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Abstract. In this paper, we propose high-dimensional repeated measurements model 

and using the Bridge estimator as penalized method that minimizes the residual sum of 

squares plus penalty term ∑|𝜃𝑗|
𝛾
. After that, under appropriate conditions, we discuss 

the consistency and asymptotic behavior of lasso estimator when 𝛾 = 1 as especial case 

and also study the consistency and limiting distribution of the Bridge estimators when 

𝛾 < 1 and 𝛾 > 1. Moreover, we discuss the asymptotic of estimators by using small 

parameter and local asymptotic. In other words, we discuss the asymptotic behavior in 

a triangular array of observations. 

1.Introduction 

 

High-dimensional statistical problem can be considered as results of the large amount of  data 

gathered today such as spectra, biomedical data, financial data, images which are described by 

hundreds or thousands of attributes. The relationship between the unknown parameters denoted 

by 𝑘 which are to be estimated and the sample size denoted by 𝑛 reflects the type of data 

whether it is high-dimensional or low-dimensional. In the sense that, when the number of 

parameters is larger than sample size then we have "high-dimensional" data. On the other hand, 

when the number of   parameter is less than sample size then we have "low-dimensional" data. 

 

Modelling high-dimensional data is challenging because of some reasons. One of these mainly 

is  ordinary least squares estimator is not unique and will heavily over-fit the data. In this case, 

if this method has such problem so it is possible to use totally different method, for example 

penalized least squares methods. These methods are common and suitable to treat with the high-

dimensional data when the number of explanatory variables is larger than the sample size. The 

penalized least squares method is used to overcome the computational problems in the high-

dimensional data and it is also improved the prediction accuracy by making estimator and 

variable selection simultaneously. It is based on the principle that minimizing the sum of 

squares error with some constraints on the parameters. It can be obtained the penalized least 

squares estimators by minimizing the objective function which contains two parts a loss 

function and a penalty function. The best penalty function gives estimator that describes by 

three properties: unbiasedness, sparsity and continuity. It is also the estimator from the ideal 

aspect must have oracle properties which are consistency and asymptotic normal. One of these 

penalized least squares methods is called "lasso", proposed by Tibshirani (1996). This method 
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is considered as an especial case when 𝛾 = 1 in a penalized regression method called "Bridge  

regression" proposed by Fran and Friedman (1993), as in the following form       

                     

𝛽̂ = 𝑎𝑟𝑔min
𝛽

{
1

𝑁
∑(𝑌𝑖 − 𝑋𝑖𝑗

′ 𝛽𝑗)
2
+

𝜆𝑛

𝑁
∑|𝛽𝑗|

𝛾
𝑘

𝑗=1

𝑁

𝑖=1

}, 

 

where  𝜆 is penalty parameter and  
𝜆𝑛

𝑛
∑ |𝛽𝑗|

𝛾𝑘
𝑗=1  is penalty function. The lasso method is based 

on the idea that minimizing the residual sum of squares plus the sum of absolute                                             

value of coefficients.  In  Section 2, we define our model with its some properties. In section 3, 

we assume that some important assumptions on the design matrix and also investigate the 

convexity of lasso estimator with some important definitions. In section 4, we discuss the 

asymptotic consistency of Bridge estimators with lasso estimator as especial case when 𝛾 = 1. 

Finally, in section 5, we discuss the finite sample behavior by considering " small true 

parameters".    

                                                      

2. Setting Model 
Consider the response random variables 𝑌1𝑡 , … , 𝑌𝑁𝑡 are generated by a repeated measurements 

linear model at time 𝑡, 𝑡 = 1,… , 𝑇                                                                                                                         

𝑌𝑖𝑡 = 𝜇 + 𝑋𝑗(𝑖𝑡) 
′ 𝛽𝑗 + 𝜈𝑖 + 𝜖𝑖𝑡,                                          (1) 

for observed explanatory variables  {𝑥𝑗(𝑖𝑡)}, unknown fixed parameters  𝜇 𝑎𝑛𝑑 𝛽𝑗 ∈ ℝ𝑘, 

unknown errors 𝜖𝑖𝑡 with  𝜖𝑖𝑡~𝑁(0, 𝜎𝜖
2) and a random effect 𝜐𝑖 with 𝑣𝑖 ~𝑁(0, 𝜎𝜈

2). The model 

in  (1) can be rewritten as   

                                                                                                                                      

                                 𝑌𝑖𝑡 = 𝜇 + ∑ 𝛽𝑗𝑋𝑗(𝑖𝑡) + 𝜔𝑖𝑡
𝑘
𝑗=1 ,           (2) 

Where   𝜔𝑖𝑡 = 𝜈𝑖 + 𝜖𝑖𝑡 with 𝜔𝑖𝑡~𝑁(0, 𝜎𝜔
2), 𝜎𝜔

2 = 𝜎𝜈
2 + 𝜎𝜖

2 . 
 

Assuming that the explanatory variables are centered to have mean 0 and put 𝜇
̂

= 𝑌̅ in this case, 

it can be change 𝑌𝑖𝑡 in (2) by 𝑌𝑖𝑡 − 𝑌̅ and concentrate on estimating β. Again assuming that 𝑌̅ =
0. The model in (2) can be rewritten as  

𝑌𝑖𝑡 = 𝐺𝑗(𝑖𝑡)
′ 𝜃𝑗 + 𝜔𝑖𝑡.                                           (3) 

 

 In matrix notation the model in  (3) can be rewritten as   

 

                              𝑌 = 𝐺𝜃 + 𝜔 ,                       (4)        

 

where,  𝑌 = [𝑌11, … , 𝑌1𝑇 , 𝑌21, … , 𝑌𝑁1, … , 𝑌𝑁𝑇]′ has length 𝑁𝑇,  

𝐺 = [𝑒 , 𝑋], 𝑒 = [1,…1]′   has length 𝑁𝑇,  

𝑋 = [𝑋1, … , 𝑋𝑁]′ is a 𝑁𝑇 × 𝐾 design matrix of fixed effects, 

𝜃 = [ 𝜇, 𝛽1, 𝛽2, … , 𝛽𝑘]
′
 has length 𝑘 + 1, and  

𝜔 = [𝜔11, … , 𝜔1𝑇, 𝜔21, … , 𝜔𝑁1, … , 𝜔𝑁𝑇]′ has length 𝑁𝑇.  
 

From the model in (4), we have  𝑌~𝑁𝑁𝑇(𝐺𝜃, Σ), where  

𝐸(𝜔𝜔′) = 𝐸[(𝑌 − 𝐺𝜃)(𝑌 − 𝐺𝜃)′] 
= 𝐼𝑁⨂(𝜎𝜀

2𝐼𝑇 + 𝜎𝑣
2𝑒𝑒′), where ⨂ is Konecker product 

= 𝜎𝜀
2(𝐼𝑁⨂𝐼𝑇) + 𝜎𝑣

2(𝐼𝑁⨂𝑒𝑒′), 
replace 𝐼𝑇 𝑏𝑦 (𝐸𝑇 + 𝐽𝑇) and  𝑒𝑒′ by 𝑇𝐽𝑇 , where  

𝐽𝑇 =
1

𝑇
𝑒𝑒′  and 𝐸𝑇 = 𝐼𝑇 − 𝐽𝑇, then 

Σ = 𝜎𝜀
2[𝐼𝑁⨂(𝐸𝑇 + 𝐽𝑇)] + 𝜎𝑣

2(𝐼𝑁⨂𝑇𝐽𝑇) 

= 𝜎𝜀
2(𝐼𝑁⨂𝐸𝑇) + 𝜎𝜀

2(𝐼𝑁⨂𝐽𝑇) + 𝑇𝜎𝑣
2(𝐼𝑁⨂𝐽𝑇), 

by collecting terms with the same matrices, we obtain 
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Σ = 𝜎𝜀
2(𝐼𝑁⨂𝐸𝑇) + (𝜎𝜀

2 + 𝑇𝜎𝑣
2)(𝐼𝑁⨂𝐽𝑇) 

= 𝜎𝜀
2𝑄 + 𝜎1

2𝑃, 

where  𝜎1
2 = (𝜎𝜀

2 + 𝑇𝜎𝑣
2)  and Σ−1 =

𝑄

𝜎𝜀
2 +

𝑃

𝜎1
2, 

→|Σ| = (𝜎𝜀
2)𝑁(𝑇−1)(𝜎1

2)𝑁. 

