝑐𝑜𝑣(�̂�⋇(𝑌⋇), 𝑌⋇) = 𝜎𝜔
2𝑀  then  

1

𝜎𝜔
2 𝑐𝑜𝑣(�̂�⋇, 𝑌⋇) = 𝑀  and this implies 

that 𝑑𝑓(�̂�⋇) = 𝑡𝑟(𝑀) = 𝑘, which represents the number of nonzero coefficients. By (7) we 

obtain                                                                       

𝐸 {‖�̂�⋇ − 𝑌⋇(𝑛𝑒𝑤)‖
 

2
} = 𝐸{‖𝑌⋇ − �̂�⋇‖ 

2 + 2𝜎𝜔
2𝑑𝑓(�̂�)}. 

Thus we can define a 𝐶𝑘-type statistics 

𝐶𝑘(�̂�
⋇) =

‖𝑌⋇−�̂�⋇‖ 
2

𝑁
+

2𝜎𝜔
2 𝑑𝑓(�̂�)

𝑁
                                                                                                      (9) 

which is unbiased estimator of the true predictor error.  

Furthermore, we can denote the decomposition of  �̂�⋇ by 𝑅𝑖𝑠𝑘(�̂�⋇) = 𝐸‖𝜇⋇ − �̂�⋇‖ 
2  as   

 𝑅𝑖𝑠𝑘(�̂�⋇) = −𝑁𝜎𝜔
2  + 𝐸‖𝑌⋇ − �̂�⋇‖2

2 + 2𝜎𝜔
2𝑑𝑓(�̂�⋇) 

  = −𝑁 𝜎𝜔
2 + 𝐸‖𝑌⋇ − �̂�⋇ ‖ 

2 + 2𝜎𝜔
2  𝑘.                                                                                    

 It is noted that the decomposition proposes an estimate of degrees of freedom 𝑑�̂�(�̂�⋇)  can be 

used to construct an estimate of  the risk,                                   

𝑅𝑖𝑠�̂�(�̂�⋇) = ‖𝑌⋇ − �̂�⋇‖2
2 − 𝑁𝜎𝜔

2 + 2𝜎𝜔
2  𝑑�̂�(�̂�⋇).                                                                      (10)  

 The above estimate is an unbiased for 𝑅𝑖𝑠𝑘, i.e., 𝐸[𝑅𝑖𝑠�̂�] = 𝑅𝑖𝑠𝑘. The above estimate  𝑅𝑖𝑠�̂� is 

called the unbiased risk estimate.  Moreover, it is easy to show that an unbiased estimate of 

degrees of freedom leads to an unbiased estimate of risk, this means that  𝑑𝑓(�̂�⋇ ) = 𝐸[𝑑�̂�(�̂�⋇)] 

implies 𝑅𝑖𝑠𝑘(�̂�⋇) = 𝐸[𝑅𝑖𝑠�̂�(�̂�⋇)].  It is seen that the risk estimate (10) can be used for penalty 

parameter selection 𝜆. If we assume that the function  �̂�⋇ depends on the penalty parameter 𝜆 

denoted by �̂�𝜆
⋇(𝑌⋇), then it is seemed that one can minimize the estimated risk over 𝜆 to choose 

a suitable value for the penalty parameter,                           

�̂� = argmin
𝜆∈Λ

 𝑅𝑖𝑠�̂�(�̂�⋇) = argmin
𝜆∈Λ

 ‖𝑌⋇ − �̂�⋇‖ 
2 − 𝑁𝜎𝜔

2 + 2𝜎𝜔
2  𝑑�̂�(�̂�𝜆

⋇).                                    (11) 

This can be considered as computationally efficient  alternative to choosing the penalty 

parameter by cross-validation for penalized linear repeated measurements problem.                                                                       
   It can be concluded that the main results of unbiased risk estimate is considered as alternative 

expression for degrees of freedom in repeated measurements model if the distribution of 

𝑌⋇~𝑁𝑁𝑇(𝜇⋇ , 𝜎𝜔
2   𝐼) and the function �̂�⋇(𝑌⋇) is continuous and almost differentiable.                                                                                  

i.e   𝑑𝑓(�̂�⋇) = 𝐸[(∇. �̂�⋇)(𝑌⋇)],                                                                                                  (12)  

where the function (∇. �̂�⋇)(𝑌⋇) = ∑
𝜕�̂�𝑖𝑡

⋇

𝜕𝑌𝑖𝑡
⋇ =

1

𝜎𝜔
2 ∑ cov(𝑌𝑖𝑡

⋇, �̂�𝑖𝑡
⋇ ), 𝑡 = 1,… , 𝑇,𝑁

𝑖=1
𝑁
𝑖=1  

is called the degree of freedom of  �̂�⋇. It is followed that the unbiased estimate of degrees of 

freedom,  

 𝑑�̂�(�̂�⋇) = (∇. �̂�⋇)(𝑌⋇)                                                                                                             (13)   

3.2. Some important Notations  
At the beginning, it will be defined some important notations before adopting the SURE with 

the lasso solution for repeated measurements model. Assume that �̂�𝜆
⋇ represents the lasso 

solution by using (4).  Let 𝜇𝑖𝑡
⋇  is the 𝑖𝑡ℎ component at time 𝑡 of  𝜇⋇. For convenient, suppose 

𝑑𝑓(𝜆) stands for 𝑑𝑓(�̂�𝜆
⋇). Suppose Μ is the matrix with 𝑘 columns. Let ℎ ⊆ {1, … , 𝑝} and 

denote by Μℎ the submatrix Μℎ = [… Μ𝑗 … ]
𝑗∈ℎ

 where Μ𝑗 is the 𝑗𝑡ℎ column of the matrix Μ. 

Similarly define 𝜃ℎ = (… 𝜃𝑗 … )
𝑗∈ℎ

 for any vector has length 𝑝. Assume that 𝑆𝑔𝑛(. ) refers to 
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sign function such that                                                                                         

𝑆𝑔𝑛(𝑥) = {

 1             𝑖𝑓 𝑥 > 0                                   
0             𝑖𝑓 𝑥 = 0                                 

−1              𝑖𝑓 𝑥 < 0 .                                  
   

Let 𝑆 = {𝑗: 𝑠𝑔𝑛(𝜃)𝑗 ≠ 0} represents the active set of 𝜃,  such that 𝑆𝑔𝑛(𝜃) be the sign vector of  

𝜃 which is given by 𝑆𝑔𝑛(𝜃)𝑗 = 𝑆𝑔𝑛(𝜃𝑗) . Let the active set 𝜃(𝜆) is denoted by 𝑆(𝜆) and the 

corresponding sign vector 𝑠𝑔𝑛(𝜃(𝜆)) is denoted by 𝑆𝑔𝑛(𝜆). It is not distinguished between the 

index of coefficient and coefficient itself.  Assume that For given response vector 𝑌⋇, there is a 

finite of 𝜆′𝑠,                                                          
𝜆0 > 𝜆1 > ⋯ > 𝜆𝑝 = 0,                                                                                                           (14)     

   
Such that: 

1. 𝜃(𝜆) = 0 for all  𝜆 > 𝜆0.  
2. For all  𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚), the active set 𝑆(𝜆) and the sign vector 𝑠𝑔𝑛(𝜆)𝑆(𝜆) are 

constant with  respect to 𝜆. Therefore, They are written them as 𝑆𝑚 and 𝑠𝑔𝑛𝑚 

for convenience.                                 

Definition 1. (Transition points). Are points in which the active set changes at 

each 𝜆𝑚 if 𝜆 has the following properties:  

1. Some explanatory variables with zero coefficients at 𝜆𝑚 will have nonzero 

coefficients when 𝜆 decreases from 𝜆 = 𝜆𝑚 − 0, thus these coefficients  attach 

the active set 𝑆(𝜆).                                     
2. When 𝜆 increases from 𝜆 = 𝜆𝑚+1 + 0 there are possibly some explanatory 

variables in active  set 𝑆(𝜆) whose coefficients reach zero, hence they do not 

join the active set  𝑆(𝜆).                              
 In the other hand, It will be called non-transition point for any 𝜆 ∈ [0,∞)\{𝜆𝑚}.  

