
AIP Conference Proceedings 2292, 020002 (2020); https://doi.org/10.1063/5.0030795 2292, 020002

© 2020 Author(s).

Lasso estimator for high-dimensional
repeated measurements model
Cite as: AIP Conference Proceedings 2292, 020002 (2020); https://doi.org/10.1063/5.0030795
Published Online: 27 October 2020

Naser Oda Jassim, and Abdul Hussein Saber Al-Mouel

ARTICLES YOU MAY BE INTERESTED IN

Tribological behaviour of tin bronze alloys produced by different casting techniques
AIP Conference Proceedings 2292, 020011 (2020); https://doi.org/10.1063/5.0031203

Study of modes characteristics in multimode optical fibers using finite element method
AIP Conference Proceedings 2292, 020008 (2020); https://doi.org/10.1063/5.0030933

Agricultural extension system industrial managers in the light of their training needs to face
job stress - A field study
AIP Conference Proceedings 2292, 030010 (2020); https://doi.org/10.1063/5.0031041

https://images.scitation.org/redirect.spark?MID=176720&plid=1085724&setID=379066&channelID=0&CID=358604&banID=520068614&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=65bf220e57a97a0446a6d74c26b8c6acec57da66&location=
https://doi.org/10.1063/5.0030795
https://doi.org/10.1063/5.0030795
https://aip.scitation.org/author/Jassim%2C+Naser+Oda
https://aip.scitation.org/author/Al-Mouel%2C+Abdul+Hussein+Saber
https://doi.org/10.1063/5.0030795
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0030795
https://aip.scitation.org/doi/10.1063/5.0031203
https://doi.org/10.1063/5.0031203
https://aip.scitation.org/doi/10.1063/5.0030933
https://doi.org/10.1063/5.0030933
https://aip.scitation.org/doi/10.1063/5.0031041
https://aip.scitation.org/doi/10.1063/5.0031041
https://doi.org/10.1063/5.0031041


Naser Oda Jassim1,a)   and Abdul HusseinSaber Al-Mouel2,b) 
1Department of Mathematics, Collage of Education for Pure Sciences, University of Basrah, Iraq. 

Corresponding Author: a)noj1972.khalef@gmail.com 
b)abdulhusseinsaber@yahoo.com

Abstract: In this paper, we propose the lasso method for choice of penalty level and investigate the error of the lasso 
estimator in repeated measurements model. We introduce our repeated measurements model with its expectation error and 
its derivative. we investigate the choice of level the penalty parameter for the lasso estimator which plays important role in 
investigation the lasso estimator and also show that with high probability, the random variable is very close to its 
expectation.  Lastly, we investigate the error of lasso estimator and conclude that with high probability the lasso estimator 
will pick out most of the important variables. 

INTRODUCTION 

Many scientists and researchers have been given a definition for the repeated measurements in the different periods 
of  time. [1] defined them as term used to describe the data in which observations of response variable are measured 
repeatedly for each experimental unit under different experimental conditions. While [2] explained that  the repeated 
measurements require two or more independent groups between the most of known experimental designs in the set of 
different researches type. In the other words, in the repeated measurements , the observations of experimental units 
are measured repeatedly in the time unit.    

The linear regression model is said to be high-dimensional model when the number of explanatory variables exceeds 
the number of observations.  In other hand, the model is called low-dimensional model when the number of 
explanatory variables is less than the number of observations. Whatever the linear regression model whether low or 
high-dimensional, we desire to satisfy some important properties which are: estimation, prediction and variables 
selection. 
  A least squares estimator can be obtained by minimizing the residual sum of squares. As long as an inverse of the 
explanatory matrix exists, this leads to have a unique solution to the given problem. But this method cannot apply on 
the problem which has high-dimensional data. In the sense that, when the number of unknown coefficients which are 
to be estimated is larger than the number of sample size. In this case, the uniqueness of solution cannot be obtained. 
Furthermore the traditional methods, like all possible regression, forward regression, backward regression and step-
wise regression cannot be used for the variables selection in the high-dimensional data.  
 As mentioned above, it is cleared that these methods cannot be applied due to increment in the number of coefficients 
on the account of sample size. In this case, another methods must be utilized instead of conventional method for the 
estimation and variables selection. It is known that, the common and suitable method which can be employed to treat 
with the high-dimensional data is called penalized least squares method. The main use of this method is to overcome 
the computational problems and also improves the prediction accuracy. The penalized method is based on the principle 
of reduction the residual sum of  squares with the some constraints on the unknown parameters. The estimations of 
penalized method can be obtained by minimizing an objective function which consists of two parts: loss function and 
penalty function. The general form of the penalized method is given in the following equation,  ( , ) = ( ) ( ) + ( , ), 
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where ( , ) represents the penalty function and  is penalty parameter. Therefore, the penalized estimator can be 
attained according to the following form, = argmin = {( ) ( ) + ( , )} 