 

Now θ can be estimated by minimizing the penalized least squares (LS), 

 

i.e 𝜃𝑁(𝜆𝑁) = argmin
𝜃∈𝑅𝑘+1

 {
1

𝑁
∑ (𝑌𝑖𝑡 − 𝐺𝑖𝑡

′
   
𝜃𝑗)

2𝑁
𝑖=1 +

𝜆𝑁

𝑁
∑ |𝜃𝑗|

𝛾𝑘
𝑗=1 }                          (5)  

 

 for given penalty parameter 𝜆𝑁 denotes the estimator 𝜃𝑁 and 𝛾 > 0.  Such estimator contains 

two especial cases, the bridge estimator in (5) becomes ridge estimator when 𝛾 = 2 and lasso 

estimator when 𝛾 = 1. Also if 𝜆𝑁 is sufficiently large and γ ≤ 1, then the estimators in the 

penalty function 𝜆𝑁 ∑ |𝜃𝑗|
𝛾𝑘

𝑗=1  is exactly 0. In fact, model selection methods that penalize by 

some nonzero parameters can be imposed as limiting cases of bridge estimation as γ→0 since   

lim
𝛾→0

∑ |𝜃𝑗|
𝛾

= ∑ 𝐼(𝜃𝑗 ≠ 0).𝑘
𝑗=1

𝑘
𝑗=1  In fact when 𝜆𝑁 = 0, so the terminology in (5) becomes  

∑ (𝑌𝑖𝑡 − 𝐺𝑖𝑡
′

   
𝜃)2𝑁

𝑖=1  which corresponds to ordinary least squares estimator and this estimator 

denotes by 𝜃𝑁
(0)

. This means that (5) becomes       

                          

  𝜃𝑁
(0)

= argmin
𝜃∈𝑅𝑘+1

 ∑ (𝑌𝑖𝑡 − 𝐺𝑖𝑡
′

   
𝜃𝑗̂)

2.𝑁
𝑖=1              

                                                                            

3. The Assumptions on the Design Matrix  𝑮 

For the design matrix proposes the following  regularity conditions  

 

𝒊.  lim
𝑁→∞

𝐴𝑁 =  lim
𝑁→∞

1

𝑁
∑ 𝐺𝑖𝑡𝐺𝑖𝑡

′ → 𝐴𝑁
𝑖=1  ,                                                                                        (6)    

 

where  𝐴 is a nonnegative definite matrix .         
𝒊𝒊. The random error 𝜔𝑖𝑡 are independent and identical distributed with mean 0 and has a 

continuous, probability density function (p.d.f) 𝑓 in a neighborhood of 0. If the matrix 𝐴  in (7) 

is nonsingular then the parametrization of the model in (1) is unique. Define the following class                                    
     Ω = {𝜉: 𝜉 = 𝜃 + Φ 𝑤ℎ𝑒𝑟𝑒 𝐴𝑁Φ = 0}, where  θ satisfies the relation in (4).                              

 

Under conditions (𝑖) and (𝑖𝑖) and assuming that  𝐴 is nonsingular then we have that the least 

squares estimator is consistent and that  

√𝑁 (𝜃𝑁
(0)

− 𝜃)→
𝑑

𝑁(0, 𝜎𝜔
2𝐴−1), where 𝜎𝜔

2 = 𝜎𝜈
2 + 𝜎𝜖

2 . 

 

Lemma 1. Under assumption (𝐴1) on design matrix  we have that the regularity condition    

                                
1

𝑁
max
1≤𝑖≤𝑁

𝐺𝑖𝑡
′ 𝐺𝑖𝑡 → 0 ,  as 𝑁 → ∞, 𝑡 = 1,… , 𝑇.                                                (7)  

Proof. Consider  𝜀 > 0  and 𝑅 = 𝑡𝑟(𝐴).  We have 𝐴𝑁 → 𝐴 and 𝐴 is nonsingular and non-

negative  definite, this implies 𝑡𝑟(𝐴𝑁) =
1

𝑁
 ∑ 𝐺𝑖𝑡

′ 𝐺𝑖𝑡 → 𝑅 > 0.𝑁
𝑖=1  

Therefore there exists an  𝑁∗(𝜀) such that  

|
1

𝑁
∑ 𝐺𝑖𝑡

′ 𝐺𝑖𝑡
𝑁
𝑖=1 − 𝑅| ≤ 𝜀 ,  𝑁 ≥ 𝑁∗.  

 −𝜀 ≤
1

𝑁
∑ 𝐺𝑖𝑡

′ 𝑋𝐺𝑖𝑡
𝑁
𝑖=1 − 𝑅 ≤ 𝜀 

 R−𝜀 ≤
1

𝑁
∑ 𝐺𝑖𝑡

′ 𝐺𝑖𝑡
𝑁
𝑖=1 ≤ 𝑅 + 𝜀. We have  

0 ≤ 
1

𝑁
max

𝑁∗≤𝑖≤𝑁
𝐺𝑖𝑡

′ 𝐺𝑖𝑡 

 =
1

𝑁
max

𝑁∗≤𝑖≤𝑁
(∑ 𝐺𝑖𝑡

′ 𝐺𝑖𝑡
𝑖
𝑟=1 − ∑ 𝐺𝑖𝑡

′ 𝐺𝑖𝑡
𝑖−1
𝑟=1 ) 
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 ≤
1

𝑁
max

𝑁∗≤𝑖≤𝑁
((𝑅 + 𝜀)𝑖 − (𝑅 − 𝜀)(𝑖 − 1)) 

= max
𝑁∗≤𝑖≤𝑁

𝑅+2𝑖𝜀−𝜀

𝑁
 

 ≤ max
𝑁∗≤𝑖≤𝑁

𝑅+2𝑖𝜀

𝑁
≤ 3ε 

For sufficiently large  𝑁 and letting 𝑁 → ∞, since   

0 ≤ lim
𝑁→∞

𝑠𝑢𝑝 
1

𝑁
max

𝑁∗≤𝑖≤𝑁
𝐺𝑖𝑡

′ 𝐺𝑖𝑡 ≤ 3𝜀,  

 

Whereas ε>0  is arbitrary. The prove is complete. 

 

Proposition 1. The Lasso estimator 𝜃𝑁 when γ =1  in equation (5) is convex. 

Proof . The Objective function in (5) when γ =1  can be written as 

 

𝜃𝑁 = 𝑓(𝜃) + 𝑔(𝜃), where  

𝑓(𝜃) =
1

𝑁
∑ (𝑦𝑖𝑡 − 𝐺𝑖𝑡

′ 𝜃𝑗)
2𝑁

𝑖=1  and 𝑔(𝜃) =
𝜆𝑁

𝑁
∑ |𝜃𝑗

 |
 
 ,𝑘

𝑗=1   𝑡 = 1 , … , 𝑇. 

 

Since 𝜃 ∈ 𝑅𝑘 then the domain of both functions 𝑓 and 𝑔 is convex. 

To prove that 𝑓(𝜃) is convex, we must show that 
1

𝑁
𝐺′𝐺 is nonnegative definite matrix for any 

𝑘 × 1 vector. In matrix notation, 𝑓 can be written as   

 

 𝑓(𝜃) =
1

𝑁
(𝑌 − 𝐺𝜃)

′
(𝑌 − 𝐺𝜃) 

 =
1

𝑁
((𝜔 + 𝐺𝜃) − 𝐺𝜃)

′
((𝜔 + 𝐺𝜃) − 𝐺𝜃) 

 =
1

𝑁
(𝜔 + 𝐺𝜃 − 𝐺𝜃)

′
(𝜔 + 𝐺𝜃 − 𝐺𝜃) 

=
1

𝑁
(𝜔 + 𝐺(𝜃 − 𝜃))

′
(𝜔 + 𝐺(𝜃 − 𝜃)) 

 =
1

𝑁
𝜔′𝜔 +

1

𝑁
𝜔′𝐺(𝜃 − 𝜃) +

1

𝑁
 (𝜃 − 𝜃)

′
𝐺′𝜔 + (𝜃 − 𝜃)

′
𝐺′𝐺(𝜃 − 𝜃) 

 =
1

𝑁
𝜔′𝜔 +

1

𝑁
𝜔′𝐺(𝜃 − 𝜃) +

1

𝑁
 (𝜃 − 𝜃)

′
𝐺′𝜔 + (𝜃 − 𝜃)

′
𝐺′𝐺(𝜃 − 𝜃) 

 

By letting 𝑁 → ∞, note the following results 
1

𝑁
𝜔′𝜔

𝑝
→𝐸(𝜔′𝜔) = 𝜎𝜔

2   (by the law of large number) 

 𝐸 [
1

𝑁
∑ 𝜔𝑖

𝑁
𝑖=1 ] =

1

𝑁
∑ 𝐸[𝜔𝑖] = 0,𝑁

𝑖=1   therefore  

 2𝐸 [
1

𝑁
∑ 𝜔𝑖

𝑁
𝑖=1 ] 𝐺′(𝜃 − 𝜃) = 0 (by the law of large number)  

 

This implies  

 𝑓(𝜃) = 𝜎𝜔
2 +

1

𝑁
(𝜃 − 𝜃)

′
𝐺′𝐺(𝜃 − 𝜃) 

 = 𝜎𝜔
2 + (𝜃 − 𝜃)

′
𝐴(𝜃 − 𝜃) 

Since (𝜃 − 𝜃) ≥ 0   for all true  𝜃 and estimator 𝜃, therefore  

 (𝜃 − 𝜃)
′
𝐴(𝜃 − 𝜃) = ‖𝐺(𝜃 − 𝜃)̂‖

2

2
≥ 0. 

 

Thus 𝐴 is nonnegative definite matrix and this implies that 𝑓(𝜃) is convex. 

For any 𝜃1, 𝜃2 and any α∈(0 , 1) , γ =1 in (5) let  

𝜃 = 𝛼𝜃1 + (1 − 𝛼)𝜃2, then  

 𝑔(𝜃) =
𝜆𝑁

𝑁
‖𝛼𝜃1 + (1 − 𝛼)𝜃2‖

𝛾
 

 ≤
𝜆𝑁

𝑁
‖𝛼𝜃‖

𝛾
+

𝜆𝑁

𝑁
‖(1 − 𝛼)𝜃2‖

𝛾
 

 =
𝜆𝑁

𝑁
𝛼‖𝜃‖

𝛾
+

𝜆𝑁

𝑁
(1 − 𝛼)‖𝜃̂2‖

𝛾
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 = 𝛼𝑔(𝜃1) + (1 − 𝛼)𝑔(𝜃2). 