   Moreover, it is important to introduce the following matrix representation of Stein's Lemma of 

the divergence. Suppose  
𝜕�̂�𝑖𝑡

⋇

𝑌𝑗𝑡
⋇   be a 𝑁 × 𝑁   matrix whose elements are.                                                                  

(
𝜕�̂�⋇

𝜕𝑌⋇)
𝑖,𝑗,𝑡

=
𝜕�̂�𝑖𝑡

⋇

𝜕𝑌𝑗𝑡
⋇ , 𝑖, 𝑗 = 1,2, … , 𝑁, 𝑡 = 1,2, … , 𝑇.                                                                                     

Then the trace formula can be written as  

 (15)  ∇. �̂�⋇ = 𝑡𝑟 (
𝜕�̂�⋇

𝜕𝑌⋇
),  

   It will be introduced some important Lemmas which are discussed the necessary and sufficient 

conditions to study the properties of degrees of freedom of the lasso problem. Also recall that 

the assumption   𝑟𝑎𝑛𝑘(𝐺) = 𝑘 + 1 implies that 𝑘 + 1 ≤ 𝑁; in the other words, the result of the 

degrees of freedom not cover the important "high-dimensional" case 𝑘 + 1 > 𝑁.                                                                  
In the following lemma, we will discuss the properties about the uniqueness of the Lasso 

solution. 

Lemma 1. The lasso problem has the following three properties For any 𝑌⋇, 𝐺, and 𝜆 ≥ 0. 
 (𝑖) The solution of the  lasso estimator �̂� in (4) is either unique or an infinitely number of 

solutions.  

(𝑖𝑖) The fitted value 𝐺𝜃 is the same for every lasso solutions 𝜃. 

(𝑖𝑖𝑖) If λ > 0, then we have the same ℓ1 penalized ‖𝜃‖
1
 for every lasso solution 𝜃. 

Proof. (𝑖) Since the lasso problem is convex then it will be attained its minimum in 𝑅𝑘. 
Therefore lasso problem has at least one solution.                                                                                                                        

Now consider the lasso problem has two solutions 𝜃(1)  and 𝜃(2) such that 𝜃(1) ≠ 𝜃(2) Since   

𝜃(1)
   and  𝜃(2)

  are two solutions for lasso problem and convex then their addition is also 

convex and solution.  

That is,  𝛿𝜃(1) + (1 − 𝛿)𝜃(2) is also solution for any 0 <  𝛿 < 1, which gives infinitely number 

of lasso solutions as 𝛿 varies over (0,1). 
 (𝑖𝑖) It will be proved by contradiction. Assuming that we have two solutions  𝜃(1)  and 𝜃(2) 
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with 𝐺𝜃(1) ≠ 𝐺𝜃(2). Suppose that 𝑚∗ is the minimum value of lasso solution yielded by  𝜃(1) 

and 𝜃(2) . 

for any δ ∈ (0,1), we have  

‖𝑌 − 𝐺(𝛿𝜃(1) − (1 − 𝛿)�̂�(2))‖
2

2
+ ‖𝛿𝜃(1) − (1 − 𝛿)𝜃(2)‖

1
< 𝛿 𝑚∗ + (1 − 𝛿)𝑚∗ = 𝑚∗, 

Where the strictly inequality due to strictly convexity of the lasso problem. This is a 

contradiction because  

    𝛿𝜃(1) − (1 − 𝛿)𝜃(2) has a minimum value than 𝑚∗.  
(𝑖𝑖𝑖) If we have two lasso solutions 𝜃(1) and 𝜃(2), then by (𝑖𝑖) must have the same fitted values  

Lemma 2. The lasso coefficient estimates 𝜃(𝜆) is given by  

𝜃(𝜆)𝑆𝑚
= (𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

(𝐺𝑆𝑚

′ 𝑌⋇ −
𝜆

2
𝑆𝑔𝑛𝑚), for every  𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚).                                   (16) 

Proof. Since  𝜆 is in the interior of (𝜆𝑚+1, 𝜆𝑚) then the active set 𝑆(𝜆) and sign vector 

𝑠𝑔𝑛(𝜆)𝑆(𝜆) are constant with respect to 𝜆, hence they can be written as 𝑆𝑚 and 𝑆𝑔𝑛𝑚 

respectively.                       Let  𝑍(𝜃, 𝐺) = ‖𝑌⋇ − ∑ 𝐺𝑗𝜃𝑗
𝑘
𝑗=1 ‖

2
+ 𝜆 ∑ |𝜃𝑗|,

𝑘
𝑗=1   

where 𝑌⋇ = (𝑌1𝑡
⋇

 
, … , 𝑌𝑁𝑡

⋇  )
′
 and 𝐺𝑗 = (𝐺1(𝑖𝑡), … , 𝐺𝑘+1(𝑖𝑡))

′
,       𝑡 = 1,… , 𝑇.  

It is seen that 𝜃(𝜆) minimizes of 𝑍(𝜃, 𝐺) for given 𝑌⋇ and for every 𝜆 ∈
(𝜆𝑚+1, 𝜆𝑚). Therefore  

𝜕𝑍(𝜃,𝑌)

𝜕𝜃𝑗
= 0, for every 𝑗 ∈ 𝑆𝑚, where 𝑆𝑚 be active set, that is  

 −2𝐺𝑗
′(𝑌⋇ − ∑ 𝐺𝑗𝜃(𝜆)𝑗

𝑘
𝑗=1 ) + 𝜆𝑆𝑔𝑛(𝜃(𝜆)𝑗) = 0,  for 𝑗 ∈ 𝑆𝑚.                          (17)  

We have that 𝜃(𝜆)𝑖 = 0 for all 𝑖 ∉ 𝑆𝑚, therefore  ∑ 𝐺𝑗𝜃(𝜆)𝑗 = ∑ 𝐺𝑗𝜃(𝜆)𝑗 .
 
𝑗∈𝑆𝑚

 𝑘
𝑗=1  

Hence (17) becomes 

−2𝐺𝑆𝑚

′ (𝑌⋇ − 𝐺𝑆𝑚

′ 𝜃(𝜆)𝑆𝑚
+ 𝜆 𝑆𝑔𝑛𝑚 = 0, 

 2𝐺𝑆𝑚

′ 𝐺𝑆𝑚

′ 𝜃(𝜆)𝑆𝑚
= 2𝐺𝑆𝑚

′ 𝑌⋇ − 𝜆𝑆𝑔𝑛𝑚, 

 𝐺𝑆𝑚

′ 𝐺𝑆𝑚

′ 𝜃(𝜆)𝑆𝑚
= 𝐺𝑆𝑚

′ 𝑌⋇ −
𝜆

2
𝑆𝑔𝑛𝑚,  

𝐻ence, 𝜃(𝜆)𝑆𝑚
(= 𝐺𝑆𝑚

′ 𝐺𝑆𝑚

′ )
−1

 (𝐺𝑆𝑚

′ 𝑌⋇ −
𝜆

2
𝑆𝑔𝑛𝑚).  

Lemma 3. The Lasso estimator of (4) is continuous function of 𝑌⋇ for every 𝜆. 

Proof. Consider ordinary least squares estimator,  

𝜃𝜆(𝑌
⋇) = (𝐺 

′𝐺)−1𝐺′𝑌⋇, which satisfies 

 |𝜃𝜆(𝑌)|
1

≤ |𝜃𝜆(𝑌)𝑜𝑙𝑠|1,                                                                                                            (18)  

without loss of generality, we omit the subscript  𝜆. Consider a sequence {𝑌𝑁
⋇
 
}, 𝑁 = 1, 2, …, 

such that 𝑌𝑁
⋇
 
 converges to a fixed point 𝑌0

⋇
 
 as  𝑁 go to infinity, that is 𝑌𝑁

⋇
 
→ 𝑌0

⋇
 
   as 𝑁 → ∞,  

then there exists  𝑦⋇ such that ‖𝑌𝑁
⋇
 
‖ ≤ 𝑦⋇   for all 𝑁 = 0, 1, 2, …. . 