The penalized method is characterized bythe property thatmaking the penalized estimator and variables selection 
simultaneously. It is noted that the best penalized function  gives an estimator that characterized by three important 
features which are: unbiasedness, sparsity and continuity. Moreover, As a mentioned in [3] that the estimator from the 
ideal aspect must have the oracle properties which are consistency and asymptotic normal. 
 One of the most commonly used penalized methods in the high-dimensional data is called 'lasso' which is proposed 
by [4]. The word lasso is an abbreviation from 'least absolute shrinkage and selection operator'. The principle of the 
lasso method is based on the minimizing the residual sum of squares plus the sum of absolute value of coefficients. 
The lasso estimator of linear regression model can be obtained according to following equation = min 1 ( ) +  

where  is the penalty parameter while  is called penalty function. 
The lasso becomes popular and more attractive method through selects a suitable variables and maintains the 
properties that make some regression coefficients exactly zero and shrinks others to a certain magnitude with reduction 
the loss function. In [5] introduced a new algorithm for lasso estimator when = 1 in the penalty function  
bridge function. While in [6]  studied the asymptotic behavior of lasso estimator as especial case when = 1 in bridge 
regression. In [7] Suggested a new algorithm to compute lasso estimator called LARS which is abbreviation to the 
least angle regression. They showed that this algorithm is simple in application and gives accuracy results. In [8] 
introduced notes on lasso, LARS and forward stage-wise regression and show that the set of variables selection are 
not consistently the true set of basic variables when prediction accuracy is used as criterion. [9] studied the lasso 
properties in terms of  the variables selections and estimation in a least absolute deviations. [10] discussed and derived 
the degrees of freedom of lasso fit without any assumption on the explanatory matrix . They expressed their results 
in terms of active set of lasso solution-and developed this results to include the degrees of freedom of design matrix 

 together with an arbitrary matrix [11] suggested an assumtionless consistency of lasso. He showed that for the lasso 
considered in Tibshirani original paper, the lasso is consistent under almost no assumption at all. [1] used lasso mothed 
to demonstrate and examine the feature selection task. [3] explained that the two estimators: the square-root lasso and 
square-root slope can achieve the optimal minimax prediction rate. [12] introduced generalized lasso problem and 
studied its uniqueness by using -penalty of matrix  times coefficient vector.In this paper, we will use Lasso method 
in repeated measurements model to investigate some important and essential principles related with the estimated 
error of Lasso. Firstly, we introduce our repeated measurements model then discussing the expectation error with its 
derivative. Secondly, we study and investigate the choice of penalty level that satisfies lasso estimator. Lastly, we 
investigate the error of lasso estimator and conclude that with high probability the lasso estimator will pick out most 
of the significant variables [13]. 
 

 
SETTING MODEL 

 
Consider the following repeated measurements linear model  = + ( ) + +                                                                                                    (1) = 1, … ,  , = 1, … , ,   

the value of response variable for  unit at time ,  ( ) the explanatory variables, , , = 1, … ,    are fixed parameters, 
 is the random effect with ~ (0, ), 
 is an error term with ~ (0, ) . 