Hence 𝑔(𝜃) is convex.  

Since  𝑓(𝜃) and 𝑔(𝜃) are both convex , therefore  

 𝓛𝑵(𝜽̂) = 𝒇(𝜽̂) + 𝒈(𝜽̂)  is also convex. ∎  

 

Definition 1. (Convergence in Probability) [11]. A sequence of random variables 𝑋1, 𝑋2, … is 

said to converges in probability to a random variable 𝑋  if, for every ϵ > 0,                                                          

lim
𝑛→∞

𝑃(|𝑋𝑛 − 𝑋| < 𝜖) = 1  or equivalently, lim
𝑛→∞

𝑃(|𝑋𝑛 − 𝑋| ≥ 𝜖) = 0.                        

 

Definition 2. (Convergence in Distribution) [11]. A sequence of random variables 𝑋1, 𝑋2, … , 𝑋𝑛 

is said to converges in distribution to a random variable 𝑋 if                                                                                

 lim
𝑛→∞

𝐹𝑋𝑛
(𝑥) = 𝐹𝑋(𝑥)  at all points  𝑥 where  𝐹𝑋(𝑥) is continuous.                                             

 

Definition 3 [17]. A sequence of random variables 𝑋1, 𝑋2, …  is said to be convergent to a 

constant 𝑐 in probability, denoted 𝑋𝑛

𝑝
→𝑐 if for any given 𝜖 > 0,                                                                                 

    lim
𝑛→∞

𝑃(|𝑋𝑛 − 𝑐| ≥ 𝜖) = 0.                                                                                                    

 

Definition 4 [17].  A sequence of random variables  {𝑋𝑛}, 𝑛 = 1 ,2,…, is of smaller order than 

a sequence random variables {𝑎𝑛}, 𝑛 = 1, 2, …,  if                                                                                         

 lim
𝑛→∞

{
𝑋𝑛

𝑎𝑛
} = 0  in which case we write 𝑋𝑛 = 𝑜(𝑎𝑛).                                                             

 

Definition 5 [17].  A sequence of random variables {𝑋𝑛}, 𝑛 = 1, 2,…,  is said to be bounded 

upon order {𝑎𝑛}, 𝑛 = 1, 2, …,  if there exists a real number 𝐾 < ∞ such that 
|𝑋𝑛|

𝑎𝑛
≤ 𝐾  for all 𝑛. 

In this case, we write   𝑋𝑛 = 𝑂(𝑎𝑛).                                                                                                                              
   

Definition 6 (Consistency). An estimator 𝜃(𝑁) is said to be consistent for the parameter 𝜃 if 

lim
𝑁→∞

(|𝜃(𝑁) − 𝜃| ≥ 𝜖) = 0,          ∀ 𝜖 > 0.                                                                              

 

Definition 7. (Kronecker product). An product of two matrices 𝐴 ∈ 𝑀𝑝,𝑞 and 𝐵 ∈ 𝑀𝑟,𝑠 in the 

form                                                                                                                               

𝐴⨂𝐵 =

[
 
 
 

𝑎11𝐵 𝑎12𝐵 ⋯ 𝑎1𝑞𝐵

𝑎21𝐵 𝑎22𝐵 ⋯ 𝑎2𝑞𝐵

        ⋮      ⋮    ⋱            ⋮          
𝑎𝑝1𝐵 𝑎𝑝2𝐵 ⋯ 𝑎𝑝𝑞𝐵 ]

 
 
 

 

Is called kronecker product 

 

4. Asymptotic Consistency of the Lasso Estimator  

 In this part, it will be discussed the consistent of lasso estimator as especial case when 𝛾 = 1 

in bridge estimator. Assume that the Grim matrix 𝐴 defined in (6) is nonsingular. Define the 

following random function       

                                                                                                                                     

ℒ𝑁(𝜃) =
1

𝑁
∑ (𝑦𝑖𝑡 − 𝐺𝑖𝑡

′ 𝜃 )
2𝑁

𝑖=1 +
𝜆𝑁

𝑁
∑ |𝜃𝑗

 |
𝛾
 ,𝑘

𝑗=1  𝜆𝑁 > 0, 𝛾 > 0, 𝑡 = 1,… , 𝑇         (8) 

 

 Which is minimized at  𝜃 = 𝜃𝑁
 
. Assuming that the asymptotic behavior of the bridge estimator 

can be determined by studying the asymptotic behavior of (8). The following theorem explains 

that  𝜃𝑁 is a consistent estimator of θ provided that 𝜆𝑁 = 𝑜(𝑁).      
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Theorem 1.  The lasso  estimators 

 𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛ℒ𝑁(𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑁
∑ (𝑦𝑖𝑡 − 𝐺𝑖𝑡

′ 𝜃 )
2𝑁

𝑖=1 +
𝜆𝑁

𝑁
∑ |𝜃𝑗

 |
𝛾
 ,𝑘

𝑗=1 𝜆𝑁 > 0, 𝑡 = 1,… , 𝑇    

when 𝛾 = 1  is consistent if the following assumptions is satisfied   
                                        

1.  𝑇ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐴 defined  in (7) is nonsingular.  

2.  
𝜆𝑁

𝑁
 → 𝜆0 ≥ 0  i.e. 𝜆𝑁 = 𝑜(𝑁). 

3.  𝜃𝑁

𝑝
→  𝑎𝑟𝑔𝑚𝑖𝑛 (ℒ)  , where  ℒ(𝜃) = (𝜃 − 𝜃)

′
𝐴((𝜃 − 𝜃)

 
+ 𝜆0 ∑ |𝜃𝑗|

 𝑘
𝑗=1  

 

Proof.  To prove that the lasso estimator 𝜃𝑁 is consistent, we must show that ℒ𝑁(𝜃̂) defined in 

(8) converges in Probability to  ℒ(𝜃) + 𝜎𝜔
2  . In other word, we need to show that,   

                                       sup
𝜃̂∈𝐾

|ℒ𝑁(𝜃̂) − ℒ(𝜃) − 𝜎𝜔
2 |

𝑝
→0                                                  (9)       

for any compact set 𝐾 and that 

𝜃𝑁 = 𝑂𝑝(1).                                                               (10)    

  

To show this, it can be translated ℒ𝑁  in (8) to matrix notation as, 

 

 ℒ𝑁(𝜃)= 
1

𝑁
(𝑌 − 𝐺𝜃)

′
(𝑌 − 𝐺𝜃) +

𝜆𝑁

𝑁
∑ |𝜃𝑗|

𝛾𝑘
𝑗=1  

 =
1

𝑁
(𝜔 + 𝐺𝜃) − 𝐺𝜃)

′
((𝜔 + 𝐺𝜃) − 𝐺𝜃) +

𝜆𝑁

𝑁
∑ |𝜃𝑗|

𝛾𝑘
𝑗=1  

=
1

𝑁
(𝜔 + 𝐺(𝜃 − 𝜃))

′
(𝜔 + 𝐺(𝜃 − 𝜃))

 
+

𝜆𝑁

𝑁
∑ |𝜃𝑗|

𝛾𝑘
𝑗=1      

 =
1

𝑁
[𝜔′𝜔 + 2𝜔𝐺(𝜃 − 𝜃) + (𝜃 − 𝜃)

′
𝐺′𝐺(𝜃 − 𝜃)] +

𝜆𝑁

𝑁
∑ |𝜃𝑗|

𝛾𝑘
𝑗=1  

 

Now, letting 𝑁 → ∞ and 𝛾 = 1  we have the following facts: 

 

 𝑣𝑎𝑟(𝜔) = 𝐸(𝜔′𝜔) + 𝐸(𝜔)′𝐸(𝜔) = 𝐸(𝜔′𝜔) = 𝜎𝜔
2 . 

1

𝑁
𝜔′𝜔

𝑝
→𝐸[𝜔′𝜔] = 𝜎𝜔

2  ( by the law of the large number), 
1

𝑁
𝐺′𝐺 → 𝐴, 

 𝐸 [
1

𝑁
∑ 𝜔𝑖𝑡

𝑁
𝑖=1 ] =

1

𝑁
∑ 𝐸[𝜔𝑖𝑡] = 0,𝑁

𝑖=1  

 
2

𝑁
𝜔′𝐺(𝜃 − 𝜃) → 2𝐸 [

1

𝑁
∑ 𝜔𝑖𝑡

𝑁
𝑖=1 ] 𝐺′(𝜃 − 𝜃) = 0 (by the law of the large numbers) 

 
𝜆𝑁

𝑁
→ 𝜆0 = 0 

 Therefore,  

 ℒ𝑁(𝜃)
𝑝
→𝜎𝜔

2 + (𝜃 − 𝜃)
′
𝐺′𝐺(𝜃 − 𝜃) + 𝜆0 ∑ |𝜃𝑗|

 𝑘
𝑗=1 =  ℒ(𝜃) + 𝜎𝜔

2  

 

Since ℒ𝑁(𝜃̂) pointwise convergence in probability to  ℒ(𝜃), we conclude that, 

 sup
𝛽̂∈𝐾

|ℒ𝑁(𝜃) − ℒ(𝜃) − 𝜎𝜔
2 |

𝑝
→0 , for any compact 𝐾 and that  

 𝜃𝑁 = 𝑂𝑝(1). 