This implies that there exists an upper bound 𝑈 depends on 𝐺 and 𝑌⋇ such that,  

 ‖𝜃(𝑌𝑁
⋇
 
)𝑜𝑙𝑠‖ ≤ 𝑈. 

By using (18) and Cauchy's inequality, we have  

 |𝜃𝜆(𝑌𝑁
⋇
 
)|

1
≤ √𝑘𝑈, for  𝑁 = 0, 1, 2, …  . 

Now to show that 𝜃(𝑌⋇) is continuous function of 𝑌⋇, it must be showed that 

𝜃(𝑌𝑁
⋇
 
) → 𝜃(𝑌0

⋇
 
)   𝑎𝑠 𝑁 → ∞.                                                                                                    (19) 

To prove (19) it is sufficient to show that for any convergence subsequence {𝜃 (𝑌𝑁𝑝
⋇

 
)} of  

{𝜃 (𝑌𝑁
⋇
 
)} converges to 𝜃(𝑌0) as 𝑁𝑝 → ∞. To show this, assume that 𝜃 (𝑌𝑁𝑝

⋇

 
) → 𝜃∞(𝑌⋇) as 

𝑁𝑝 → ∞, and then show that   𝜃∞(𝑌⋇) = 𝜃 (𝑌0
⋇
 
)                                                                                                                                                     

Consider the lasso criterion 𝑍(𝜃, 𝑌⋇) as mentioned in (4). 

Suppose  ∆ 𝑍(𝜃, 𝑌⋇, 𝑌⋇′
) = 𝑍(𝜃, 𝑌⋇) − 𝑍(𝜃, 𝑌⋇′

).                                                                   (20) 

 It is clear that from the definition of 𝜃(𝑌𝑁𝑝
⋇ ), it must be had, 

𝑍(𝜃(𝑌0
⋇), 𝑌𝑁𝑝

⋇ ) ≥  𝑍(𝜃(𝑌𝑁𝑝
⋇ ), 𝑌𝑁𝑝

⋇ ).                                                                                            (21) 

Then from (20) and (21) we get,  
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𝑍(𝜃(𝑌0
⋇, 𝑌0

⋇) = 𝑍(𝜃(𝑌0
⋇), 𝑌𝑁𝑝

⋇ ) + ∆𝑍(𝜃(𝑌0
⋇), 𝑌0

⋇ , 𝑌𝑁𝑝
⋇ ) ≥ 𝑍(𝜃(𝑌0

⋇), 𝑌𝑁𝑝
⋇ ) + ∆𝑍(𝜃(𝑌0

⋇), 𝑌0
⋇, 𝑌𝑁𝑝

⋇ )          (22) 

 = 𝑍(𝜃(𝑌𝑁𝑝
⋇ ), 𝑌0

⋇) + ∆𝑍(𝜃(𝑌𝑁𝑝
⋇ ), 𝑌𝑁𝑝

⋇ , 𝑌0
⋇) + ∆𝑍(𝜃(𝑌0

⋇), 𝑌0
⋇, 𝑌𝑁𝑝

⋇ ). 

Note that,  ∆𝑍(𝜃(𝑌𝑁𝑝
⋇ ), 𝑌𝑁𝑝

⋇ , 𝑌0
⋇) + ∆𝑍(𝜃(𝑌0

⋇), 𝑌0
⋇, 𝑌𝑁𝑝

⋇ ) = 2(𝑌0
⋇ − 𝑌𝑁𝑝

⋇ )𝐺′ (𝜃(𝑌𝑁𝑝
⋇ ) − 𝜃(𝑌0

⋇)). 

Then (22) becomes,   

 𝑍(𝜃(𝑌0
⋇), 𝑌0

⋇) ≥ 𝑍(𝜃(𝑌𝑁𝑝
⋇ ), 𝑌0

⋇) + 2(𝑌0
⋇ − 𝑌𝑁𝑝

⋇ )𝐺′ (𝜃(𝑌𝑁𝑝
⋇ ) − 𝜃(𝑌0

⋇)).                                  (23) 

Let  𝑁𝑘 → ∞; then we get,  2(𝑌0
⋇ − 𝑌𝑁𝑝

⋇ )𝐺′ (𝜃(𝑌𝑁𝑝
⋇ ) − 𝜃(𝑌0

⋇)) → 0. 

Moreover, 𝑍(𝜃(𝑌𝑁𝑝
⋇ ), 𝑌0

⋇) → 𝑍(𝜃∞(𝑌𝑁𝑝
⋇ ), 𝑌0

⋇). 

Therefore, (23) reduces to,  

 𝑍(𝜃(𝑌0
⋇), 𝑌0

⋇) ≥ 𝑍(𝜃∞(𝑌𝑁𝑝
⋇ ), 𝑌0

⋇). 

  Since 𝜃(𝑌0
⋇) is the unique minimizer of 𝑍(𝜃, 𝑌0

⋇), and hence 𝜃∞ = 𝜃(𝑌0
⋇), which implies that, 

   𝜃∞(𝑌𝑁𝑝
⋇  ) → 𝜃(𝑌0

⋇)  as 𝑁𝑝 → ∞, and hence  𝜃(𝑌𝑁
⋇) → 𝜃(𝑌0

⋇)  as 𝑁 → ∞. 

Therefore,𝜃𝜆 is continuous function of 𝑌⋇. ∎   

Lemma 4. Let 𝑆𝑚  be the active set in the interior of (𝜆𝑚, 𝜆𝑚+1) and consider 𝜆𝑚,  𝜆𝑚+1 with  

𝜆𝑚+1 ≥ 0 are the transition points. Then  

𝜆𝑚 =
((𝐺𝑆𝑚

′ 𝐺𝑆𝑚
 )

−1
𝐺𝑆𝑚

′ 𝑌⋇)
𝑖∗

((𝐺𝑆𝑚
′ 𝐺𝑆𝑚

 )
−1

𝑆𝑔𝑛𝑚)
𝑖∗

                                                                                                         (24)  

if 𝑖𝑎𝑑𝑑 is an index added into 𝑆𝑚 at 𝜆𝑚 and its index in 𝑆𝑚 can be written as 𝑖𝑎𝑑𝑑 = (𝑆𝑚)𝑖∗. 

Moreover  𝜆𝑚+1 can be written as  

 𝜆𝑚+1 =
((𝐺𝑆𝑚

′ 𝐺𝑆𝑚
 )

−1
𝐺𝑆𝑚

′ 𝑌⋇)
𝑗∗

((𝐺𝑆𝑚
′ 𝐺𝑆𝑚

 )
−1

𝑆𝑔𝑛𝑚)
𝑗∗

,                                                                                                   (25)  

if  𝑗𝑑𝑟𝑜𝑝 is dropped index at 𝜆𝑚+1 and its index in 𝑆𝑚 can be written as 𝑗𝑑𝑟𝑜𝑝 = (𝑆𝑚 
)
𝑗∗ , where 

(𝑏)𝑘 means the 𝑘𝑡ℎ item of the vector 𝑏.                                                                                                                                
Proof. Assume that 𝑀[𝑖, . ] Represents 𝑖𝑡ℎ row of matrix 𝑀. Since 𝑖𝑎𝑑𝑑 joins 𝑆𝑚 at 𝜆𝑚; then the 

lasso coefficient estimate at  𝑖𝑎𝑑𝑑 equal zero,  i.e. 𝜃(𝜆𝑚)𝑖𝑎𝑑𝑑
= 0. By using lemma 2, the lasso 

coefficient estimate 𝜃(𝜆 )  for 𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚) is given by,                                                                                                             

 𝜃(𝜆)𝑆𝑚
= (𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

(𝐺𝑆𝑚

′ 𝑌⋇ −
𝜆

2
𝑆𝑔𝑛𝑚).                                                                            (26) 

 Since  𝜃(𝜆 )𝑖𝑎𝑑𝑑
 is continuous, then by taking the limit of the 𝑖𝑡ℎ element of (26) as 𝜆 → 𝜆𝑚 −

0, we get,  

 2 {(𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

[𝑖∗, . ]𝐺𝑆𝑚

′ } 𝑌⋇ = 𝜆𝑚 {(𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

[𝑖∗, . ]𝑆𝑔𝑛𝑚}. 