The model (1) can be written as follows: = + ( ) +                                                                                                            (2) 
Where  = + ,   ~ (0, ), = + . 
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This by using matrix notation the model (2) is  = +  ,                                                                                                                                     (3) 
Where, = [ , ], = [1,1, … ,1]  has length , = [ , … , , , … , , … , ]  has length ,  = [ , … , ]  is a ×  design matrix of fixed effects, = , , , … ,  Has length + 1, and  = [ , … , , , … , , … , ]  has length . 
From model (3), we have  ~ ( , ), where  ( ) = ( )( ) =  

 
METHODOLOGY 

 
Our target in this paper is to reconstruct the unknown vector  in high-dimensional case where > ,    is the 
number of coefficients and  is the sample size.  A key assumption of our model is that penalized least squares 
estimator must be thresholding rule that meaning a model with small variables so that it can be interpreted easily. Here 
we assume that, = ( ) has <  elements. The set  of nonzero coefficients is unknown. If > ,  the 
Ordinary least squares is not consistent and it will be used other methods to deal with such case. In recent years, the 
high dimensional linear model problems have been solved by many new methods. These methods based on  
penalization or   norm. It is concluded that for most  penalization methods, the error structure performs a 
significant role in the estimation of unknown coefficients. One of these methods that relies on error distribution is 
called lasso (least absolute shrinkage and selection operator) which minimizes the residual sum of squares subject to 
the sum of absolute value of coefficients being less than constant. From (3) Then the lasso estimator is the solution to    

 min( ) ( ),   subject to .      (4) 

Here 0 is tuning parameter or equivalently min( ) ( ) +  
          (5)                                         

The formulation (4) and (5) are equivalent in the sense that, for any given [0, ), there exists a > 0 such that 
the two problems have the same solution and vice versa. In this paper, we introduce analysis for the lasso method and 
weinvestigate the selection of penalty level, which does not rely on any unknown parameters or the error distribution. 
It will be discussed important twofold. First, we will propose a rule for setting the penalty level. This choice of penalty 
will be comprehensive and the mean of errors will be assumed that 0 and ( = 0) = 0 for all . Second, it will be 
explained that the estimator with high probability has near oracle performance, i.e. with high probability = ,    = 0( ). 

It is important to see that there is no any assumption on the distribution or moments of errors, a scale parameter is 
only needed to control the tail probability of error.We state some lemmas which are used to prove the main theorem. 
Lemma 1 Suppose  be any continuous random variable, then  | + | | | = 1 2 ( ). 
Proof: Since | + | | | | | is boundedthe random variable, this implies that its expectation must be 
existed. Assume the probability of  density function of    ( )   > 0. It is easy to see that  (| + | | |) = ( ) + ( )(2 + ) ( )   = ( ) + ( ) ( )  + 2  ( )  = ( ) + ( ) ( ) + 2  ( )  = ( ) ( ) + 2  ( )  
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     = [ ( ) ( )] + 2  ( )      = (1 2 ( )) +  2  ( ) .                              (6) 
Hence by taking the derivative with respect to   both sides it is easy to see that  
 (| | | |) = 1 2 ( ). 
 
Lemma 2. Assume that there exists a constant > 0 such that the random variable  satisfies the following 
conditions ( )    for all 0 ( ) | |   for all < 0,                                                                                                (7) 
where   introduce  as a scale parameter of the distribution of .Then  (| + | | |) | | | |  .         (8) 
Proof.  we have that for any > 0, (| + | | |) = 2 ( < ( ) ,     by (4) 2 12 + = 2 2 + = 2 log(2 +  = 2 [log(2 + 2 ) log (2)] =  log 1 + .                               (9)                                         

i.e. (| + | | |)    log 1 +  

when     , Then 2 log 1 + 2 24 = 2 

and when    , then 2 log 1 + 2 2 2 18 2  = 2 2 1 16  = + 16 = 16 . 
In a similar manner, for any real number  when | |     then we have that , (| + | | |) | |2  

and when | | , then (| + | | |) 16 . 
The lemma is proved by Putting the above inequalities together. 
 
Definition 1. (Union Bound)[4]. 
Let , , …,   be a finite or countably infinite set of events, not necessary disjoint then union bound is defined 
as ( ) ( ). (Hoeffding's inequality) [10]. Let , … ,  be independent bounded random 
variables such that ( ) =  and . 

Then, for every > 0, 2 ( ) . 
 