 

Therefore we have that  For γ ≥ 1 ,  ℒ𝑁 is convex and  

𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛 (ℒ𝑁) 
𝑝
→𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛 (ℒ).  

Therefore lasso estimator 𝜃𝑁 is consistent when 𝛾 = 1.∎ 

 

Remark 1. For  𝛾 < 1,  ℒ𝑁 will not be convex  but the formula in (9) can be easy concluded it 

by using the same way above. To investigate the formula in (10), we  have that 

ℒ𝑁(𝜃) ≥
1

𝑁
∑ (𝑌𝑖𝑡 − 𝐺𝑖𝑡

′ 𝜃𝑗)
2𝑁

𝑖=1 = ℒ𝑁
0 (𝜃) for all 𝜃.   
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We note that 𝑎𝑟𝑔𝑚𝑖𝑛(ℒ𝑁
0 ) = 𝑂𝑝(1), it follows that 𝑎𝑟𝑔𝑚𝑖𝑛(ℒ𝑁) = 𝑂𝑝(1).  

This implies that 𝜃𝑁 are consistent when 𝛾 < 1 . In spite of 𝜆𝑁 = 𝑜(𝑁) is sufficient for 

consistency of estimator 𝜃𝑁, it will be chosen 𝜆𝑁 smaller order than √𝑁  to get √𝑁 −

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 of the ridge estimator. At the same time, if 𝜆𝑁 is chosen less order than √𝑁  then 

√𝑁 (𝜃𝑁 − 𝜃) will be the same asymptotic distribution as  √𝑁(𝜃𝑁
0 − 𝜃). Therefore the rate of  

growth of 𝜆𝑁 depends on whether 𝛾 ≥ 1 or γ < 1 to get interesting asymptotic distribution. In 

the following theorem, √𝑁 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 of lasso and bridge estimators will be investigated 

when 𝜆𝑁 = 𝑂(√𝑁)  for  γ≥1.                                              

 

Theorem 2. Given the above assumptions on design matrix (𝑖) and (ii),  if  
𝜆𝑁

√𝑁
→ 𝜆0 ≥ 0 and 

𝐴 is nonsingular and assume that 𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛ℒ𝑁(𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑁
∑ (𝑦𝑖𝑡 − 𝐺𝑖𝑡

′ 𝜃 )
2𝑁

𝑖=1 +
𝜆𝑁

𝑁
∑ |𝜃𝑗

 |
𝛾
 ,𝑘

𝑗=1  

𝜆𝑁 > 0, 𝛾 > 0, 𝑡 = 1,… , 𝑇    , then  

 1. The lasso estimator  𝜃𝑁 when 𝛾 = 1 satisfies    √𝑁 (𝜃𝑁 − 𝜃)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛(𝑉1),  

where 𝑉1(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ [𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)𝐼(𝜃𝑗 ≠ 0) + |𝑢𝑗| 𝐼(𝜃𝑗 = 0)]𝑘
𝑗=1 . 

2. The Bridge estimator 𝜃𝑁 when 𝛾 > 1 satisfies √𝑁 (𝜃𝑁 − 𝜃)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛(𝑉2), 

where 𝑉2(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)|𝜃𝑗|
𝛾−1𝑘

𝑗=1    and  

  𝑊~𝑁(0,  𝜎𝜔
2𝐴). 

 

Proof. 
 1.  If  γ=1 Define a random variable  𝑉𝑁 where,  

𝑉𝑁(𝑢) =
1

𝑁
∑ [(𝑤𝑖𝑡 −

𝑢′𝐺𝑖𝑡

√𝑁
)
2

− 𝜔𝑖𝑡
2 ]

 

+
𝜆𝑁

𝑁
∑ [|𝜃𝑗 +

𝑢𝑗

√𝑁
|
𝛾
− |𝜃𝑗|

𝛾
]𝑘

𝑗=1
𝑁
𝑖=1 ,                (11) 

  where u = (𝑢1, … , 𝑢𝑘)′ ∈ 𝑅𝑘, 𝜆𝑁 > 0, 𝛾 = 1, 𝑡 = 1,… , 𝑇.                                                       
(11) can be rewritten in matrix notation as    

 𝑉𝑁(𝑢) = (‖𝜔 −
𝐺𝑢

√𝑁
‖

2
+ 𝜆𝑁 ∑ |𝜃𝑗 +

𝑢𝑗

√𝑁
|
 

𝑘
𝑗=1 ) − (‖𝜔‖2 + 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

 
), which can be written 

as 

𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃 )                                              (12) 

where,  𝑄𝑁(𝛼) = ‖𝑌 − 𝐺𝛼‖2 + 𝜆𝑁 ∑ |𝛼𝑗|
𝑘
𝑗=1

 
 

 Note that  √𝑁 (𝜃𝑁 − 𝜃) minimizes 𝑉𝑁 

 i.e.    √𝑁 (𝜃𝑁 − 𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑉𝑁  by noting that          

  𝑉𝑁 (√𝑁 (𝜃𝑁 − 𝜃)) = 𝑄𝑁 (𝜃 + (𝜃𝑁 − 𝜃)) − 𝑄𝑁(𝜃) = 𝑄𝑁(𝜃̂𝑁) + 𝐴 

 

To show that   𝑉𝑁 converges in distribution to 𝑉1, noting that   

 𝑄𝑁 (𝜃 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃 ) = |(𝑌 − 𝐺𝜃) −

𝐺𝑢

√𝑁
|
′
|(𝑌 − 𝐺𝜃) −

𝐺𝑢

√𝑁
| + 𝜆𝑁 ∑ |𝜃𝑗 +

𝑢𝑗

√𝑁
|
 

𝑘
𝑗=1 − 𝑄𝑁(𝜃 )  

 = (𝑌 − 𝐺𝜃)′(𝑌 − 𝐺𝜃) − 𝜔′ 𝐺𝑢

√𝑁
−

𝑢′𝐺′

√𝑁
𝜔 +

𝑢′𝐺′𝐺 𝑢 

𝑁
+ 𝜆𝑁 ∑ |𝜃𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − (‖𝜔‖2 +

𝜆𝑁 ∑ |𝜃𝑗|
𝑘
𝑗=1

 
) 

 = ‖𝜔‖2 −
𝑢′𝐺′

√𝑁
𝜔 −

𝑢′𝐺′

√𝑁
𝜔 +

𝑢′𝐺′𝐺 𝑢 

𝑁
 𝜆𝑁 ∑ |𝜃𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − ‖𝜔‖2 − 𝜆𝑁 ∑ |𝜃𝑗|

 𝑘
𝑗=1  

 = 𝑢′ 𝐺′𝐺

𝑁
𝑢′ − 2𝑢′ 𝐺′𝜔

√𝑁
+ 𝜆𝑁 ∑ [|𝜃𝑗 +

𝑢𝑗

√𝑁
|
 
− |𝜃𝑗|

 
]𝑘

𝑗=1  

 

By letting 𝑁 → ∞ we will have the following results: 

  
1

𝑁
𝐺′𝐺 → 𝐴,    

𝐺′𝜔

√𝑁
 
𝑑
→𝑊,    

𝜆𝑁

√𝑁
 →𝜆0 and  
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  𝜆𝑁 ∑ [|𝜃𝑗 +
𝑢𝑗

√𝑁
|
 
− |𝜃𝑗|

 
]  →𝑘

𝑗=1 𝜆0 ∑ [𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)𝐼(𝜃𝑗 ≠ 0) + |𝑢𝑗| 𝐼(𝜃𝑗 = 0)]𝑘
𝑗=1 .   

  

i.e. by applying these facts, we have that   

 𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃 ) 

𝑑
→𝑉(𝑢) 

 = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)𝐼(𝜃𝑗 ≠ 0)𝑘
𝑗=1 + |𝑢𝑗|𝐼(𝜃𝑗 = 0).  

   This implies that  𝑉𝑁(𝑢)  
𝑑
→ 𝑉1(𝑢)  . 

2.  If  γ >1,  note that by using same argument above for first part and  

 𝜆𝑁 ∑ [|𝜃𝑗 +
𝑢𝑗

√𝑁
|
𝛾 

– |𝜃𝑗|
𝛾 
]  →𝑘

𝑗=1   𝜆0 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)|𝜃𝑗|
𝛾−1

 .𝑘
𝑗=1  

It follows that 𝑉𝑁(𝑢)  
𝑑
→ 𝑉2(𝑢)  . 

 

Since 𝑉𝑁(𝑢)  
𝑑
→  𝑉(𝑢) with the finite-dimensional convergence and 𝑉𝑁 is convex when 𝛾 ≥ 1 

and also 𝑉 has a unique minimum,  therefore by convexity argument follows that     

√𝑁 (𝜃𝑁 − 𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛  𝑉𝑁(𝑢) 
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 𝑉1(𝑢)  if 𝛾 = 1 and 

√𝑁 (𝜃𝑁 − 𝜃) = 𝑎𝑟𝑔𝑚𝑖𝑛  𝑉𝑁(𝑢) 
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 𝑉2(𝑢)  if 𝛾 > 1. 

 

Also we have 𝒂𝒓𝒈𝒎𝒊𝒏 (𝑽) = 𝑨−𝟏 𝑾~𝑵(𝟎,𝝈𝝎
𝟐 𝑨−𝟏) 𝒘𝒉𝒆𝒏 𝝀𝟎 = 𝟎.  ∎ 

 

Remark 2. In Theorem 2, it is seen that when 𝜆0 > 0 and 𝛾 ≥ 1 then the nonzero parameters 

of the lasso estimator are estimated with some asymptotic bias. This bias is caused by the part                            

𝜆0 ∑ [𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)𝐼(𝜃𝑗 ≠ 0) + |𝑢𝑗| 𝐼(𝜃𝑗 = 0)]𝑘
𝑗=1   in 𝑉1(𝑢). 

