Spring 2019

Classification of Non-Singular Cubic Surfaces up to e-invariants

Mohammed Alabbood

Follow this and additional works at: https://scholarcommons.sc.edu/etd
Part of the Mathematics Commons

Recommended Citation

Alabbood, M.(2019). Classification of Non-Singular Cubic Surfaces up to e-invariants. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/5225

by
Mohammed Alabbood

Bachelor of Science
University of Basrah 1997

Master of Science
University of Basrah 2004

Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in

Mathematics
College of Arts and Sciences
University of South Carolina
2019
Accepted by:
Jesse Kass, Major Professor
Alexander Duncan, Committee Member
Ralph Howard, Committee Member
Karl Gregory, Committee Member
Cheryl L. Addy, Vice Provost and Dean of the Graduate School
(c) Copyright by Mohammed Alabbood, 2019 All Rights Reserved.

Dedication

To my late mother who gave me everything she could...and my wife and beloved daughters...I love you so much!

Acknowledgments

First of all, I would like to thank Allah for support.
I am much indebted to Professor Jesse Kass, who supervised the work in my thesis. He has given me a lot of advice, particularly in the logic of mathematics and how I can deal with mathematical objects. I feel very lucky to have the opportunity to study under the supervision of such a knowledgable and smart mathematician with a great personality.

Also I am very grateful to the Iraqi government represented by the Ministry of Higher Education and Scientific Research which allowed me to complete my PhD in the United States. Furthermore, many thanks also go to the staff of the Iraqi Cultural Attache' in Washington D.C. for their support during my PhD study.

Many thanks are also due to Professor Alexander Duncan who did not hesitate to help me.

I would like to thank Dr. Ralph Howard, Dr. Alexander Duncan, Dr. Karl Gregory for serving as members of my doctoral committee.

I am grateful to the entire faculty and staff in the Department of Mathematics, especially Dr. Adela Vraciu, Dr. Frank Thorne, Dr. Matthew Boylan, the director of the graduate office, who have taught me and assisted me in one way or another.

I want to thank Dr. Ognian Trifonov, former director of the graduate office, for his consistent support and help during my graduate study.

Also, I want take this opportunity to thank my fellow graduate students and friends, especially Xiaofei Yi, Robert Vandermolen, Candace Bethea, Alicia Lamarche for providing kind help, sharing with me their expert knowledge, and sharing the
challenges and happiness together.
Finally, I would like to express my gratitude to my lovely family, especially my wife and my beautiful daughters Ayah, Manar, Fatimah, Hawraa and Fadak, who made my life attractive. Their support made me strong and has helped me to finish my thesis in the identified time.

Abstract

In this thesis, we use the Clebsch map to construct cubic surfaces with twenty-seven lines in $P G(3, q)$ from 6 points in general position in $P G(2, q)$ for $q=17,19,23,29,31$. We classify the cubic surfaces with twenty-seven lines in three dimensions (up to e invariants) by introducing computational and geometrical procedures for the classification. All elliptic and hyperbolic lines on a non-singular cubic surface in $P G(3, q)$ for $q=17,19,23,29,31$ are calculated. We define an operation on triples of lines on a non-singular cubic surface with 27 lines which help us to determine the exact value of the number of Eckardt point on a cubic surface. Moreover, we discuss the irreducibility of classes of smooth cubic surfaces in $\operatorname{PG}(19, \mathbb{C})$, and we give the corresponding codimension of each class as a subvariety of $\operatorname{PG}(19, \mathbb{C})$.

Table of Contents

Dedication iii
Acknowledgments iv
Abstract vi
List of Tables ix
List of Figures xiv
Chapter 1 Introduction 1
Chapter 2 Classification of 6-ARCS over some finite fields 15
2.1 The fundamental theorem of projective geometry 15
2.2 Projective plane and k-arcs 18
2.3 Quadrics and conics 21
2.4 Construction of 6 -arcs 24
2.5 The projectively distinct 6 -arcs 28
2.6 The 6 -arcs not on a conic in $P G(2, q)$ 36
2.7 Blowing-up the plane in six points 39
Chapter 3 Classification of non-Singular cubic surfaces up to e-INVARIANTS 45
3.1 Double-sixes and Eckardt points on a non-singular cubic surface 45
3.2 Some classical structures on cubic surfaces 55
$3.3 e$-invariants and a non-singular cubic surfaces with 27 lines 60
3.4 The geometrical configuration formed by six and ten E-points in $P G(3, q)$ 63
3.5 Elliptic and hyperbolic lines on a non-singular cubic surfaces 65
3.6 The equation of a non-singular cubic surface 72
Chapter 4 Classification of classes of smooth cubic surfaces IN $P G(19, k)$ 113
4.1 Quadratic transformations 121
4.2 Operation on triples of lines on a smooth cubic surface 126
4.3 Irreducibility and codimension of classes of smooth cubic surfaces over the complex field 173
Bibliography 204
Appendix A Main Algorithms 207