Choice of Penalty 
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Assume that for any , let ( ) = .                                                                                                                                (10) 
Then the lasso estimator can be expressed as  { : ( ) + },                                                                                                      (11) 
which means that the lasso estimator is equal or belong to minimize the residual sum of squares plus sum of 
absolute values of coefficients. Suppose that the measurement errors  satisfy ( = 0) = 0  and ( ) = 0  for  = 1, … ,  and = 1, … , .  The penalty level  can be determined bytaking the sub-
differential of (10) with respect to the point of true coefficient =   for all 0, = 1, … ,  ,which can 
be written as  = ( ( ), ( ), … , ( )) , where ( ) denotes the sign of ,   

i.e. ( ) =   1                                     > 0                        1                                   < 0                        0                                       = 0                      . 

Let = ( ),  = ( , , … , ) , where = ( ), = 1 , … , . Since  are independent 
and have mean 0 so that The sub-differential of ( )at the point of , can be written as  = .                                                                                                                                         (12) 
A penalty parameter  will be selected such that it dominates the estimation error and it is greater than the 
maximum absolute value of  with high probability [15]. In other words, we want to select a penalty level  
such that  ( ) 1 , for some fixed constant  > 1.                                                                (13) 
It is clear that the distribution of  is known therefore for any given  the distribution of  is known and 
does not rely on any unknown parameter. We have the following lemmas. 
Lemma 3. The selection of penalty level = 2 ( )     for the  estimator of   { : ( ) + } satisfies  ( ) 1 . 

Proof: by using the definition of the union bound, it can be seen that   ( 2 ( )  ) ( 2 ( )  | |). 

For each i, by using Hoefddiding inequality, (|  | 2 ( )   )  2 4 ( )4 = 2 ( ) = 2 ( ), 
since =    .  Therefore, ( 2 ( )  ) ( ) = ( ( ) )  
This implies that,     1 . 
Lemma 4. the choice of penalty = (1 ) for the  estimator of  { : ( ) +} satisfies   1 (1 + ), when 0 as  , where  =1 <  for some constant > 2 and 1 ( 2) . 
Proof: By using the definition of the union bound, it can be seen that ( 1 (2 ) )  ) 1 (2 ) | |. 
For each i, by using Stastinkov, Robin-Sethuraman inequality[7], (1 (2 )) | | 2 1 1 (2 ) (1 + )  = 2(1 1 (2 ) (1 + ) = 2(1 1 + (2 ))(1 + ) =  (1 + ) 

where  0 as   infinity, provided that 1 ( 2) . 
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Therefore  ( 1 ( ) )  ) ((1 + ). 
This implies that,     1 (1 + ). 
Lemma 5. If > for some fixed constant > 1,  then the estimator error =  belong to set  where = : ,   {1,2, … , }      .  

Proof. To prove this important feature of the  estimator, since minimizes + . therefore  + + = + +   
            = + +  = +  +  = +   

                    i.e.           + + +  
Let   denote the set of significant coefficients. Then  + = ( ).                                                     (14) 

Since the sub-differential of ( ) at the point  is , where = ( ). + ( ) ( ). 
So         ,    where  =         (15)                                         

 
SOME IMPORTANT NOTATIONS 

 
 Now, some important quantities and assumptions of design matrix   shall be defined and they are very 

important in proving the following lemma and theorem. Throughout, each vector  is assumed to be 
normalized such that =    for = 1, … , . Let  be the smallest number such that for any  sparse 
vector , 

.                                                                                  
Here     means that the vector  has at most  nonzero coordinate, or . 

Similarly, let  be the largest number such that for any    , .Let ,  be the smallest number such that for any    sparse vector    with disjoint support, | , | , . 
The following constrained eigenvalue of design matrix  must be defined. Let  = min . 
To show the properties of the  high dimensional repeated measurements estimator, we need  to be 
bounded away from 0.. We have the following lemma which plays important role to prove next theorem.  
Definition 2. ( )[10] 
Consider a subset    and let > 0. A subset  is called an   of   if every point in  is 
within distance  of some point of , 
i.e.       :  . 
Equivalently,  is an   of   if and only if   can be covered by balls with centers in  and radii . 
Definition 3. (Covering numbers)[10] 
The smallest cardinality of an  of  is called the covering number of  and is denoted ( , ). 
Equivalently, the ( , ) is the smallest number of closed balls with centers in  and radii  whose union 
covers . 
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Lemma 6.  Suppose ,  are independent random variables. Assume that >  and > 3  and also let for 
any vector , ( ) = |( + ) ( + )| then sup, ( ) (1 + 2 ) 2  2 ,      (16) 

where  > 1 is a constant. 
Proof.  for any 1 ,  1 , it can be seen |( ) | | | |( ) |,   where  = 1,2, … , . 
So  |( ) | | |  is a bounded random variable for any fixed .  
Hence for any fixed   sparse signal , by using Hoeffding’s inequality, we have that ( ( ) ) 2 ,  for all > 0.   
By the definition of , we have that  ( ( ) ) 2 = 2  .              (17) 