  

In other words, assume that 𝜃𝑆 ≠ 0 and 𝜃𝑆𝑐 = 0, in this case, we have   

 𝑉1(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑗) + 𝜆0 ∑ |𝑢𝑗|.
 
𝑗∈𝑆𝑐

 
𝑗∈𝑆  

 

Moreover, theorem 2 shows that when  𝛾 > 1 the value of parameters that will be shrinkage 

towards 0 increases with amount of coefficients being estimated. Therefore, for large 

coefficients, the bias of their estimators for 𝛾 > 1 may be unsatisfactory large. In the following 

theorem, it will be showed that 𝜆𝑁 = 𝑂(𝑁
𝛾

2) is necessary for γ < 1 but 𝜆𝑁 = 𝑂(√𝑁 ) is 

sufficient.                                                            

𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑|𝑢𝑗|
𝛾
 𝐼(𝜃𝑗 = 0)

𝑘

𝑗=1

. 

Proof. Let   𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛  ℒ𝑁 (𝜃 ) = 𝑎𝑟𝑔𝑚𝑖𝑛 [ 
1

𝑁
∑ (𝑦𝑖𝑡 − 𝑋𝑖𝑡

′ 𝜃̂)
2
+

𝜆𝑁

𝑁
∑ |𝜃𝑗|

𝛾𝑘
𝑗=1

𝑁
𝑖=1 ]   

where  γ < 1, 𝜆𝑁 > 0 and  𝑡 = 1,… , 𝑇. 
Define a random variable 𝑉𝑁 as   

𝑉𝑁(𝑢) = ∑ [(𝑤𝑖𝑡 −
𝑢′𝐺𝑖𝑡

√𝑁
)
2

− 𝜔𝑖𝑡
2 ]

 

+ 𝜆𝑁 ∑ [|𝜃𝑗 +
𝑢𝑗

√𝑁
|
𝛾
− |𝜃𝑗|

𝛾
]𝑘

𝑗=1
𝑁
𝑖=1 ,   

 

where 𝑢′ ∈ 𝑅𝑘 ,   γ < 1,   𝜆𝑁 > 0 and  𝑡 = 1,… , 𝑇. 
It will be proved same as theorem two but it will be added some complexity because the 

objective function ℒ𝑁  is nonconvex.  In matrix notation the above equation is  

  𝑉𝑁(𝑢) = (‖𝜔 −
𝐺𝑢

√𝑁
‖

2
+ 𝜆𝑁 ∑ |𝜃𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 ) − (‖𝜔‖2 + 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

𝛾
),  

 

which can be written as  

𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃 )                                                                                                 

where,  𝑄𝑁(𝛼) = ‖𝑌 − 𝐺𝛼‖2 + 𝜆𝑁 ∑ |𝛼𝑗|
𝑘
𝑗=1

𝛾
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Note that  √𝑁 (𝜃𝑁 − 𝜃) minimizes 𝑉𝑁 

i.e.  𝑎𝑟𝑔𝑚𝑖𝑛𝑉𝑁 = √𝑁 (𝜃𝑁 − 𝜃)  by noting that            

  𝑉𝑁 (√𝑁 (𝜃𝑁 − 𝜃)) = 𝑄𝑁 (𝜃 + (𝜃𝑁 − 𝜃)) − 𝑄𝑁(𝜃) = 𝑄𝑁 + 𝐴. 

 

To show that   𝑉𝑁 converges in distribution to 𝑉, noting that   

   𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝛽 ) = (𝑌 − 𝐺𝜃)′(𝑌 − 𝐺𝜃) − 𝜔′ 𝐺𝑢

√𝑁
−

𝑢′𝐺′

√𝑁
𝜔 

 +
𝑢′𝐺′𝐺 𝑢 

𝑁
+ 𝜆𝑁 − (‖𝜔‖2 + 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

𝛾
) 

 = ‖𝜔‖2 −
𝑢′𝐺′

√𝑁
𝜔 −

𝑢′𝐺′

√𝑁
𝜔 +

𝑢′𝐺′𝐺 𝑢 

𝑁
 𝜆𝑁 ∑ |𝜃𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − ‖𝜔‖2 − 𝜆𝑁 ∑ |𝜃𝑗|

𝛾𝑘
𝑗=1  

 = 𝑢′ 𝐺′𝐺

𝑁
𝑢′ − 2𝑢′ 𝐺′𝜔

√𝑁
+ 𝜆𝑁 ∑ [|𝜃𝑗 +

𝑢𝑗

√𝑁
|
𝛾

− |𝜃𝑗|
𝛾
]𝑘

𝑗=1  

 

By letting 𝑁 → ∞ we will have the following results: 

  
1

𝑁
𝐺′𝐺 → 𝐴,     

𝐺′𝜔

√𝑁
  

𝑑
→𝑊, 

 

 since 𝜆𝑁 = 𝑂 (𝑁
𝛾

2) = 𝑜(√𝑁) then    
𝜆𝑁

𝑁
𝛾
2

→ 𝜆0  and this implies that 

𝜆𝑁 ∑ [|𝜃𝑗 +
𝑢𝑗

√𝑁
|
𝛾

− |𝜃𝑗|
𝛾
]𝑘

𝑗=1 → 0     if 𝜃𝑗 ≠ 0. Therefore  

 𝜆𝑁 ∑ [|𝜃𝑗 +
𝑢𝑗

√𝑁
|
𝛾

− |𝜃𝑗|
𝛾
] → 𝜆0 ∑ |𝑢𝑗|

𝛾
 𝐼(𝜃𝑗 = 0)𝑘

𝑗=1
𝑘
𝑗=1   

 

Which is uniform convergence over compact sets on 𝑢. It implies then that  

  𝑉𝑁(𝑢) 
𝑑
→  𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗|

𝛾
 𝐼(𝜃𝑗 = 0)𝑘

𝑗=1 ,  

 

 which is uniform convergence on the space of functions on compact sets. Since The random 

variable 𝑉𝑁 is nonconvexity due to γ < 1  hence To prove that 

 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉), it is sufficient to  show that 

 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = 𝑂𝑝(1).  

 

It is noted that 

 𝑉𝑁(𝑢) ≥ ∑ [(𝑤𝑖𝑡 −
𝑢′𝐺𝑖𝑡

√𝑁
)
2

− 𝜔𝑖𝑡
2 ]

 

− 𝜆𝑁 ∑ |
𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1

𝑁
𝑖=1  

 ≥ ∑ [(𝑤𝑖𝑡 −
𝑢′𝐺𝑖𝑡

√𝑁
)
2

− 𝜔𝑖𝑡
2 ]

 

− (𝜆0 + 𝛿)∑ |𝑢𝑗|
𝛾𝑘

𝑗=1
𝑁
𝑖=1  

 = 𝑉𝑁
(𝑚)(𝑢),  for all 𝑢 and 𝑁 sufficiently large. 

 

Since γ < 1, this implies that the terms  [(𝑤𝑖𝑡 −
𝑢′𝐺𝑖𝑡

√𝑁
)
2

− 𝜔𝑖𝑡
2 ] is grow faster than the terms 

|𝑢𝑗|
𝛾
, hence we have that 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉𝑁

(𝑚)
) = 𝑂𝑝(1). 

It follows that 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = 𝑂𝑝(1). Since 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉) is unique and 

 𝑎𝑟𝑔𝑚𝑖𝑛(𝑣) = 𝑂𝑝(1).  

Therefore,  𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉). ∎ 

 

Remark 3. In the above theorem, it is seen that λN = O(N
γ

2) is necessary for γ < 1 but λN =

O(√N ) is sufficient. It also  indicates that if  γ < 1 then it can be estimated non-zero 

coefficients normally with unbiased asymptotic. In the other hand, the estimates of zero 

coefficients are shrunk to zero with positive probability. It is cleared that theorem 3 is in contrast 
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with theorem 2 when  γ ≥ 1 which indicates that the nonzero parameters are estimated with 

some asymptotic bias. 