List of Tables

Table 2.1 The unique projectivity Σ_{i} 19
Table 2.2 The bisecants, tangents and exterior lines of a $4-\operatorname{arc} \mathcal{K}$ 21
Table 2.3 Points of \mathcal{B}^{\prime} 25
Table 2.4 Points of \mathcal{B} 26
Table 2.5 Projectively distinct 5-arcs in $P G(2,17)$ 27
Table 2.6 Projectively distinct 5-arcs in $\operatorname{PG}(2,19)$ 27
Table 2.7 Projectively distinct 5-arcs in $\operatorname{PG}(2,23)$ 27
Table 2.8 Projectively distinct 5-arcs in $P G(2,29)$ 27
Table 2.9 Projectively distinct 5 -arcs in $P G(2,31)$ 27
Table 2.10 Points of \mathcal{B}_{2} 31
Table 2.11 Points of \mathcal{B}_{3} 31
Table 2.12 Points of \mathcal{B}_{4} 31
Table 2.13 Points of \mathcal{B}_{5} 31
Table 2.14 Points of \mathcal{B}_{6} 31
Table 2.15 Points of \mathcal{B}_{7} 32
Table 2.16 Points of \mathcal{B}_{1} 32
Table 2.17 Projectively distinct 6-arcs in $\operatorname{PG}(2,17)$ 34
Table 2.18 Projectively distinct 6-arcs in $\operatorname{PG}(2,19)$ 35
Table 2.19 Projectively distinct 6-arcs in $\operatorname{PG}(2,23)$ 35
Table 2.20 Projectively distinct 6-arcs in $\operatorname{PG}(2,29)$ 36
Table 2.21 Projectively distinct 6-arcs in $\operatorname{PG}(2,31)$ 37
Table 2.22 Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(17)$ 40
Table 2.23 Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(19)$ 40
Table 2.24 Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(23)$ 41
Table 2.25 Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(29)$ 41
Table 2.26 Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(31)$ 42
Table 3.1 Incidence diagram 47
Table 3.2 The values of $\varpi\left(\mathscr{K}\left(\ell_{1}\right), \mathscr{K}\left(\ell_{1}^{\prime}\right)\right)(\bmod 13)$ 51
Table 3.3 The 15 lines $c_{i j}$ on \mathscr{S} 53
Table 3.4 The Brianchon points of \mathcal{S}_{j} over $G F(17)$ 60
Table 3.5 The Brianchon points of \mathcal{S}_{j} over $G F(19)$ 61
Table 3.6 Lower and upper bound for e_{3} 62
Table 3.7 Minimal and maximal value of e_{3} 63
Table 3.8 The non-singular cubic surface $\mathscr{S}^{(1)}(17)$ 93
Table 3.9 The non-singular cubic surface $\mathscr{S}^{(3)}(17)$ 93
Table 3.10 The non-singular cubic surface $\mathscr{S}^{(4)}(17)$ 94
Table 3.11 The non-singular cubic surface $\mathscr{S}^{(6)}(17)$ 94
Table 3.12 The non-singular cubic surface $\mathscr{S}^{(2)}(19)$ 95
Table 3.13 The non-singular cubic surface $\mathscr{S}^{(3)}(19)$ 95
Table 3.14 The non-singular cubic surface $\mathscr{S}^{(4)}(19)$ 96
Table 3.15 The non-singular cubic surface $\mathscr{S}^{(6)}(19)$ 96
Table 3.16 The non-singular cubic surface $\mathscr{S}^{(9)}(19)$ 97
Table 3.17 The non-singular cubic surface $\mathscr{S}^{(10)}(19)$ 97
Table 3.18 The non-singular cubic surface $\mathscr{S}^{(18)}(19)$ 98
Table 3.19 The non-singular cubic surface $\mathscr{S}^{(1)}(23)$ 98
Table 3.20 The non-singular cubic surface $\mathscr{S}^{(2)}(23)$ 99
Table 3.21 The non-singular cubic surface $\mathscr{S}^{(3)}(23)$ 99
Table 3.22 The non-singular cubic surface $\mathscr{S}^{(4)}(23)$ 100
Table 3.23 The non-singular cubic surface $\mathscr{S}^{(6)}(23)$ 100
Table 3.24 The non-singular cubic surface $\mathscr{S}^{(0)}(29)$ 101
Table 3.25 The non-singular cubic surface $\mathscr{S}^{(1)}(29)$ 101
Table 3.26 The non-singular cubic surface $\mathscr{S}^{(2)}(29)$ 102
Table 3.27 The non-singular cubic surface $\mathscr{S}^{(2)^{*}}(29)$ 102
Table 3.28 The non-singular cubic surface $\mathscr{S}^{(3)}(29)$ 103
Table 3.29 The non-singular cubic surface $\mathscr{S}^{(4)}(29)$ 103
Table 3.30 The non-singular cubic surface $\mathscr{S}^{(6)}(29)$ 104
Table 3.31 The non-singular cubic surface $\mathscr{S}^{(10)}(29)$ 104
Table 3.32 The non-singular cubic surface $\mathscr{S}^{(0)}(31)$ 105
Table 3.33 The non-singular cubic surface $\mathscr{S}^{(1)}(31)$ 105
Table 3.34 The non-singular cubic surface $\mathscr{S}^{(2)}(31)$ 106
Table 3.35 The non-singular cubic surface $\mathscr{S}^{(3)}(31)$ 106
Table 3.36 The non-singular cubic surface $\mathscr{S}^{(4)}(31)$ 107
Table 3.37 The non-singular cubic surface $\mathscr{S}^{(6)}(31)$ 107
Table 3.38 The non-singular cubic surface $\mathscr{S}^{(9)}(31)$ 108
Table 3.39 The non-singular cubic surface $\mathscr{S}^{(10)}(31)$ 108
Table 3.40 The non-singular cubic surface $\mathscr{S}^{(18)}(31)$ 109
Table 3.41 Number of elliptic lines 109
Table 3.42 Type of involutions 109
Table 3.43 The distinct non-singular cubic surfaces with 27 lines (up to e - invariants) over $G F(q)$ for $q=17,19,23,29,31$ 111
Table 4.1 Points belong to $\mathscr{S}^{(4)}(17) \backslash\left\{\right.$ lines of $\left.\mathscr{S}^{(4)}(17)\right\}$ 116
Table 4.2 Points lie on exactly one line of $\mathscr{S}^{(4)}(17)$ 116
Table 4.3 Points lie on exactly two lines of $\mathscr{S}^{(4)}(17)$ 117
Table 4.4 Points lie on exactly three lines of $\mathscr{S}^{(4)}(17)$ 117
Table 4.5 Eckardt points of $\mathscr{S}^{(10)}(11)$ 120
Table 4.6 Eckardt points of $\mathscr{S}^{(18)}(13)$ 121
Table 4.7 The symmetric table 1 130
Table 4.8 The symmetric table 2 131
Table 4.9 The symmetric table 3 137
Table 4.10 The symmetric table 4 142
Table 4.11 The symmetric table 5 144
Table 4.12 The symmetric table 6 144
Table 4.13 The symmetric table 7 146
Table 4.14 The symmetric table 8 147
Table 4.15 The symmetric table 9 149
Table 4.16 The symmetric table 10 150
Table 4.17 The symmetric table 11 151
Table 4.18 The symmetric table 12 154
Table 4.19 The symmetric table 13 156
Table 4.20 The symmetric table 14 157
Table 4.21 The symmetric table 15 158
Table 4.22 The symmetric table 16 159
Table 4.23 The symmetric table 17 162
Table 4.24 The symmetric table 18 166
Table 4.25 Closed subsets of $\mathbb{S}_{s m}$ with their codimension 203