𝜃(𝜆)𝑖𝑎𝑑𝑑
= 0 for all 𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚), which contradict  The second {. } is a nonzero scalar, 

otherwise  

the assumption that 𝑖𝑎𝑑𝑑 joins the active set of 𝑆𝑚 and becomes a member of it. Therefore, we 

have, 

 𝜆𝑚 = {2
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚)
−1

[𝑖∗,.]

(𝐺𝑆𝑚
′ 𝐺𝑆𝑚)

−1
[𝑖∗,.] 𝑆𝑔𝑛𝑚

} 𝐺𝑆𝑚

′ 𝑌⋇ = 𝑓(𝑆𝑚, 𝑖∗)𝐺𝑆𝑚

′ 𝑌⋇,                                                      (27) 

Where  𝑓(𝑆𝑚, 𝑖∗) = {2
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚)
−1

[𝑖∗,.]

(𝐺𝑆𝑚
′ 𝐺𝑆𝑚)

−1
[𝑖∗,.] 𝑆𝑔𝑛𝑚

}.                                                                           (28) 

 Rearranging (27) and using 𝑖𝑎𝑑𝑑 = (𝑆𝑚)𝑖∗, we get 

   𝜆𝑚 =
((𝐺𝑆𝑚

′ 𝐺𝑆𝑚
 )

−1
𝐺𝑆𝑚

′ 𝑌⋇)
𝑖∗

((𝐺𝑆𝑚
′ 𝐺𝑆𝑚

 )
−1

𝑆𝑔𝑛𝑚)
𝑖∗

.  

By the same way above, if 𝑗𝑑𝑟𝑜𝑝 is dropped index at 𝜆𝑚+1. Then by continuity of 𝜃(𝜆)𝑗𝑑𝑟𝑜𝑝
 and 

taking the limit of the 𝑗𝑡ℎ element of (27) as 𝜆 → 𝜆𝑚+1 + 0, we have that,                                                                              

 𝜆𝑚+1 = {2
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚)
−1

[𝑗∗,.]

(𝐺𝑆𝑚
′ 𝐺𝑆𝑚)

−1
[𝑗∗,.]𝑆𝑔𝑛𝑚

}𝐺𝑆𝑚

′ 𝑌⋇ = 𝑓(𝑆𝑚, 𝑗∗)𝐺𝑆𝑚

′ 𝑌⋇, where                                         (29)  



Degrees of Freedom of the Lasso in Repeated Measurements Model                                                                              

                                18 (7) (2021) PAJEE  

1309 

 

 𝑓(𝑆𝑚, 𝑗∗) = {2
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚)
−1

[𝑗∗,.]

(𝐺𝑆𝑚
′ 𝐺𝑆𝑚)

−1
[𝑗∗,.]𝑆𝑔𝑛𝑚

}.                                                                                       (30) 

Rearranging  (29) and using  𝑗𝑑𝑟𝑜𝑝 = (𝑆𝑚)𝑗∗ we get, 

 𝜆𝑚+1 =
((𝐺𝑆𝑚

′ 𝐺𝑆𝑚
 )

−1
𝐺𝑆𝑚

′ 𝑌⋇)
𝑗∗

((𝐺𝑆𝑚
′ 𝐺𝑆𝑚

 )
−1

𝑆𝑔𝑛𝑚)
𝑗∗

. ∎ 

Lemma 5. For every 𝜆 > 0 There exists a null set  Ω𝜆 which is finite collection of hyperplanes 

in 𝑅𝑁 which has the form {𝑋 ∈ 𝑅𝑁|𝑎′𝑋 = 𝑏}   where  𝑎 ≠ 0 and 𝑏 ∈ 𝑅.  Assume that Ψ𝜆 =

𝑅 
𝑁/Ω𝜆. Then 𝜆 is not any of the transition points for every 𝑌⋇ ∈ Ψ𝜆. In the other words λ ∉

{𝜆(𝑌⋇)𝑚}. 
Proof.  First, it will be prove in conversely by assuming that for some 𝑌⋇ ∉ Ψ𝜆 there exists a 

null set contains that 𝑌⋇  and 𝜆  is the transition point. Assume that there exists 𝑌⋇ and 𝑚 such 

that 𝜆 = 𝜆(𝑌⋇)𝑚, 𝜆 > 0 and this means that 𝑚 is not the last lasso step. Since 𝜆  is the transition 

point then by Lemma 4, we have,                                                                                                                                                                             

  𝜆 = 𝜆𝑚 = {𝑓(𝑆𝑚, 𝑖∗)𝐺𝑆𝑚

′ }𝑌⋇ = 𝑔(𝑆𝑚, 𝑖∗)𝑌⋇.                                                                         (31)  

It is cleared that 𝑔(𝑆𝑚, 𝑖∗)𝑌⋇ = 𝑓(𝑆𝑚, 𝑖∗)𝐺𝑆𝑚

′ 𝑌⋇ is nonzero vector. Now assume that 𝑔𝜆 be the 

totality of  𝑔(𝑆𝑚, 𝑖∗) by considering all the possible combinations of 𝑆𝑚, 𝑖∗ and the sign vector 

𝑆𝑔𝑛𝑚. 𝑔𝜆 depends only on the 𝐺 and is a finite set, since at most 𝑘 explanatory variables are 

available. Hence, for every 𝑔 ∈ 𝑔𝜆, 𝑔𝑌⋇ = 𝜆 defines a hyperplane in 𝑅𝑁. We define                                                                                           

 Ω𝜆 = {𝑌: 𝑔𝑌⋇ = 𝜆 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑔 ∈ 𝑔𝜆} and Ψ𝜆 = 𝑅 
𝑁/Ω𝜆. 

Hence 𝜆 in (27) can not satisfied on Ψ𝜆. 
Lemma 6. Consider 𝑌⋇ ∈ Ψ𝜆 as defined in Lemma (5) then the active 𝑆(𝜆) and the sign vector 

𝑆𝑔𝑛(𝜆) are locally constant with respect to 𝑌⋇ at any fix 𝜆 > 0.                                                                                                     
Proof. Consider by Ball(𝑌⋇, 𝑟) the 𝑁-demensional ball with center 𝑌⋇ and radius 𝑟. Since 𝑌⋇ ∈
Ψ𝜆 then by definition of open set, it is clear that Ψ𝜆 is an open set.  Therefore for a fix arbitrary 

𝑌0
⋇ ∈ Ψ𝜆 we can select a small enough 𝜖 such that 𝐵𝑎𝑙𝑙(𝑌0

⋇, 𝜖) ⊆ Ψ𝜆. Now, fix 𝜖  and let 𝑌𝑁
⋇ →

𝑌⋇ as 𝑁 → ∞. Since Ball(𝑌⋇, 𝑟) ⊆ Ψ𝜆  and 𝑌𝑁
⋇ → 𝑌⋇ Then we can assume that without loss of 

generality 𝑌𝑁
⋇ ∈ 𝐵𝑎𝑙𝑙(𝑌0

⋇, 𝜖) for all 𝑁. This implies that 𝑌𝑁
⋇ ∈ Ψ𝜆 and hence 𝜆  is not a transition 

point for any 𝑌𝑁
⋇.                                                                  

Now to show that 𝑆(𝜆) is locally constant with respect to 𝑌⋇ at any fix  λ > 0, it must be 

showed that        𝑆(𝑌0
⋇) = 𝑆(𝑌𝑁

⋇). By definition of active set 𝜃(𝑌0
⋇)𝑗 ≠ 0 for all 𝑗 ∈ 𝑆(𝑌0

⋇). 