 

5. An asymptotic of Finite Sample and Small True Parameters 

he Bridge estimator for  𝛾 ≤ 1 has specific feature which is the ability of obtaining exact 0 

parameter estimates. In this section, we discuss the possibility of obtaining this "exact 0" 

phenomenon in finite samples when the true parameter is close to 0 but nonzero.                                                                       
 To do this, it will be defined a triangular array of observations by defining  

  

            𝑌𝑁(𝑖𝑡) = 𝜇 + 𝑿𝑵𝒋(𝒊𝒕)
′ 𝜷𝑵𝒋 + 𝜈𝑁𝑖 

+ 𝜀𝑁(𝑖𝑡),  for 𝑖 = 1,… ,𝑁 and 𝑡 = 1,… , 𝑇           (13)    

which can be written as 

                                              𝑌𝑁(𝑖𝑡) = 𝜇 + 𝑿𝑵(𝒊𝒕)
′ 𝜷𝑵 + 𝜔𝑁(𝑖𝑡) 

                                          (14)   

  𝜎𝜔
2 = 𝜎𝜈

2 + 𝜎𝜀
2      where  𝜔𝑁(𝑖𝑡) = 𝜈𝑁𝑖 

+ 𝜀𝑁(𝑖𝑡), with  𝜔𝑁(𝑖𝑡)~𝑁(0, 𝜎𝜔
2), 

 (14) can be rewritten as  

                                                 𝑌𝑁(𝑖𝑡) = 𝑮𝑵(𝒊𝒕)
′ 𝜽𝑵 + 𝜔𝑁(𝑖𝑡) 

                                             (15)     

where 𝑮𝑵(𝒊𝒕)
 = [𝒆, 𝑿𝑵(𝒊𝒕)],  𝑒 = [1,…1]′ and    𝜽𝑵 = [ 𝜇, 𝜷𝑵]′ 

 Triangular array of  𝑮𝑵(𝒊𝒕)
  can be written as  

 

 𝑮𝑵(𝒊𝒕)
 =

[
 
 
 
 
𝟏 𝑿𝟏,𝟏,𝟏                      

𝟏 𝑿𝟐,𝟏,𝟐 𝑿𝟐,𝟐,𝟐            

𝟏…
𝟏

𝑿𝟑,𝟏,𝟑
…

𝑿𝑵,𝟏,𝑻

𝑿𝟑,𝟐,𝟑
…

𝑿𝑵,𝟐,𝑻

𝑿𝟑,𝟑,𝟑
…
… 

 …
𝑿𝑵,𝑵,𝑻

 

]
 
 
 
 

 

 

Assuming for the design matrix  𝑮𝑵(𝒊𝒕)
  the following regularity conditions. 

                                       
1

𝑁
∑ 𝐺𝑁(𝑖𝑡)𝐺𝑁(𝑖𝑡)

′  → 𝐴𝑁
𝑖=1 ,  𝑡 = 1,… , 𝑇                                    (16)     

  where 𝐴 is positive definite matrix and  
1

𝑁
max
1≤𝑖≤𝑁

𝐺𝑁(𝑖𝑡)𝐺𝑁(𝑖𝑡)
′  → 0                                            (17)      

These are explicit analogues of (6) and (7).  

Consider 𝜽𝑵 = 𝜽 +
𝑧

√𝑁
 and define  

𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛 [∑ (𝑌𝑁(𝑖𝑡) − 𝜽′𝑮𝑵(𝒊𝒕))
2
+ 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

𝑁
𝑖=1

𝛾
]                     (18)   

  this formulation achieves the asymptotic properties of Bridge estimator when one or more of 

true parameters are near to 0 but nonzero.                                                                                                         

 

Theorem 4. Consider   𝑌𝑁(𝑖𝑡) = 𝑮𝑵(𝒊𝒕)
′ 𝜽𝑵 + 𝜔𝑁(𝑖𝑡) 

 for 𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇 with 𝜃𝑁 =

𝜃 +
𝑧

√𝑁
 and assume that the regularity conditions (16) and (17). Let  

    𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛∑ (𝑌𝑁(𝑖𝑡) − 𝜽′𝑮𝑵(𝒊𝒕))
2
+ 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

𝑁
𝑖=1

𝛾
 for some 𝛾 > 1.  

 1. If  
𝜆𝑁

√𝑁
→ 𝜆0 then  √𝑁(𝜃𝑁

 − 𝜃𝑁)
𝑑
→ 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑣), where 

𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)|𝜃𝑗|
𝛾−1𝑘

𝑗=1 .  

2.  √𝑁(𝜃𝑁
 − 𝜃𝑁)

𝑑
→ 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑣) if 𝜃 = 0 𝑎𝑛𝑑 

𝜆𝑁

𝑁
𝛾
2

→ 𝜆0 ≥ 0, where  

  𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|
𝛾
.𝑘

𝑗=1  

Proof. 

1. Define random variable  

𝑉𝑁(𝑢) =
1

𝑁
∑ [(𝜔𝑁(𝑖𝑡) −

𝑢′𝐺𝑁(𝑖𝑡)
′

𝑁
)
2

− 𝜔𝑁(𝑖𝑡)
2 ] +

𝜆𝑁

𝑁
∑ [|𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
𝛾
− |𝜃𝑁𝑗|

𝛾
] ,𝑘

𝑗=1
𝑁
𝑖=1   

where 𝑢′ ∈ 𝑅𝑘, 𝜆𝑁 > 0, 𝛾 > 1, T = 1,… , 𝑇. 
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Above equation can be written as 

 𝑉𝑁(𝑢) =
1

𝑁
∑ [(𝜔𝑁(𝑖𝑡) −

𝑢′𝐺𝑁(𝑖𝑡)
′

𝑁
)
2

+
𝜆𝑁

𝑁
∑ |𝜃𝑁𝑗 +

𝑢𝑗

𝑁
|
𝛾

𝑘
𝑗=1 ] − [

𝜔𝑁(𝑖𝑡)
2

𝑁
+ ∑ |𝜃𝑁𝑗|

𝛾𝑘
𝑗=1 ]𝑁

𝑖=1      (19) 

It can be rewritten (19) in matrix notation as  

𝑉𝑁(𝑢) = [‖𝜔𝑁 −
𝐺𝑁𝑢

√𝑁
‖

2
+ 𝜆𝑁 ∑ |𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 ] − [‖𝜔‖2 + 𝜆𝑁 ∑ |𝜃𝑁𝑗|

𝛾𝑘
𝑗=1 ], which can be 

written as  𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃𝑁 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃𝑁) 

Where 𝑄𝑁(𝜃𝑁) = ‖𝑌𝑁 − 𝐺𝑁𝜃𝑁‖2 + 𝜆𝑁 ∑ |𝜃𝑁𝑗|
𝛾𝑘

𝑗=1  
 

It is cleared that √𝑁 (𝜃𝑁 − 𝜃𝑁) minimizes 𝑉𝑁. 

i.e. 𝑎𝑟𝑔𝑚𝑖𝑛 𝑉𝑁 = √𝑁 (𝜃𝑁 − 𝜃𝑁) by noting that  

 𝑉𝑁 (√𝑁 (𝜃𝑁 − 𝜃𝑁)) = 𝑄𝑁 (𝜃𝑁 + (𝜃𝑁 − 𝜃𝑁)) − 𝑄𝑁(𝜃𝑁) = 𝑄𝑁(𝜃̂𝑁) − 𝑄𝑁(𝜃𝑁) =

𝑄𝑁(𝜃̂𝑁) + 𝐴 

 

and conclude that the objective function 𝑄𝑁 is similar to the Lasso objective function, 

minimized at 𝜃𝑁 when 𝛾 = 1 . To show that   𝑉𝑁 converges in distribution to 𝑉, noting that   

 𝑄𝑁 (𝜃𝑁 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃𝑁 ) = |(𝑌𝑁 − 𝐺𝑁𝜃𝑁) −

𝐺𝑢

√𝑁
|
′
|(𝑌𝑁 − 𝐺𝑁𝜃𝑁) −

𝐺𝑁𝑢

√𝑁
| 

 +𝜆𝑁 ∑ |𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − 𝑄𝑁(𝜃 )  

 = (𝑌𝑁 − 𝐺𝑁𝜃𝑁)′(𝑌𝑁 − 𝐺𝑁𝜃𝑁) − 𝜔𝑁
′ 𝐺𝑁𝑢

√𝑁
−

𝑢′𝐺𝑁
′

√𝑁
𝜔 +

𝑢′𝐺𝑁
′ 𝐺𝑁

 𝑢 

√𝑁
 

 + 𝜆𝑁 ∑ |𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − (‖𝜔𝑁‖2 + 𝜆𝑁 ∑ |𝜃𝑁𝑗|

𝑘
𝑗=1

𝛾
) 

 = ‖𝜔𝑁‖2 −
𝑢′𝐺𝑁

′

√𝑁
𝜔 −

𝑢′𝐺𝑁
′

√𝑁
𝜔𝑁 +

𝑢′𝐺𝑁
′ 𝐺𝑁

 𝑢 

𝑁
 𝜆𝑁 ∑ |𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − ‖𝜔𝑁‖2 − 𝜆𝑁 ∑ |𝜃𝑁𝑗|

𝛾𝑘
𝑗=1  

= 𝑢′ 𝐺𝑁
′ 𝐺𝑁

𝑁
𝑢 − 2𝑢′ 𝐺𝑁

′ 𝜔

√𝑁
+ 𝜆𝑁 ∑ [|𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
𝛾

− |𝜃𝑁𝑗|
𝛾
]𝑘

𝑗=1                          (20) 

 

By letting 𝑁 → ∞ we will have the following results: 

  
1

𝑁
𝐺𝑁

′ 𝐺𝑁 → 𝐴 

 
𝐺𝑁

′ 𝜔𝑁

√𝑁
 
𝑑
→𝑊~𝑁(0, 𝜎𝜔

2  𝐴)   

 
𝜆𝑁

√𝑁
 →𝜆0 

 ∑ [|𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
𝛾

− |𝜃𝑁𝑗|
𝛾
]  →𝑘

𝑗=1 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑁𝑗)|𝜃𝑁𝑗|
𝛾−1𝑘

𝑗=1   if γ > 1.                                                    

 

i.e. by combining these facts, we have that   

𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃𝑁 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃𝑁 ) 

𝑑
→𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 

𝜆0 ∑ 𝑢𝑗𝑠𝑔𝑛(𝜃𝑁𝑗)|𝜃𝑁𝑗|
𝛾−1𝑘

𝑗=1   if γ >1  

𝑖. 𝑒.  𝑉𝑁(𝑢)  
𝑑
→  𝑉(𝑢)  . 