List of Figures

Figure 2.1 Blowing-up the plane. 42
Figure 3.1 Configuration of a double-six on \mathscr{S} 52
Figure 3.2 The configuration $\mathcal{Q}^{(6)}(19)$. 65
Figure 3.3 The configuration $\mathcal{Q}^{(10)}(19)$. 65
Figure 3.4 Configurations of $\left(l, \mathscr{S}_{\lambda}\right)$. 110
Figure 3.5 The configuration $\left(l, \mathscr{S}_{\lambda}^{(3)}(q)\right)$. 110
Figure 3.6 The configuration $\left(l, \mathscr{S}_{\lambda}^{(4)}(q)\right)$. 111
Figure 4.1 Elementary quadratic transformation φ_{123}. 125
Figure 4.2 Elementary quadratic transformation 125
Figure $4.3 \quad \varphi_{123}=\pi_{S(Q)} \circ \pi_{S(P)}^{-1}$. 126
Figure 4.4 Types of Eckardt points for $\mathbb{E}^{(2)}$. 135
Figure 4.5 Types of Eckardt points for $\mathbb{E}^{(3)}$. 136
Figure 4.6 Types of Eckardt points for \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(4)}$. 141
Figure 4.7 Types of Eckardt points for \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(6)}$. 145
Figure 4.8 Cases of t_{7} on \mathscr{S}. 156
Figure $4.9 l_{16} \cap l_{24} \cap l_{35}=\left\{P_{9}\right\}$. 167
Figure 4.10 The main diagram for $\mathbb{S}^{(k)}$ and $\mathbb{E}^{(m, k)}$ 172
Figure $4.11 \mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{t} \mathbb{P}_{Y}^{2}$. 176
Figure 4.12 Main diagram. 179
Figure $4.13 \mathbb{K}^{(1)}$ and configurations of members of the fibers. 180
Figure $4.14 \mathbb{S}^{(1)}=\gamma \circ \xi\left(B_{1}\right)$. 180
Figure $4.15 \mathbb{K}^{(2)}$ and configurations of members of the fibers. 182
Figure $4.16 \mathbb{E}^{(2)}=\gamma \circ \xi\left(B_{1}\right)$. 183
Figure $4.17 \mathbb{K}^{(3)}$ and configurations of members of the fibers. 184
Figure $4.18 \mathbb{E}^{(3)}=\gamma \circ \xi\left(B_{1}\right)$. 186
Figure 4.19 Irreducible components of $\mathbb{S}^{(2)}$. 187
Figure 4.20 Irreducibility of $\mathbb{K}^{(4)}$ 188
Figure $4.21 \mathbb{K}^{(4)}$ and configurations of members of the fibers. 189
Figure $4.22 \mathbb{E}^{(4)}=\gamma \circ \xi\left(B_{1}\right)$. 190
Figure 4.23 Irreducibility of $\mathbb{K}^{(6)}$ 191
Figure $4.24 \mathbb{K}^{(6)}$ and configurations of members of the fibers. 191
Figure $4.25 \mathbb{E}^{(6)}=\gamma \circ \xi\left(B_{1}\right)$. 192
Figure 4.26 Irreducible components of $\mathbb{K}^{(9)}$. 194
Figure $4.27 \mathbb{K}^{(9)}$ and configurations of members of the fibers. 194
Figure $4.28 \mathbb{E}^{(9)}=\gamma \circ \xi\left(B_{1}\right)$. 195
Figure $4.29 \mathbb{E}^{(4)}, \mathbb{E}^{(6)}$ and $\mathbb{E}^{(9)}$ are closed subsets of $\mathbb{S}_{s m}$. 197
Figure 4.30 Irreducible components of $\mathbb{K}^{(10)}$ 198
Figure $4.31 \mathbb{K}^{(10)}$ and configurations of members of the fibers. 199
Figure $4.32 \mathbb{E}^{(10)}=\gamma \circ \xi\left(B_{1}\right)$. 200
Figure 4.33 Irreducible components of $\mathbb{K}^{(18)}$ 201
Figure $4.34 \mathbb{E}^{(18)}=\gamma \circ \xi\left(B_{1}\right)$. 202