From Lemma 3, there exists an 𝑁1 such that 𝜃(𝑌𝑁
⋇)𝑗 ≠ 0 and 𝑆𝑔𝑛 (𝜃(𝑌𝑁

⋇)) = 𝑆𝑔𝑛 (𝜃(𝑌𝑁
⋇)) for 

all 𝑁 > 𝑁1,  and 𝑗 ∈ 𝑆(𝑌0
⋇). This implies that 𝑆(𝑌0

⋇) ⊆ 𝑆(𝑌𝑁
⋇) for all 𝑁 > 𝑁1. 

Now to show that 𝑆(𝑌𝑁
⋇) ⊆ 𝑆(𝑌0

⋇), we have the equicorrelation  set  

𝜆 = 2|𝐺𝑗
′(𝑌0

⋇ − 𝐺𝜃(𝑌0
⋇))|    ∀ 𝑗 ∈ 𝑆(𝑌0

⋇)                                                                                    (32) 

𝜆 > 2|𝐺𝑗
′(𝑌0

⋇ − 𝐺𝜃(𝑌0
⋇))|    ∀ 𝑗 ∉ 𝑆(𝑌0

⋇).                                                                                   (33) 

Using lemma 3 again, we see that there exists 𝑁2 > 𝑁1 such that for all ∀ 𝑗 ∉ 𝑆(𝑌0
⋇), the strict 

inequalities (33) hold for 𝑌𝑁
⋇  provided 𝑁 > 𝑁2. This implies that, 

𝑆𝑐(𝑌0
⋇) ⊆ 𝑆𝑐(𝑌𝑁

⋇)     for all 𝑁 > 𝑁2. 
Hence, we have 𝑆(𝑌0

⋇) = 𝑆(𝑌𝑁
⋇) for all 𝑁 > 𝑁2. 

Therefore, 𝑆(𝜆 ) is locally constant with respect to 𝑌⋇at any fixed 𝜆. Then the locally constant of 

the sign vector 𝑆𝑔𝑛(𝜆) follows the continuity of 𝜃(𝑌 
⋇). ∎ 

Theorem 1. Consider the set Ψ𝜆 as defined in lemma 3 and let Ψ0 = 𝑅𝑁. The lasso solution  

�̂�𝜆
⋇(𝑌⋇) = 𝐺𝜃(𝑌⋇) is uniformly Lipschitz on  the set Ψ𝜆 for any an arbitrary fix 𝜆 ≥ 0. Exactly  

‖�̂�𝜆
⋇(𝑌⋇ + ∆𝑌⋇) − �̂�𝜆

⋇(𝑌⋇)‖ ≤ ‖∆𝑌⋇‖,  for strictly small ∆𝑌⋇.                                                  (34) 

In addition, we have strictly formula   

∇�̂�𝜆
⋇(𝑌⋇) = |𝑆𝜆|                                                                                                                          (35) 

Proof. It will be discussed the two cases. 

Case 1. If 𝜆 = 0 then the lasso solution is just the ordinary least squares and (16) becomes 

 𝜃(𝑌⋇)𝑆𝑚
= (𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′ 𝑌⋇, and   
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�̂�𝜆
⋇(𝑌⋇) = 𝐺𝜃(𝑌⋇)𝑆𝑚

= 𝐺𝑆𝑚
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′ 𝑌⋇,  

  �̂�𝜆
⋇(𝑌⋇) = 𝐻(𝑌⋇)𝑌⋇,                                                                                                                (36)  

Where 𝐻(𝑌⋇) = (𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′  is the projection matrix on the space 𝐺𝑆𝑚

 , i.e. [𝐻(𝑌⋇)]2 =

𝐻(𝑌⋇)   �̂�𝜆
⋇(𝑌⋇ + ∆𝑌⋇) = 𝐻(𝑌⋇ + ∆𝑌⋇)(𝑌⋇ + ∆𝑌⋇).                                                               (37) 

Using (34) and (35) we get  

       ‖�̂�𝜆
⋇ (𝑌⋇ + ∆𝑌⋇) − �̂�𝜆

⋇(𝑌⋇)‖

= ‖𝐺𝑆𝑚
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′ (𝑌⋇ + ∆𝑌⋇) − 𝐺𝑆𝑚
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′ 𝑌⋇‖ 

 = ‖𝐺𝑆𝑚
(𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′ ∆𝑌⋇‖ = ‖𝐻(𝑌⋇)∆𝑌⋇‖  ≤ ‖∆𝑌⋇‖‖𝐻(𝑌⋇)‖. 

This implies that  

 ‖�̂�𝜆
⋇(𝑌⋇ + ∆𝑌⋇) − �̂�𝜆

⋇(𝑌⋇)‖ ≤ ‖∆𝑌⋇‖, for sufficiently small ∆𝑌⋇ and‖𝐻(𝑌⋇)‖ = 1. 

Hence �̂�𝜆(𝑌
⋇) is uniformly Lipschitz. 

Case 2. If 𝜆 > 0 then for fix an 𝑌⋇, choose a small enough ϵ such that 𝐵𝑎𝑙𝑙(𝑌⋇, 𝜖) ⊆ Ψ𝜆. By 

definition of open set, we conclude that Ψ𝜆 is an open set and hence 𝜆 is not any transition point. 

By using (16), it can be seen that                                                                                                                                                                       

 �̂�𝜆
⋇(𝑌⋇) = 𝐺𝜃(𝑌⋇) = 𝐺𝑆𝜆

(𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

(𝐺𝑆𝑚

′ 𝑌⋇ −
𝜆

2
𝑆𝑔𝑛𝑚) 

= 𝐻𝜆(𝑌
⋇)𝑌⋇ − 𝜆𝜓𝜆(𝑌

⋇),                                                                                                            (38) 

Where 𝜓𝜆(𝑌
⋇) =

1

2
𝐺𝑆𝜆

(𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝑆𝑔𝑛𝑆𝑚
.  

Assume ‖∆𝑌⋇‖ < 𝜖 and by using (36) we get  

�̂�𝜆
⋇(𝑌⋇ + ∆𝑌⋇) = 𝐻𝜆(𝑌

⋇ + ∆𝑌⋇)(𝑌⋇ + ∆𝑌⋇) − 𝜆𝜓𝜆(𝑌
⋇ + ∆𝑌⋇).                                              (39) 

Lemma 3 include that it can be further selected 𝜖 be sufficiently small such that both active set 

𝑆𝜆 and sign vector 𝑆𝑔𝑛𝜆 stay constant with respect to 𝑌⋇ in 𝐵𝑎𝑙𝑙(𝑌⋇, 𝜖). Now fix sufficiently 

small 𝜖 and hence if  ‖∆𝑌⋇‖ < 𝜖 then we get                                                                                                                                                     

𝐻𝜆(𝑌
⋇ + ∆𝑌⋇) = 𝐻𝜆(𝑌

⋇) and 𝜓𝜆(𝑌
⋇ + ∆𝑌⋇) = 𝜓𝜆(𝑌

⋇).                                                          (40) 

Using (36) and (37) we get  
‖�̂�𝜆

⋇(𝑌⋇ + ∆𝑌⋇) − �̂�𝜆
⋇(𝑌⋇)‖ = ‖𝐻𝜆(𝑌

⋇ + ∆𝑌⋇)(𝑌⋇ + ∆𝑌⋇) − 𝜆𝜓𝜆(𝑌
⋇ + ∆𝑌⋇) − 𝐻𝜆(𝑌

⋇)𝑌⋇ +
𝜆𝜓𝜆(𝑌

⋇)‖  
= ‖𝐻𝜆(𝑌

⋇)(𝑌⋇ + ∆𝑌⋇) − 𝜆𝜓𝜆(𝑌
⋇) − 𝐻𝜆(𝑌

⋇)𝑌⋇ + 𝜆𝜓𝜆(𝑌
⋇)‖  

≤ ‖𝐻𝜆(𝑌
⋇)‖‖∆𝑌⋇‖. 