 

This implies that  

  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃𝑁)
𝑑
→  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉). 

2.  If  β= 0 then we have that 𝛽𝑁 =
𝑧

√𝑁
 and (20) becomes  

𝑄𝑁 (𝜃𝑁 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃𝑁 ) = 𝑢′

𝐺𝑁
′ 𝐺𝑁

𝑁
𝑢 − 2𝑢′

𝐺𝑁
′ 𝜔𝑁

√𝑁
+ 𝜆𝑁 ∑[|

𝑧𝑗

√𝑁
+

𝑢𝑗

√𝑁
|
𝛾

− |
𝑧𝑗

√𝑁
|
𝛾

]

𝑘

𝑗=1

 

By letting 𝑁 → ∞  and  𝛾 > 1 we have that the following results 

 
𝜆𝑁

𝑁
𝛾
2

→ 𝜆0 ≥ 0, and this implies that  
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 𝜆𝑁 ∑ [|
𝑧𝑗

√𝑁
+

𝑢𝑗

√𝑁
|
𝛾

− |
𝑧𝑗

√𝑁
|
𝛾
] → 𝜆0  ∑ |𝑢𝑗 + 𝑧𝑗|

𝛾𝑘
𝑗=1

𝑘
𝑗=1  

Combining above results, we have that  

𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|
𝛾𝑘

𝑗=1 . 

Hence 𝑉𝑁(𝑢)
𝑑
→ 𝑉(𝑢) 

Therefore  

 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃𝑁) = √𝑁 (𝜃𝑁 −
𝑧

√𝑁
)

𝑑
→  𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉).∎ 

Remark 4. Part 1 of theorem 4 proposes that the asymptotic bias indicated in theorem 2 is still 

continue if one or more parameters are large. While part 2  proposes that the usefulness of using 

penalty with 𝛾 > 1 is restricted to situation where all coefficients are smaller than sample size 

𝑁. The following corollary explains that when 𝛾 = 2 then all coefficients will be less than 

sample size 𝑁 . 

 

Corollary 1.  Consider   𝑌𝑁(𝑖𝑡) = 𝑮𝑵(𝒊𝒕)
′ 𝜽𝑵 + 𝜔𝑁(𝑖𝑡) 

 for 𝑖 = 1,… ,𝑁, 𝑡 = 1,… , 𝑇 with 𝜃𝑁 =

𝜃 +
𝑧

√𝑁
 and assume that the regularity conditions (16) and (17). Let                                        𝜃𝑁 =

𝑎𝑟𝑔𝑚𝑖𝑛∑ (𝑌𝑁(𝑖𝑡) − 𝜽′𝑮𝑵(𝒊𝒕))
2
+ 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

𝑁
𝑖=1

𝛾
.  

   if 𝜃 = 0 ,
𝜆𝑁

𝑁
𝛾
2

→ 𝜆0 ≥ 0 and  √𝑁(𝜃𝑁
 − 𝜃𝑁)

𝑑
→ 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑣) where  

   𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|
𝛾𝑘

𝑗=1  then for ridge estimation  𝛾 = 2 we have that  

 √N(θ̂N −
z

√N
)

d
→ (A + λ0I)

−1(W − λ0z) 

                                       ~𝑁[(−𝜆0(𝐴 + 𝜆0𝐼)
−1𝑧), (𝜎𝜔

2(𝐴 + 𝜆0𝐼)
−1𝐴(𝐴 + 𝜆0𝐼)

−1)] 

Proof.  Since √𝑁 (𝜃𝑁 −
𝑧

√𝑁
)

𝑑
→ 𝑎𝑟𝑔𝑚𝑖𝑛 𝑉(𝑢)   

𝑎𝑛𝑑  𝑎𝑟𝑔𝑚𝑖𝑛 𝑉(𝑢) represents derivative of 𝑉 with respect to 𝑢. 

i.e.  𝑎𝑟𝑔𝑚𝑖𝑛 𝑉(𝑢) =
𝜕𝑣

𝜕𝑢
 [𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|

2
.𝑘

𝑗=1 ] = 0 

 0 = 2𝐴𝑢 − 2𝑊 + 2𝜆0(𝑢 + 𝑧) 

 0 = 𝐴𝑢 − 𝑊 + 𝜆0𝑢 + 𝜆0𝑧  

 0 = (𝐴 + 𝜆0𝐼)𝑢 − 𝑊 + 𝜆0𝑧 

 (𝐴 + 𝜆0𝐼)𝑢 = (𝑊 − 𝜆0𝑧) 

 𝑢 = (𝐴 + 𝜆0𝐼)
−1(𝑊 − 𝜆0𝑧) 

Also  𝐸(𝑢) = 𝐸[(𝐴 + 𝜆0𝐼)
−1(𝑊 − 𝜆0𝑧)] 

 = (𝐴 + 𝜆0𝐼)
−1𝐸(𝑊 + 𝜆0𝑧) 

 = −𝜆0(𝐴 + 𝜆0𝐼)
−1𝑧. 

 𝑉𝑎𝑟(𝑢) = 𝑣𝑎𝑟[(𝐴 + 𝜆0𝐼)
−1(𝑊 − 𝜆0𝑧)] 

 = [𝜎𝜔
2  (𝐴 + 𝜆0𝐼)

−1𝐴(𝐴 + 𝜆0𝐼)
−1] 

Hence  

 √𝑁 (𝜃𝑁 −
𝑧

√𝑁
)

𝑑
→ (𝐴 + 𝜆0𝐼)

−1(𝑊 − 𝜆0𝑧) 

                             ~𝑁[(−𝜆0(𝐴 + 𝜆0𝐼)
−1𝑧), (𝜎𝜔

2(𝐴 + 𝜆0𝐼)
−1𝐴(𝐴 + 𝜆0𝐼)

−1)]. 
Remark 5. Corollary 1 explains that by select 𝜆0 reasonably, we will have the mean square 

error 𝐺′𝜃̂𝑁 smaller than that of 𝐺′𝜃̂𝑁
0 . 

 

Theorem 5. Assume that  𝑌𝑁(𝑖𝑡) = 𝑮𝑵(𝒊𝒕)
′ 𝜽𝑵 + 𝜔𝑁(𝑖𝑡) 

 and   

   𝜃𝑁 = 𝑎𝑟𝑔𝑚𝑖𝑛  ℒ𝑁 (𝛽̂ ) = 𝑎𝑟𝑔𝑚𝑖𝑛∑ (𝑌𝑁(𝑖𝑡) − 𝜽′𝑮𝑵(𝒊𝒕))
2
+ 𝜆𝑁 ∑ |𝜃𝑗|

𝑘
𝑗=1

𝑁
𝑖=1

𝛾
 for some 𝛾 ≤ 1 

and  
𝜆𝑁

𝑁
𝛾
2

→ 𝜆0 ≥ 0 with 𝜃𝑁 = 𝜃 +
𝑧

√𝑁
 . Also suppose that the regularity conditions (16) and (17) 

are satisfied,  then 

  1.  The lasso estimator 𝜃𝑁 when  𝛾 = 1 satisfies   √𝑁(𝜃𝑁 − 𝜃)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛𝑉. 
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 where  𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ [𝑢𝑗𝑠𝑔𝑛(𝜃𝑗) 𝐼(𝜃𝑗 ≠ 0) + |𝑢𝑗 + 𝑧𝑗| 𝐼(𝜃𝑗 = 0)]𝑘
𝑗=1  . 

2.  The Bridge estimator 𝜃𝑁 when 𝛾 < 1 Satisfies   √𝑁(𝜃𝑁 − 𝜃)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛𝑉,  where  

 𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|
𝛾
 𝐼(𝜃𝑗 = 0)𝑘

𝑗=1  . 

 

Proof.  

𝟏. Define a random variable 𝑉𝑁 as   

𝑉𝑁(𝑢) = ∑ [(𝑤𝑁(𝑖𝑡) −
𝑢′𝐺𝑁(𝑖𝑡)

√𝑁
)
2

− 𝜔𝑁(𝑖𝑡)
2 ]

 