Chapter 1

Introduction

The intensive study of a cubic surface started in 1849, when the British mathematicians Salmon and Cayley published the results of their correspondence on the number of lines on a non-singular cubic surface (see [6], Pages 118-132 and [26], Pages 252260). Moreover, Cayley and Salmon show that a non-singular cubic surface over the complex field contains exactly twenty-seven lines. In 1858, Schläfli ([27]) found the helpful notation for the complete figure formed by these 27 lines. Clebsch constructed the famous Diagonal surface in ([7], Pages 284-345) and showed that it contained 27 real lines. In $21^{\text {st }}$ century, mathematicians can do even more in addition to making static models, they can use computers to manipulate them interactively. For this purpose, we have the following important theorem of Clebsch ([7], Pages 359-380).

Theorem: Every non-singular cubic surface can be represented in the plane using 4 plane cubic curves through six points in general position and vice versa.

In 1849, Cayley and Salmon showed that a general cubic surface over the complex field contains exactly 27 lines [6]. However Cayley observed that through each line of a non-singular cubic surface, there are 5 planes meeting it in two other lines and these planes are called tritangent planes. Further he showed that the equation of a non-singular cubic surface can be written as $L_{1} L_{2} L_{3}+L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime}=0$ where $L_{1}, L_{2}, L_{3}, L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are certain homogeneous linear polynomials in 4 variables. These homogeneous linear polynomials are associated to objects called trihedral pairs (see Section 3.2). In 1858 Schläfli introduced the double-six theorem, namely

Theorem: (Schläfli [27]) Given five skew lines $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ with a single
transversal b_{6} such that each set of four a_{i} omitting a_{j} has a unique further transversal b_{j}, then the five lines $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ also have a transversal a_{6}. These twelve lines form a double-six.

A double-six in $P G(3, k)$ is a set of 12 lines, namely

$$
D: \begin{array}{llllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
& b_{1} & b_{2} & b_{3} & b_{4} & b_{5}
\end{array} b_{6}
$$

such that each line only meets the five lines which are not in the same row or column.
The main property of a double-six is that it determines a unique cubic surface with 27 lines.

There are three main related problems stated in [17], namely

1. Characterize when a double-six exists over $G F(q)$.
2. Determine the particular properties of cubic surfaces over $G F(q)$. For example, the number of Eckardt points on a line of the cubic surface, arithmetical properties of cubic surface and configuration of Eckardt points.
3. Classify the cubic surfaces with twenty-seven lines over $G F(q)$.

Problem (1) has been solved, Problem (2) has seen much progress in [18]. In this thesis, we will discuss the Problem (2) in more detail when $q>6$ and q is prime by defining an operation on the triples of lines on a non-singular cubic surface with 27 lines. Furthermore, we will discuss the Problem (3) by classifying the non-singular cubic surfaces with 27 lines in $P G(3, q)$ up to e-invariants. In fact, every non-singular cubic surface with 27 lines in $P G(3, q)$ is a blow-up of $P G(2, q)$ at six points in general position (such a configuration of points is a 6 -arc not on a conic). In general, an r-arc $(r>3)$ in $P G(2, q)$ is a set of r points no three of them on the same line. The e-invariants of a non-singular cubic surface \mathscr{S} with 27 lines are $e_{0}, e_{1}, e_{2}, e_{3}$, where e_{r} denotes the number of points of \mathscr{S} that lie on exactly r lines of \mathscr{S}. So e_{3} is the number of Eckardt points of \mathscr{S}.

A non-singular cubic surface \mathscr{S} with 27 lines is said to be of type $\left[e_{0}, e_{1}, e_{2}, e_{3}\right]$ if $e_{0}, e_{1}, e_{2}, e_{3}$ are the e-invariants of \mathscr{S}. Two non-singular cubic surfaces with 27 lines, namely \mathscr{S} and \mathscr{S}^{\prime} are said to be equivalent if they have the same type.

For an r-arc \mathcal{K} in $P G(2, q)$, we define the isotropy subgroup of \mathcal{K} as follows:

$$
G(\mathcal{K}):=\operatorname{PGL}_{3}(q)_{\mathcal{K}}=\left\{\gamma \in \operatorname{PGL}_{3}(q): \gamma(\mathcal{K})=\mathcal{K}\right\}
$$

where $\mathrm{PGL}_{3}(q)$ is the projective general linear group over $G F(q)$. Moreover, two r-arcs \mathcal{K} and \mathcal{K}^{\prime} in $P G(2, q)$ are said to be projectively equivalent if

$$
\operatorname{PGL}_{3}(q)_{\mathcal{K}} \cong \mathrm{PGL}_{3}(q)_{\mathcal{K}^{\prime}}
$$

In this case, two 5 -arcs, namely \mathcal{F} and \mathcal{F}^{\prime}, are projectively distinct if they have different isotropy groups. Similarly, two 6 -arcs, namely \mathcal{S} and \mathcal{S}^{\prime}, are projectively distinct if they have different isotropy groups.