This implies that    
‖�̂�𝜆

⋇(𝑌⋇ + ∆𝑌⋇) − �̂�𝜆
⋇(𝑌⋇)‖ ≤ ‖∆𝑌⋇‖  for sufficiently small ∆𝑌⋇ and ‖𝐻𝜆(𝑌

⋇)‖ = 1. 
Hence �̂�𝜆

⋇(𝑌⋇) is uniformly Lipschitz when  𝜆 > 0. 

By the locally constant of 𝐻𝜆(𝑌
⋇) and 𝜓𝜆(𝑌

⋇) with respect to  𝑌⋇ , we have from (36) 

 
𝜕�̂�𝜆

⋇

𝜕𝑌⋇
= 𝐻𝜆(𝑌

⋇).                                                                                                                           (41) 

Then by using trace formula (15), we have that                                                                       

∇. �̂�𝜆
⋇(𝑌⋇) = 𝑡𝑟(𝐻𝜆(𝑌

⋇)) = |𝑆𝜆|.                                                                                               (42) 

Theorem 2. The degrees of freedom of the lasso solution �̂�𝜆
⋇(𝑌⋇) = 𝐺𝜃(𝑌⋇) which is uniformly 

Lipschitz on 𝑌⋇ Is equal to the expectation of the active set 𝑆𝜆 for every 𝜆 ≥ 0, that is, 𝑑𝑓(𝜆) =
𝐸|𝑆𝜆|. 
Proof. If  𝜆 = 0, then get the ordinary least squares. From equation (16), we have  

�̂�𝜆
⋇(𝑌⋇) = 𝐺𝜃(𝑌⋇) = 𝐺𝑆𝜆

(𝐺𝑆𝜆

′ 𝐺𝑆𝜆
)𝐺𝑆𝜆

′ 𝑌⋇ = 𝐻𝜆
 (𝑌⋇)𝑌⋇, Where 𝐻(𝑌⋇) = (𝐺𝑆𝑚

′ 𝐺𝑆𝑚

 )
−1

𝐺𝑆𝑚

′  is the 

projection matrix on the space 𝐺𝑆𝑚

  and �̂�𝜆
⋇(𝑌⋇) is the  lasso solution for repeated measures linear 

model of 𝑌⋇  on 𝐺. Then relying on the matrix form of degrees of freedom by using (8) 

 𝑑𝑓(𝜆) =
1

𝜎𝜔
2 (𝑐𝑜𝑣(𝐻𝜆(𝑌

⋇)𝑌⋇, 𝑌⋇)) 

 =
1

𝜎𝜔
2  𝑡𝑟(𝐻𝜆(𝑌

⋇)𝑐𝑜𝑣(𝑌⋇, 𝑌⋇)) 

 =
1

𝜎𝜔
2  𝑡𝑟(𝐻𝜆(𝑌

⋇)). 𝜎𝜔
2  

 = 𝑡𝑟(𝐻𝜆(𝑌
⋇)) 
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i.e. 𝑑𝑓(𝜆) = 𝑡𝑟(𝐻𝜆(𝑌
⋇)) = 𝑘 + 1 = 𝐸|𝑆𝜆|,  if 𝜆 = 0.   

Now, if  𝜆 > 0. By theorem 1  �̂�𝜆
⋇(𝑌⋇) is uniformly Lipschitz on Ψ𝜆. Furthermore, �̂�𝜆

⋇(𝑌⋇) is a 

continuous function on 𝑌⋇. Hence, �̂�𝜆
⋇(𝑌⋇) is uniformly Lipschitz on 𝑅𝑁. This implies that 

�̂�𝜆
⋇(𝑌) is almost differentiable everywhere. Therefore, It can be applied divergence  formula (15) 

and using (8) we get          

𝑑𝑓(𝜆) =
1

𝜎𝜔
2 (𝑐𝑜𝑣(𝐻𝜆(𝑌

⋇𝑌⋇))𝑌⋇)  

 = 𝐸 [
𝜕�̂�𝜆(𝑌⋇)

𝜕𝑌⋇
(𝑌⋇)] 

 = 𝐸[∇. �̂�𝜆
⋇(𝑌⋇)] 

= 𝐸[𝑡𝑟(𝐻𝜆(𝑌
⋇))] = 𝐸|𝑆𝜆| 

 

3.4. Asymptotic consistency of the unbiased estimator 𝒅�̂�(𝝀). 

In this section, it will be showed that the unbiased estimator 𝑑�̂�(𝜆) is consistent estimator of 

𝑑𝑓(𝜆). It will be adopted the similar to asymptotic analysis of Knight an Fu [9] but for repeated 

measurements model. Assume that the following two regularity conditions which are needed to 

investigate the consistency of  the unbiased estimator 𝑑�̂�(𝜆):                        
1. 𝑌𝑖𝑡 = 𝐺𝑖𝑡𝜃

⋇ + 𝜔𝑖𝑡,    𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇,  where the random error 𝜔𝑖𝑡 are independent 

and identical distributed with mean 0 and variance 𝜎𝑣
2 + 𝜎𝜀

2, and 𝜃⋇ denotes the fixed unknown 

coefficients of the repeated measurements linear model.                                                                                                               

2.𝐴𝑁 =
1

𝑁
∑ 𝐺𝑖𝑡𝐺𝑖𝑡

′ = 𝐴𝑁
𝑖=1 ,                                                                                                         (43) 

where 𝐴 is a positive definite matrix.                                                                                                              

3. Define the following an objective function which is minimizing at 𝜃⋇ = 𝜃⋇  

𝑍𝜆(𝜃) = (𝜃 − 𝜃⋇ )𝐴(𝜃 − 𝜃⋇ )′ + 𝜆 ∑ |𝜃𝑗|
𝑘
𝑗=1 .                                                                            (44) 

Equation (44) represents an optimizing of the lasso problem which means that minimizing a 

quadratic objective function with ℓ1 norm. Moreover, there are a finite sequence of transition 

points {𝜆𝑚} associated with optimizing (44). The following theorem explains that  𝑑�̂�(𝜆𝑁
⋇ ) is a 

consistent estimator of 𝑑𝑓(𝜆𝑁
⋇ ) provided that 𝜆𝑁

⋇ = 𝑜(𝑁).                                                                                                                                

Theorem 3. The unbiased estimator of degrees of freedom 𝑑�̂�(𝜆𝑁
⋇ ) is consistent, In the sense 

that 

𝑑𝑓(𝜆𝑁
⋇ ) − 𝑑𝑓(𝜆𝑁

⋇ ) → 0 in probability  if the finite sequence of tuning parameters  𝜆𝑁
⋇  satisfies 

the following condition: 

   
𝜆𝑁

⋇

𝑁
→ 𝜆⋇ > 0, where 𝜆⋇ is not transition point, that is,  𝜆⋇ ∉ {𝜆𝑚} for all 𝑚.  

Proof. Define the random function 

  𝑍𝜆⋇
(𝑁)

(𝜃) =
1

𝑁
∑ (𝑌𝑖𝑡

⋇ − 𝐺𝑖𝑡
′ 𝜃 )

2𝑁
𝑖=1 +

𝜆𝑁

𝑁
∑ |𝜃𝑗

 |
 
 ,𝑘

𝑗=1  𝜆𝑁 > 0,  𝑡 = 1,… , 𝑇, with 𝜆 = 𝜆𝑁
⋇                                  

(45)   

  and also let 𝜃⋇ = argmin
𝜃

𝑍𝜆⋇ . Assume the effective set of (45) denote by  𝑆𝑁 = {𝑗: 𝜃𝑗
(𝑁)

≠

0, 1 ≤ 𝑗 ≤ 𝑘} 

and let the effective set of (44) denote by  𝑆⋇ = {𝑗: 𝜃𝑗
⋇ ≠ 0, 1 ≤ 𝑗 ≤ 𝑘}. 