+ 𝜆𝑁 ∑ [|𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
𝛾

− |𝜃𝑁𝑗|
𝛾
]𝑘

𝑗=1
𝑁
𝑖=1 ,   

where 𝑢′ ∈ 𝑅𝑘 ,   γ = 1,   𝜆𝑁 > 0 and  𝑡 = 1,… , 𝑇. 
It will be proved same as theorem 2 and 3  but will be add some changes.  In matrix notation 

the above equation is  

 𝑉𝑁(𝑢) = (‖𝜔𝑁 −
𝐺𝑁𝑢

√𝑁
‖

2
+ 𝜆𝑁 ∑ |𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
 

𝑘
𝑗=1 ) − (‖𝜔𝑁‖2 + 𝜆𝑁 ∑ |𝜃𝑁𝑗|

𝑘
𝑗=1

 
), which can be  

 

written  as  

𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃𝑁 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃𝑁 )                                                                                                           

 where,  𝑄𝑁(𝛼) = ‖𝑌 − 𝐺𝛼‖2 + 𝜆𝑁 ∑ |𝛼𝑗|
𝑘
𝑗=1

𝛾
    

 Note that  √𝑁 (𝜃𝑁 − 𝜃𝑁) minimizes 𝑉𝑁 

i.e.  𝑎𝑟𝑔𝑚𝑖𝑛𝑉𝑁 = √𝑁 (𝜃𝑁 − 𝜃𝑁)  by noting that 

  𝑉𝑁 (√𝑁 (𝜃𝑁 − 𝜃𝑁)) = 𝑄𝑁 (𝜃𝑁 + (𝜃𝑁 − 𝜃𝑁)) − 𝑄𝑁(𝜃𝑁) = 𝑄𝑁(𝜃𝑁) + 𝐴 

 

and observe that the objective function 𝑄𝑁 is similar to the Lasso objective function, minimized 

at 𝜃𝑁. To show that   𝑉𝑁 converges in distribution to 𝑉, noting that   

 𝑉𝑁(𝑢) = 𝑄𝑁 (𝜃𝑁 +
𝑢𝑗

√𝑁
) − 𝑄𝑁(𝜃𝑁) = (𝑌𝑁 − 𝐺𝑁𝜃𝑁)′(𝑌𝑁 − 𝐺𝑁𝜃𝑁) − 𝜔𝑁

′ 𝐺𝑁𝑢

√𝑁
−

𝑢′𝐺𝑁
′

√𝑁
𝜔 +

𝑢′𝐺𝑁
′ 𝐺 𝑢 

√𝑁
+ 𝜆𝑁 (‖𝜔𝑁‖2 + 𝜆𝑁 ∑ |𝜃𝑁𝑗|

𝑘
𝑗=1

 
) 

 = ‖𝜔𝑁‖2 −
𝑢′𝐺𝑁

′

√𝑁
𝜔𝑁 −

𝑢′𝐺𝑁
′

√𝑁
𝜔𝑁 +

𝑢′𝐺𝑁
′ 𝐺𝑁

 𝑢 

√𝑁
+ 𝜆𝑁 ∑ |𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
𝛾

𝑘
𝑗=1 − ‖𝜔𝑁‖2 −

𝜆𝑁 ∑ |𝜃𝑁𝑗|
𝛾𝑘

𝑗=1  

 = 𝑢′ 𝐺𝑁
′ 𝐺𝑁

√𝑁
𝑢′ − 2𝑢′ 𝐺𝑁

′ 𝜔𝑁

√𝑁
+ 𝜆𝑁 ∑ [|𝜃𝑁𝑗 +

𝑢𝑗

√𝑁
|
𝛾
− |𝜃𝑁𝑗|

𝛾
]𝑘

𝑗=1  

 

By letting 𝑁 → ∞ with 𝜃𝑁 = 𝜃 +
𝑧

𝑗
   we will have the following results: 

  
1

𝑁
𝐺𝑁

′ 𝐺 → 𝐴,     
𝐺𝑁

′ 𝜔

√𝑁
 
𝑑
→𝑊,   

since 𝜆𝑁 = 𝑂 (𝑁
𝛾

2) = 𝑜(√𝑁) then    
𝜆𝑁

𝑁
𝛾
2

→ 𝜆0, it follows that     

𝜆𝑁 ∑ [|𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
 
− |𝜃𝑁𝑗|

 
]  →𝑘

𝑗=1   𝜆0 ∑ [𝑢𝑗𝑠𝑔𝑛(𝜃𝑗)𝐼(𝜃𝑗 ≠ 0) + |𝑢𝑗 + 𝑧𝑗| 𝐼(𝜃𝑁𝑗 = 0)].𝑘
𝑗=1  

 

Hence  𝑉𝑁(𝑢) 
𝑑
→  𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ [𝑢𝑗𝑠𝑔𝑛(𝜃𝑗) 𝐼(𝜃𝑗 ≠ 0) + |𝑢𝑗 + 𝑧𝑗| 𝐼(𝜃𝑗 =𝑘

𝑗=1

0)]. Therefore,  

 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃𝑁)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉). 

2. Since The random variable 𝑉𝑁 is nonconvexity due to γ < 1, There are some added 

complexities to  the second part of random variable  𝑉𝑁.   Since since 𝜆𝑁 = 𝑂 (𝑁
𝛾

2) =

𝑜(√𝑁) then    
𝜆𝑁

𝑁
𝛾
2

→ 𝜆0  , this implies that  

 𝜆𝑁 ∑ [|𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
𝛾
− |𝜃𝑁𝑗|

𝛾
]𝑘

𝑗=1 → 0     if 𝜃𝑁𝑗 ≠ 0. Therefore  
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 𝜆𝑁 ∑ [|𝜃𝑁𝑗 +
𝑢𝑗

√𝑁
|
𝛾
− |𝜃𝑁𝑗|

𝛾
] → 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|

𝛾
 𝐼(𝜃𝑁𝑗 = 0)𝑘

𝑗=1
𝑘
𝑗=1 , where 𝜃𝑁 = 𝜃 +

𝑧

𝑗
 

Which is uniform convergence over compact sets on 𝑢. It implies then that  

  𝑉𝑁(𝑢) 
𝑑
→  𝑉(𝑢) = 𝑢′𝐴𝑢 − 2𝑢′𝑊 + 𝜆0 ∑ |𝑢𝑗 + 𝑧𝑗|

𝛾
 𝐼(𝜃𝑁𝑗 = 0)𝑘

𝑗=1   which is uniform 

convergence on the space of functions on compact sets. 

To prove that 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃𝑁)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉), it is sufficient to  show that 

𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = 𝑂𝑝(1). It is noted that 

 𝑉𝑁(𝑢) ≥ ∑ [(𝑤𝑁(𝑖𝑡) −
𝑢′𝐺𝑁(𝑖𝑡)

√𝑁
)
2

− 𝜔𝑁(𝑖𝑡)
2 ]

 

− 𝜆𝑁 ∑ |
𝑢𝑗

√𝑁
+

𝑧𝑗

√𝑁
|
𝛾

𝑘
𝑗=1

𝑁
𝑖=1  

 ≥ ∑ [(𝑤𝑁(𝑖𝑡) −
𝑢′𝐺𝑁(𝑖𝑡)

√𝑁
)
2

− 𝜔𝑁(𝑖𝑡)
2 ]

 

− (𝜆0 + 𝛿)∑ |𝑢𝑗 + 𝑧𝑗|
𝛾𝑘

𝑗=1
𝑁
𝑖=1  

 = 𝑉𝑁
(𝑚)

(𝑢), for all 𝑢 and 𝑁 sufficiently large. 

 

Since γ < 1, this implies that the terms  [(𝑤𝑁(𝑖𝑡) −
𝑢′𝐺𝑁(𝑖𝑡)

√𝑁
)
2

− 𝜔𝑁(𝑖𝑡)
2 ] is grow faster than the 

terms |𝑢𝑗 + 𝑧𝑗|
𝛾
, hence we have that 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉𝑁

(𝑚)
) = 𝑂𝑝(1). 

It follows that 𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = 𝑂𝑝(1). Since 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉) is unique and 𝑎𝑟𝑔𝑚𝑖𝑛(𝑣) = 𝑂𝑝(1).  

Therefore,  𝑎𝑟𝑔𝑚𝑖𝑛( 𝑉𝑁) = √𝑁 (𝜃𝑁 − 𝜃𝑁)
𝑑
→𝑎𝑟𝑔𝑚𝑖𝑛 (𝑉). ∎ 

 

Remark 6.  In contrast with the theorem 4 when 𝛾 ≤ 1, the small parameters may be estimated 

exact 0 in finite sample even when large parameters are present. 

 

6. Conclusion 

 

 In this paper, the discussion of the study has introduced the high-dimensional repeated 

measurements model. It has studied the asymptotic behavior of bridge estimator and lasso 

estimator as especial case of it with put some assumption on design matrix for the two topics. 

In first topic which is mentioned in section 4, we discuss the asymptotic in general with large 

parameters. It can be concluded that the consistency of bridge estimator will be sufficient for 

two cases. In the first case the sufficient consistency of bridge estimator is occurred when tuning 

parameter 𝜆𝑁 is asymptotically smaller than 𝑁 for all value of shrinking parameter 𝛾.  

 

While in the second case, the sufficient consistency of bridge estimator is occurred when 𝜆𝑁 is 

asymptotically bounded by √𝑁 and the value of shrinking parameters are greater than or equal 

one. But in this case, the bias of their estimators may be unsatisfactory large when 𝛾 is greater 

than one while the magnitude of shrinking parameters towards zero increases. Furthermore, we 

conclude that the necessary condition for consistency the bridge estimator is occurred when 𝜆𝑁 

is asymptotically bounded by  𝑁
𝛾

2  and the value of shrinking parameter 𝛾 is less than one. 

Moreover, the nonzero parameters can be estimated at the usual rate  without any  asymptotic 

bias while shrinking  the estimates of zero parameters to zero with positive probability. 

 

  In second topic which is mentioned in section 5, the study showed that the asymptotic of 

bridge estimator  in small parameters when a triangular array of observations are assumed with 

simple change on the parameters. In this case, we conclude that the same results above about 

the consistency of bridge estimators are obtained when 𝜆𝑁 is asymptotically smaller than  √𝑁 

and the value of shrinking parameters are greater than one. On the other hand, if one or more 

of the parameters is large then the asymptotic bias suggested by first topic would still continue. 

Furthermore, we conclude that even when large parameters are existence, the small parameters 
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can be estimated as exactly zero in finite samples when 𝜆𝑁 is asymptotically smaller than  𝑁
𝛾

2  

and the value of shrinking parameter 𝛾 is less than or equal one. 
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