To find the equation of a non-singular cubic surface \mathscr{S} with 27 lines, we consider a 6 -arcs not on a conic \mathcal{S}, where

$$
\mathcal{S}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}
$$

There exists one half of a double-six on the corresponding non-singular cubic surface \mathscr{S} with 27 lines, namely

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}
$$

such that if \mathcal{S}^{*} is the set of points on the lines a_{i} then the restriction of the Clebsch map (see Section 3.1, Section 3.6) is a bijection

$$
s: \mathscr{S} \backslash \mathcal{S}^{*} \rightarrow P G(2, q) \backslash \mathcal{S}
$$

If we find all 15 bisecants of \mathcal{S} and the six conics $\mathscr{C} \mathscr{C}_{j}$, where \mathscr{C}_{j} is a conic through the 5 points of \mathcal{S} except P_{j}, then we get 30 plane cubic curves of the form $\mathbb{V}\left(\mathscr{C}_{j} \cdot \overline{P_{i} P_{j}}\right)$, and 15 plane cubic curves of the form $\mathbb{V}\left(\overline{P_{i} P_{j}} \cdot \overline{P_{k} P_{l}} \cdot \overline{P_{m} P_{n}}\right)$.

Among the 45 plane cubics above we choose four base cubic curves through \mathcal{S}

$$
\begin{aligned}
& \omega_{1}=\mathbb{V}\left(W_{1}\right), \\
& \omega_{2}=\mathbb{V}\left(W_{2}\right), \\
& \omega_{3}=\mathbb{V}\left(W_{3}\right), \\
& \omega_{4}=\mathbb{V}\left(W_{4}\right) .
\end{aligned}
$$

The corresponding tritangent planes on \mathscr{S} are chosen as

$$
\begin{aligned}
\pi_{\omega_{1}} & =\mathbb{V}\left(\Pi_{W_{1}}\right), \\
\pi_{\omega_{2}} & =\mathbb{V}\left(\Pi_{W_{2}}\right), \\
\pi_{\omega_{3}} & =\mathbb{V}\left(\Pi_{W_{3}}\right), \\
\pi_{\omega_{4}} & =\mathbb{V}\left(\Pi_{W_{4}}\right),
\end{aligned}
$$

where $\Pi_{W_{j}}$ is a linear form defining $\pi_{\omega_{j}}$ and corresponds to the cubic form W_{j} defining ω_{j}. Every tritangent plane on \mathscr{S} can be written as a linear combination of $\Pi_{W_{1}}, \Pi_{W_{2}}, \Pi_{W_{3}}$ and $\Pi_{W_{4}}$.

We choose one trihedral pair among the 120 trihedral pairs, namely

$T_{123}:$	c_{23}	b_{3}	a_{2}	$\rightsquigarrow \pi_{\omega_{1}}=\mathbb{V}\left(\Pi_{W_{1}}\right)$	
a_{3}	c_{13}	b_{1}	$\rightsquigarrow \pi_{\omega_{2}}=\mathbb{V}\left(\Pi_{W_{2}}\right)$		
b_{2}	a_{1}	c_{12}	$\rightsquigarrow \pi_{\omega_{i}}=\mathbb{V}\left(\Pi_{W_{i}}\right)$		
\vdots	\vdots	\vdots			
$\pi_{\omega_{3}}$	$\pi_{\omega_{4}}$	$\pi_{\omega_{j}}$			
$\\|$	$॥$	$॥$			
$\mathbb{V}\left(\Pi_{W_{3}}\right)$	$\mathbb{V}\left(\Pi_{W_{3}}\right)$	$\mathbb{V}\left(\Pi_{W_{j}}\right)$			

where $\pi_{\omega_{1}}, \pi_{\omega_{2}}, \pi_{\omega_{3}}, \pi_{\omega_{4}}$ are the 4 tritangent planes on \mathscr{S} corresponding to the six plane cubics $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ which pass through \mathcal{S}. The tritangent planes on \mathscr{S}, which correspond to the third row and third column, are respectively $\pi_{\omega_{i}}=\mathbb{V}\left(\Pi_{W_{i}}\right)$ and $\pi_{\omega_{j}}=\mathbb{V}\left(\Pi_{W_{j}}\right)$. Consequently, the equation of the non-singular cubic surface \mathscr{S} is

$$
\mathscr{S}=\mathbb{V}\left(\Pi_{W_{1}} \Pi_{W_{2}} \Pi_{W_{i}}+\lambda \Pi_{W_{2}} \Pi_{W_{4}} \Pi_{W_{j}}\right)
$$

where the plane cubics W_{i}, W_{j} can be written as a linear combination of the four base cubics $W_{1}, W_{2}, W_{3}, W_{4}$ and λ is some non-zero element in $G F(q)$.

The classification of 5 -arcs and 6 -arcs (up to the group of projectivities), and the classification of the non-singular cubic surfaces with twenty-seven lines (up to e-invariants) over the finite fields of seventeen, nineteen, twenty-three, twenty-nine, and thirty-one elements are the main theme of this work. In fact, the later theme helps me to discuss the non-singular cubic surface with 27 lines and m Eckardt points.