Our target is to show that  𝑃(𝑆𝑁 = 𝑆⋇) → 1 as  𝑁 → ∞. 
First assume any  𝑗 ∈ 𝑆⋇ and let us show that 

 𝜃𝑁
𝑃
→𝜃⋇, where 𝜃(𝑁) = argmin𝑍𝜆⋇

(𝑁)
(𝜃)

𝜃

 and 𝜃⋇ = argmin
𝜃

𝑍𝜆⋇. 

   To show this, 

we translate (45) in to matrix notation  

 𝑍𝜆⋇
(𝑁)

(𝜃) =
1

𝑁
(𝑌⋇ − 𝐺𝜃(𝑁))

′
(𝑌⋇ − 𝐺𝜃(𝑁)) +

𝜆𝑁

𝑁
∑ |𝜃𝑗

(𝑁)
|
 

 𝑘
𝑗=1  

 =
1

𝑁
(𝜔 + 𝐺𝜃 − 𝐺𝜃(𝑁))

′
(𝜔 + 𝐺𝜃 − 𝐺𝜃(𝑁)) +

𝜆𝑁

𝑁
∑ |𝜃𝑗

(𝑁)
|
 

 𝑘
𝑗=1  

 =
1

𝑁
(𝜔 + 𝐺(𝜃 − 𝜃(𝑁)))

′

(𝜔 + 𝐺(𝜃 − 𝜃(𝑁))) +
𝜆𝑁

𝑁
∑ |𝜃𝑗

(𝑁)
|
 

 𝑘
𝑗=1  
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 =
1

𝑁
[𝜔′𝜔 + 2𝜔𝐺(𝜃 − 𝜃) + (𝜃 − 𝜃)

′
𝐺′𝐺(𝜃 − 𝜃)] +

𝜆𝑁

𝑁
∑ |𝜃𝑗|

 𝑘
𝑗=1   

Now letting 𝑁 → ∞, then we have the following results 
1

𝑁
𝐺′𝐺 → 𝐴,   

1

𝑁
𝜔′𝜔 → 𝐸(𝜔′𝜔) = 𝜎𝜔

2 ,   𝐸 [
1

𝑁
∑ 𝜔𝑖𝑡

𝑁
𝑖=1 ] =

1

𝑁
∑ 𝐸[𝜔𝑖𝑡] = 0,𝑁

𝑖=1   

 
1

𝑁
𝜔′𝐺(𝜃 − 𝜃(𝑁)) → ∑ 𝐸[𝜔𝑖𝑡]𝐺(𝜃 − 𝜃(𝑁)) = 0𝑁

𝑖=1   and 
𝜆𝑁

⋇

𝑁
→ 𝜆⋇ > 0. Therefore  

 𝑍(𝑁)(𝜃)
𝑃
→ 𝜎𝜔

2 + (𝜃 − 𝜃𝑁)′𝐴(𝜃 − 𝜃(𝑁)) + 𝜆⋇  ∑ |𝜃𝑗
(𝑁)

|
 

𝑘
𝑗=1  

 = 𝑍(𝜃⋇) + 𝜎𝜔
2 . 

Since 𝑍(𝑁)(𝜃) pointwise convergence in probability to 𝑍(𝜃⋇), we conclude that 

 𝜃(𝑁) = argmin
𝜃

𝑍𝑁(𝜃)
𝑃
→𝜃⋇ = argmin

𝜃
𝑍  (𝜃).  

Hence 𝜃(𝑁)
𝑃
→𝜃⋇. 

This implies that by using continuous mapping theorem  

 𝑆𝑔𝑛 (𝜃𝑗
(𝑁)

)
𝑃
→ 𝑆𝑔𝑛(𝜃𝑗

⋇),  since 𝑆𝑔𝑛(𝑥) is continuous at all 𝑥 but zero. 

Therefore 𝑃(𝑆(𝑁) ⊇ 𝑆⋇) → 1.                                                                                                   (46)    

Second, assume any 𝑗′ ∉ 𝑆⋇, and this implies that 𝜃𝑗′
⋇ = 0.  

Then we want to show that 𝜃𝑗
(𝑁)

= 0 and  𝑗′ ∉ 𝑆(𝑁).  

Since 𝜃⋇ = argmin
𝜃

𝑍  (𝜃𝜆⋇) and 𝜆⋇ is not a transition point, then by using optimality condition 

of Karush-Kuhn-Tucker, it will must be have  

𝜆⋇ > 2|𝐴𝑗′(𝜃⋇ − 𝜃⋇)|,                                                                                                               (47) 

where 𝐴𝑗′  is the 𝑗′𝑡ℎ row vector of the matrix 𝐴. 

Assume 𝑐⋇ = 𝜆⋇ − 2|𝐴𝑗′(𝜃⋇ − 𝜃⋇)| > 0.  

In the same way, consider 𝑐𝑁
⋇ = 𝜆𝑁

⋇ − 2|𝐺𝑗′
′ (𝑌⋇ − 𝐺𝜃𝑁

⋇)|. It is seen that 

 𝐺𝑗′
′ (𝑌⋇ − 𝐺𝜃𝑁

⋇)𝐺𝑗′
′ (𝐺𝜃⋇ + 𝜔 − 𝐺𝜃𝑁

⋇) = 𝐺𝑗′
′ (𝐺𝜃⋇ + 𝜔 − 𝐺𝜃𝑁

⋇) = 𝐺𝑗′
′ (𝐺(𝜃⋇ − 𝜃𝑁

⋇) + 𝜔) 

= 𝐺𝑗′
′ 𝐺(𝜃⋇ − 𝜃𝑁

⋇) + 𝐺𝑗′
′  ω.                                                                                                (48)   

Hence  
𝑐𝑁
⋇

𝑁
=

𝜆𝑁
⋇

𝑁
− 2 |

1

𝑁
 𝐺𝑗′

′ 𝐺(𝜃⋇ − 𝜃𝑁
⋇) +

1

𝑁
𝐺𝑗′

′  ω |. 

Since 𝜃(𝑁)
𝑃
→𝜃⋇ and by letting 𝑁 → ∞, then we obtain the following results 

1

𝑁
𝐺𝑗′

′  ω
𝑃
→0,    

1

𝑁
 𝐺𝑗′

′ 𝐺 → 𝐴𝑗′ . This implies that  

 
𝑐𝑁
⋇

𝑁

𝑃
→ 𝑐⋇ > 0.  Then by using optimality condition of  Karush-Kuhn-Tucker, we get  

𝑐𝑁
⋇ > 0 and this implies that 𝜃𝑗′

𝑁 = 0. Therefore  

𝑃(𝑆⋇ ⊇ 𝑆𝑁) → 1.                                                                                                                       (49) 

From (46) and (49) immediately we get 

𝑑�̂�(𝜆𝑁
⋇ )

𝑃
→|𝑆⋇|. Then by using convergence theorem, we have  

 𝑑𝑓(𝜆𝑁
⋇ ) = 𝐸[𝑑�̂�(𝜆𝑁

⋇ )]
𝑃
→|𝑆⋇|.                                                                                                   (50) 

Therefore 𝑑�̂�(𝜆𝑁
⋇ ) − 𝑑𝑓(𝜆𝑁

⋇ )
𝑃
→0.∎ 

4.  Degrees of freedom and Adaptive model selection criteria. 

   The first step in any penalized methods is to determine the value of penalty parameter "𝜆". 
Although the penalized least squares estimator has an oracle properties but the most important 

thing is the choice of  penalty parameter. It controls the quantity of shrinkage for the coefficients 

and selects the secondary variables which include in the final model. Moreover, the penalty 

parameter has the most important feature for choosing the optimal model which is called model 

selection criteria according to some criterion formula. These criterion such as Akaike 

information criteria (𝐴𝐼𝐶) (Akaike 1973) and Bayes information criteria (𝐵𝐼𝐶) (Shwartz 1978). 