Let  = 2    in (15), we have  ( ) 2   2      = 2 , for all > 0.  
By using the   and covering number argument, we will find an upper bound for sup, | ( )|, 
Consider the   of the set { , = , = 1}. 
Since From the standard results of covering number, the covering number of { , = 1}   balls ( . . { : }) is at most  for < 1. 

Then the covering number of { ,   = , = 1} by   is at most  for < 1. 
Assume that  is such a   of  { ,   = , = 1}. By union bound,  sup| ( )| 2 log 2   , for all > 0.  

Moreover, it can be seen that, sup, , , | ( ) ( )| 2 ( )  2 , 
 

(since     ). Therefore 
 sup, , | ( )| sup| ( )| + 2   

 

Let  =  , then sup, | ( )| 2 log  

sup| ( )| ( 1) 2 log 2 3  ( ) . 
Since  >  and > 3 ,  let = 1 + 2   for some  > 1, then  sup, | ( )| (1 + 2 1 ) 2 log 2 3  ( )  

sup, | ( )| (1 + 2  ) 2 log 2 ( ). 
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Theorem: Suppose that the measurement errors  are independent and identically distributed 
randomvariables with mean 0. Assume that  satisfy condition (7). Moreover, assume that > , +  and  > + 2  + ,         (18) 

For   some constant  such that > 1 + 2 . Then the  estimator  satisfies with probability at least 1 2   ( .(  ,  ( ) 1 +  , 

where = 1 + 2  and > 1 is constant.   
 
Proof. 

Recall lemma 5,       = : ,   {1,2, … , }      . . 

Since =  and .  
Assume | | | | | |  and let = {1,2, … , }, 
therefore   . 
We write  {1 , 2 , … , } in to the following sets: = {1 , 2 , … , }, = { + 1, + 2 , … , 2 }, = {2 + 1, 2 + 2 , … , 3 }, …  . 
From lemma 8 in [22]  it follows that  + 4  1 + 14  1 + 14  +                                                                                                                             (19)    

 
Hence, 1 ( + ) 1 +  + ( ) + ( ) +                                                                 (20) 

for any fixed vector , Let  ( ) = ( + ).  
By lemma 6, with probability at least 1 2 ( ), + 2 log ,                                                     (21) 

And for 1 with probability at least 1 ( ),  + + 2 log .    (22) 
where  = 1 + 2     > 1 is constant. 
Put the above inequalities together, we have that with probability at least 1 . 1 ( + ) ( ) 2 log  

By this and inequalities (14) and (19), we have with probability at least 1 2 , 
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( ) 1 ( + ) + 2 log  

+ 2 log +  

+ 2 log + 14 + 1
 

 = + 2 log 1.25 + .                                                                              (23) 
Now by condition (7), we consider two cases. 
Firstly, if  , then by lemma 7 in [22] and inequality (17), we have that   ( + )                                                                   (24) 
From assumption (14), we must have = 0 and hence  = . 
On the other hand, if <  , from lemma 7 in [22] and inequality (8), we have  ( + ) .                                                                                           (25) 
We have that, , ,  

And by (Cauchy-Schwarz inequality)   ,  

Therefore 

N
,

                                                                                                      (26) 

Hence by (23) and (25), with probability at least 1 2 ,   ( ) + 2 log  1.25 +                                     (27) 
This implies  

, + 16 + 2 log  (1.25 + 1)  

i.e.    16
, +  16 1.25 +

, +  

= 16 + 2 log 16 1.25 +
 

where  = ,
.  

In particular, when = 2 log  . we have that, .    .                                                                                               (28) 

Since  

 , 

this implies   .    
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 therefore, 

2 log 16( 2 + 1.25 + 1 + 1
 

 Where = ,
. ,  = 1 +2  and > 1 is a constant.
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