Among the k-arcs with interesting properties are the 5 -arcs and 6 -arcs. In the beginning of our work, we prove that there are $2,4,2,4$ and 4 projectively distinct 5 -arcs in the projective planes $P G(2, q)$ for $q=17,19,23,29,31$ respectively. Furthermore, we prove that there are $9,10,8,10$ and 11 projectively distinct 6 -arcs in the projective planes $P G(2, q)$ for $q=17,19,23,29,31$ respectively. Amongst the $9,10,8,10$ and 11 projectively distinct 6 -arcs, in $P G(2, q)$ for $q=17,19,23,29,31$, there are $6,8,6,7$ and 9 of which do not lie on a conic respectively.

The projectively distinct 6 -arcs not on a conic in the projective planes $\operatorname{PG}(2, q)$ for $q=17,19,23,29,31$ all correspond to non-singular cubic surfaces with twenty-seven lines in $P G(3, q)$ for $q=17,19,23,29,31$. These surfaces fall into equivalence classes up to e-invariants which will be defined in Section 3.3.

In Hirschfeld [17], the existence of a cubic surface which arises from a double-six over the finite field of order four was considered. In Hirschfeld [18], the existence and the properties of the cubic surfaces over the finite field of odd and even order was discussed and classified over the fields of order seven, eight, nine. Cubic surfaces with twenty-seven lines over the finite field of thirteen elements are classified in [2]. In this thesis, a non-singular cubic surfaces with twenty-seven lines over the finite field of seventeen, nineteen, twenty-three, twenty-nine, and thirty-one elements are classified up to e-invariants, and hence they are classified up to the number of Eckardt points.

For $q \leq 16$, an upper and lower bound for the number of Eckardt points on a
non-singular cubic surface over $G F(q)$ are given in [16]. The exact value of maximum number of Eckardt points over $G F(13)$ is discussed in [2]. However, in our work, we count the exact value of maximum and minimum number of Eckardt points on a non-singular cubic surface in $P G(3, q)$ for $q=17,19,23,29,31$.

When all 27 lines on a non-singular cubic surface are defined over $G F(q)$, the total number of elliptic lines on cubic surface is always even [21]. In our work, we determined which even number of elliptic lines can occur depending on some conditions related to the number of Eckardt points on cubic surface. The arithmetic of all elliptic and hyperbolic lines on a non-singular cubic surface in $\operatorname{PG}(3, q)$ for $q=17,19,23,29,31$ are indicated in Section 3.6.

In Chapter 4 of the thesis, we classify classes of smooth cubic surfaces with 27 lines in $P G(19, k)$ up to Eckardt points where $k=\mathbb{C}$ or $k=G F(q)$ for $q>7$ and q is prime. By considering configurations of 6 points in general position in the projective plane $P G(2, k)$, we can describe subsets of projective space $P G(19, k)$ that correspond to non-singular cubic surfaces with m Eckardt points. Recall that a non-singular cubic surface, namely X, can be viewed as the blow up of $P G(2, k)$ at 6 points in general position. Furthermore, there are 45 tritangent planes on X. Classification of cubic surfaces with m Eckardt points, have been studied by Segre 1946 [28]. However, we give another way to classify cubic surfaces and give the possible number of Eckardt points on them. Moreover, we discuss the irreducibility of classes of smooth cubic surfaces in $\operatorname{PG}(19, \mathbb{C})$, and we give the codimension of each class as a subvariety of $P G(19, \mathbb{C})$.

The main results in our work are
Theorem 2.3. There are respectively $2,4,2,4$ and 4 projectively distinct 5 -arcs in $P G(2, q)$ for $q=17,19,23,29,31$.

Theorem 2.4. There are respectively $9,10,8,10$ and 11 projectively distinct 6 -arcs in $P G(2, q)$ for $q=17,19,23,29,31$.

Theorem 3.5. Let \mathscr{S} be a non-singular cubic surface with 27 lines. Then for $q=17,19,23,29,31$, the minimal and maximum value for e_{3} are given in Table 3.3.

Theorem 3.6. For $q=17,19,23,29,31$, the possible number of elliptic lines on a non-singular cubic surface with 27 lines over $G F(q)$ are represented by the entries of Table 3.4.

Let $\mathscr{S}^{(j)}(q)$ denotes the smooth cubic surface with j Eckardt points over $G F(q)$ that corresponds to the 6 - $\operatorname{arcs} \mathcal{S}$ not on a conic in $P G(2, q)$. Then we get the following facts.

Theorem 3.7. There are 4, 7, 5, 7, 9 distinct non-singular cubic surfaces with 27 lines (up to e-invariants) in $P G(3, q)$ for $q=17,19,23,29,31$ respectively, namely,

$$
\begin{aligned}
& \mathscr{S}^{(m)}(17), m=1,3,4,6 . \\
& \mathscr{S}^{(m)}(19), m=2,3,4,6,9,10,18 . \\
& \mathscr{S}^{(m)}(23), m=1,2,3,4,6 . \\
& \mathscr{S}^{(m)}(29), m=0,1,2,3,4,6,10 . \\
& \mathscr{S}^{(m)}(31), m=0,1,2,3,4,6,9,10,18 .
\end{aligned}
$$

Corollary 3.1. The maximal number of Eckardt points on a non-singular cubic surfaces with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$, are $6,18,6,10,18$ respectively. Moreover, the minimal number of Eckardt points on a non-singular cubic surfaces with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$, are $1,2,1,0,0$ respectively.