There is another criteria is called Mallows 𝐶𝑝 (Mallows 1973) which is very similar to 𝐴𝐼𝐶.                                                                                                                                              

The two criterion whether 𝐴𝐼𝐶 or Mallows  𝐶𝑝 criteria are provided by Stein's unbiased risk 
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estimate theory (SURE) (Stein 1981). In Efron (2004)  𝐶𝑝 and SURE are suggested as 

covariance penalty methods for estimating the prediction error. In the previous section has been 

derived the degrees of freedom for the linear repeated measures model  of the lasso problem for 

the penalty parameter 𝜆. In spite of there is no exact value of degrees of freedom 𝑑𝑓(𝜆) but it 

has been provided an formula to compute it. It is seen that in the spirit of SURE theory, the 

unbiased estimate of 𝑑𝑓(𝜆) is sufficient to provide an unbiased estimate for the prediction error 

�̂�𝜆
⋇. Therefore  prediction error �̂�𝜆

⋇  can be denoted by 𝑃𝑒(�̂� ) and is given                  

    𝑃𝑒(�̂� 
⋇) =

1

𝑁
‖𝑌⋇ − �̂� 

⋇‖2 +
2

𝑁
𝑑�̂�(�̂� 

⋇),                                                                                  (51) 

where  𝑑�̂� refers to  𝑑�̂�(𝜆). Moreover, Akaike information criteria can be defined for the linear 

repeated measures of the lasso problem by using (51)                                                                                                             

𝐴𝐼𝐶(�̂� 
⋇
 
) =

1

𝑁
‖𝑌⋇ − �̂� 

⋇‖2 +
2

𝑁
𝑑�̂�(�̂� 

⋇)𝜎𝜔
2 .                                                                               (52) 

(52) is called 𝐴𝐼𝐶-lasso shrinkage which is corresponding to the 𝐵𝐼𝐶-lasso shrinkage denoted by 

 𝐵𝐼𝐶(�̂� 
⋇) and is defined as                                                                                                                                                        

 𝐵𝐼𝐶(�̂� 
⋇) =

1

𝑁 𝜎𝜔
2 ‖𝑌 − �̂� 

⋇‖2 +
log (𝑁)

𝑁
𝑑�̂�(�̂� 

⋇).                                                                           (53) 

Both (52) and (53) are considered as formulas for selectin lasso model but they possess different 

asymptotic optimality. when the true function is not included in the candidate models then the 

model which is chosen by 𝐴𝐼𝐶 asymptotically provides a smallest average squared error among 

the candidates. In this case, the 𝐴𝐼𝐶 estimator of the function converges at the 𝑚𝑖𝑛𝑚𝑎𝑥 optimal 

rate whether the true function is in the candidate models or not, as explained in shao (1997), 

Yang (2003) [20] and their references for linear regression. On the other hand, 𝐵𝐼𝐶 is well 

Known for its consistency in choosing the true model(Shao 1997). In the sense that, if the true 

model in the candidate list then the probability of choosing the correct model by 𝐵𝐼𝐶 converges 

to one as the sample size 𝑁 → ∞. Moreover, 𝐵𝐼𝐶-lasso shrinkage is adaptive in variable 

selection when the true underlying model is sparse. In addition, 𝐴𝐼𝐶-lasso shrinkage leads to 

give more non-zero coefficients than truth while 𝐵𝐼𝐶-lasso shrinkage is more convenient when a 

variable selection is the important choice in applying the lasso problem.                               From 

above, we conclude that the optimal lasso model of linear repeated measurements model can be 

computed either by 𝐴𝐼𝐶 or 𝐵𝐼𝐶. In the sense that, we encountering an optimization problem 

which is         

  𝜆(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = argmin
𝜆

1

𝑁𝜎𝜔
2 ‖𝑌 − �̂�‖2 +

ξ𝑁

𝑁
𝑑�̂�(�̂� 

⋇),                                                               (54) 

where ξ𝑁 = 2 for  𝐴𝐼𝐶 and  ξ𝑁 = log (𝑁) for 𝐵𝐼𝐶. Moreover, the penalty parameter 𝜆 is 

considered as one of the transition points which make the searching procedure is more easier.                                              

Theorem 5.An optimal lasso problem can be attained by solving the following optimization 

problem for the regularization parameter 𝜆.                                                                                                                                        

𝑚⋇ = min
𝑚

1

𝑁 𝜎𝜔
2 ‖𝑌 − �̂�𝜆𝑚

⋇ ‖
2
+

ξ𝑁 

𝑁
𝑑�̂� (𝜆𝑚);                                                                               (55) 

then  𝜆 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙) = 𝜆𝑚⋇. Where 𝜆 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙) is one of the transition points. 

 Proof. Assume that 𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚). By (16) and using �̂�𝜆 = 𝐺𝑆𝑚
𝜃𝜆(𝑌) then we have  

 �̂�𝜆 

⋇ = 𝐺𝑆𝑚
𝜃𝜆(𝑌) = 𝐺𝑆𝑚

(𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

(𝐺𝑆𝑚

′ 𝑌 −
𝜆

2
𝑆𝑔𝑛𝑚) 

 = (𝐺𝑆𝑚

 (𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

𝐺𝑆𝑚

′ )𝑌 −
𝜆

2
𝐺𝑆𝑚

(𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

𝑆𝑔𝑛𝑚 

 = 𝐻𝑆𝑚
(𝑌)𝑌 −

𝜆

2
𝐺𝑆𝑚

(𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

𝑆𝑔𝑛𝑚, 

where 𝐻𝑆𝑚
= (𝐺𝑆𝑚

 (𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

𝐺𝑆𝑚

′ ) is the projection matrix on the space 𝐺𝑆𝑚

 , i.e. [𝐻𝑆𝑚
(𝑌)]

2
=

𝐻𝑆𝑚
(𝑌). 

𝑌 − �̂�𝜆 

⋇ = (𝐼 − 𝐻𝑆𝑚
)𝑌 +

𝜆

2
𝐺𝑆𝑚

(𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

𝑆𝑔𝑛𝑚                                                                   (56) 

 ‖𝑌 − �̂�𝜆 

⋇ ‖
2

= 𝑌′(𝐼 − 𝐻𝑆𝑚
)𝑌 +

𝜆2

4
𝑆𝑔𝑛𝑚

′ (𝐺𝑆𝑚

′ 𝐺𝑆𝑚
)
−1

𝑆𝑔𝑛𝑚. 

Since the lasso estimates are continuous function on  𝜆. Then we can conclude ‖𝑌 − �̂�𝜆 

⋇ ‖
2
 is 

strictly increasing in the interval  (𝜆𝑚+1, 𝜆𝑚). In the sense that for each 𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚) we have 
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that  

 ‖𝑌 − �̂�𝜆𝑚+1

⋇ ‖
2

< ‖𝑌 − �̂�𝜆
⋇‖2‖𝑌 − �̂�𝜆𝑚

⋇ ‖
2
.                                                                                 (57) 

On the other hand, it is noted that by Theorem 2, we have 𝑑𝑓(𝜆) = 𝐸|𝑆𝑚| which implies 

𝑑�̂�(𝜆) = |𝑆𝑚| for every 𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚) and |𝑆𝑚|  ≥ |𝑆( 𝜆𝑚+1 
)|, that is, 𝑆𝑚 is increasing for 

every 𝜆 ∈ (𝜆𝑚+1, 𝜆𝑚). 
Therefore the optimal choice of 𝜆 in  (𝜆𝑚+1, 𝜆𝑚) is  𝜆𝑚+1 

, 𝜆 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙) ∈ {𝜆𝑚 
},  𝑚1, 2, 3, … 𝑝. 
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