Corollary 3.2. The number of elliptic lines on a non-singular cubic surfaces with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$ is either 0 or 12 or 16.

Corollary 3.3. For q odd prime, the number of elliptic lines on a non-singular cubic surfaces $\mathscr{S}^{(3)}(q)$ with 27 lines in $P G(3, q)$ is 12 .

Corollary 3.4. For q odd prime, the number of elliptic lines on a non-singular cubic surfaces $\mathscr{S}^{(4)}(q)$ with 27 lines in $P G(3, q)$ is 12 .

Corollary 3.5. For q odd prime, all the 27 lines on a non-singular cubic surfaces $\mathscr{S}^{(18)}(q)$ with 27 lines in $P G(3, q) ; q=1(\bmod 3)$ are hyperbolic.

Corollary 3.6. For q odd prime, the number of elliptic lines on a non-singular cubic surfaces with 27 lines, $\mathscr{S}^{(0)}(q)$ in $P G(3, q)$, is 16 .

Theorem 4.1. For $q>7$ and q prime, any non-singular cubic surface with 27 lines $\mathscr{S}^{(0)}(q)$ is of type $\left[(q-10)^{2}+9,27(q-9), 135,0\right]$.

Theorem 4.2. For $q>7$ and q prime, any non-singular cubic surface with 27 lines $\mathscr{S}^{(1)}(q)$ is of type $\left[(q-10)^{2}+8,27(q-9)+3,132,1\right]$.

Theorem 4.3. For $q \geq 7$ and q prime, the only non-singular cubic surfaces with 27 lines and all points lying on those lines, i.e, surfaces of type $\left[0, e_{1}, e_{2}, e_{3}\right]$, are $\mathscr{S}^{(18)}(7), \mathscr{S}^{(10)}(11)$ and $\mathscr{S}^{(18)}(13)$.

Let \mathbb{T} be the set of all triples of lines on a non-singular cubic surface \mathscr{S}. Define

$$
\begin{aligned}
c(\mathscr{S}) & :=\left(c_{1}: \ldots: c_{20}\right) \in \mathbb{P}_{k}^{19} \\
& =\text { class of coefficients of } g \text { as a point in } \mathbb{P}_{k}^{19} \\
& =\left\{\lambda\left(c_{1}, \ldots, c_{20}\right): \lambda \in k^{*}\right\} \\
\mathbb{S}_{s m} & :=\left\{c(\mathscr{S}) \in \mathbb{P}_{k}^{19}: \mathscr{S} \text { is a smooth cubic surface in } \mathbb{P}_{k}^{3}\right\}, \\
\mathbb{T}^{(3)} & :=\{t \in \mathbb{T}: \text { lines of } t \text { form an Eckardt point }\} \\
\mathbb{S}^{(m)} & :=\left\{c(\mathscr{S}) \in \mathbb{S}_{s m}: \mathscr{S} \text { has at least } m \text { Eckardt points }\right\}, \\
\mathbb{E}^{(m, k)} & :=\left\{c(\mathscr{S}) \in \mathbb{S}^{(k)}: \mathscr{S} \text { has } m \text { Eckardt points }\right\} \\
\mathbb{E}^{(2)} & :=\left\{c(\mathscr{S}) \in \mathbb{E}^{(2,2)}: \mathscr{S} \text { has } t_{1}, t_{2} \in \mathbb{T}^{(3)} \text { with one common line }\right\}, \\
\mathbb{E}^{(3)} & :=\left\{c(\mathscr{S}) \in \mathbb{E}^{(2,2)}: \mathscr{S} \text { has } t_{1}, t_{2} \in \mathbb{T}^{(3)} \text { with no common line }\right\} .
\end{aligned}
$$

Then we get
Lemma 4.2.2. Let $T=\left\{t_{1}, t_{2}, t_{3}\right\}, T^{\prime}=\left\{t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}\right\}$ be two triads constructed by some lines on \mathscr{S} where $c(\mathscr{S}) \in \mathbb{S}_{s m}$. Then T can transformed to T^{\prime} via some permutations and quadratic transformations.

Proposition 4.1. Let $t_{1}=\left(l_{1} l_{2} l_{3}\right), t_{2}=\left(l_{1}^{\prime} l_{2}^{\prime} l_{3}^{\prime}\right)$ and $t_{3}=\left(l_{1}^{\prime \prime} l_{2}^{\prime \prime} l_{3}^{\prime \prime}\right)$ be three triples in \mathbb{T}. Then

1. if $t_{1} \cap t_{2}=l, t_{1} \cap t_{3}=l^{\prime}$ and $t_{2} \cap t_{3}=l^{\prime \prime}$. Then $l, l^{\prime}, l^{\prime \prime}$ have common point. Furthermore, if $\left(l_{1} l_{1}^{\prime} l_{1}^{\prime \prime}\right)$ forms an Eckardt point, namely E, then $E \in l \cap l^{\prime} \cap l^{\prime \prime}$.
2. if t_{1} and t_{2} form 2 Eckardt points, namely E_{1}, E_{2} respectively, then t_{3} forms another Eckardt points, namely E_{3} so that E_{1}, E_{2}, E_{3} are collinear.

Proposition 4.2. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(2)}$. Then

1. If $c(\mathscr{S}) \in \mathbb{E}^{(2)}$ then \mathscr{S} has two Eckardt points of one of the following kinds:
(a) $\left(a_{\alpha} b_{\beta} c_{\alpha \beta}\right),\left(a_{\alpha^{*}} b_{\beta} c_{\alpha^{*} \beta}\right)$,
(b) $\left(a_{r} b_{s} c_{r s}\right),\left(a_{r} b_{s^{*}} c_{r s^{*}}\right)$,
(c) $\left(a_{i} b_{j} c_{i j}\right),\left(c_{k h} c_{m n} c_{i j}\right)$,
(d) $\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{x y} c_{w q} c_{p z}\right)$,
where $\alpha, \beta, \alpha^{*}, \beta^{*}, r, s, r^{*}, s^{*}, i, j, m, n, k, h, x, y, z, w, p, q \in\{1, \ldots, 6\}$. Furthermore, $\{(a)\} \sim\{(b)\} \sim\{(c)\} \sim\{(d)\}$.
2. If $c(\mathscr{S}) \in \mathbb{E}^{(3)}$ then \mathscr{S} has two Eckardt points of one of the following kinds:
(a) $\left(c_{i k} c_{j m} c_{n h}\right),\left(a_{i} b_{j} c_{i j}\right)$,
(b) $\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{w p} c_{y q} c_{x z}\right)$,
where $i, j, m, n, k, h, x, y, z, w, p, q \in\{1, \ldots, 6\}$. Furthermore, $\{(a)\} \sim\{(b)\}$.

Proposition 4.3.

1. Any non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(3)}$ has exactly three Eckardt points.
2. Any non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(2)}$ has exactly two Eckardt points.

Corollary 4.2. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(2)}(q)$ that corresponds to $c\left(\mathscr{S}^{(2)}\right) \in \mathbb{E}^{(2)}$ is of type $\left[(q-10)^{2}+7,27(q-9)+6,129,2\right]$.

Corollary 4.3. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(3)}(q)$ that corresponds to $c\left(\mathscr{S}^{(3)}\right) \in \mathbb{E}^{(3)}$ is of type $\left[(q-10)^{2}+6,27(q-9)+9,126,3\right]$.

Define the following classes of $\mathbb{S}_{s m}$

$$
\begin{aligned}
& \mathbb{E}^{(4)}:=\left\{\begin{array}{c}
c(\mathscr{S}) \in \mathbb{E}^{(4,4)}: \mathscr{S} \text { has } T \vee t \subset \mathbb{T}^{(3)} \text { such that } \\
t \text { has three common line with } T
\end{array}\right\}, \\
& \mathbb{E}^{(6)}:=\left\{\begin{array}{c}
c(\mathscr{S}) \in \mathbb{E}^{(6,4)}: \mathscr{S} \text { has } T \vee t \subset \mathbb{T}^{(3)} \text { such that } \\
t \text { has one common line with } T
\end{array}\right\}, \\
& \mathbb{E}^{(9)}:=\left\{\begin{array}{c}
c(\mathscr{S}) \in \mathbb{E}^{(4,4)}: \mathscr{S} \text { has } T \vee t \subset \mathbb{T}^{(3)} \text { such that } \\
t \text { has no common line with } T
\end{array}\right\} .
\end{aligned}
$$

Then we get
Proposition 4.4. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(4)}$. There are two possible kinds for the set $T \vee t$ (as in Definition 3.6).

Corollary 4.4. Any non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(4)}$ has exactly 4 Eckardt points and one triad.

Corollary 4.5. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(4)}(q)$ that corresponds to $c\left(\mathscr{S}^{(4)}\right) \in \mathbb{E}^{(4)}$ is of type $\left[(q-10)^{2}+5,27(q-9)+12,123,4\right]$.

Proposition 4.5. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(6)}$. There are 3 possible kinds for the set $T \vee t$ (as in Definition 4.6).

Corollary 4.6. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(6)}$. Then \mathscr{S} has exactly 6 Eckardt points and 4 triads which contain 15 lines among the 27 lines on cubic surface.

Corollary 4.7. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(6)}(q)$ that corresponds to $c\left(\mathscr{S}^{(6)}\right) \in \mathbb{E}^{(6)}$ is of type $\left[(q-10)^{2}+3,27(q-9)+18,117,6\right]$.

Proposition 4.6. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(9)}$. There is one possible kind for the set $T \vee t$ (as in Definition 4.6).

Corollary 4.8. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(9)}$. Then \mathscr{S} has exactly nine Eckardt points and 12 triads.

Corollary 4.9. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(9)}(q)$ that corresponds to $c\left(\mathscr{S}^{(9)}\right) \in \mathbb{E}^{(9)}$ is of type $\left[(q-10)^{2}, 27(q-8), 108,9\right]$.

Theorem 4.4. Let \mathscr{S} be a non-singular cubic surface with the six triples $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ mentioned in the proof of Corollary 4.6, and let t_{7} be another triple on \mathscr{S}, that is $t_{7} \in \mathbb{T}^{(3)} \backslash\left\{t_{i}: i \in\{1, \ldots, 6\}\right\}$. Then
I. \mathscr{S} has at least 10 Eckardt points and at least 10 triads if all lines of t_{7} are in common with one of the 4 triads generated by t_{1}, \ldots, t_{6}.
II. Otherwise, \mathscr{S} has at least 18 Eckardt points and at least 42 triads.

Let $\mathbb{E}^{(10)}$ and $\mathbb{E}^{(18)}$ denote the subsets of $\mathbb{E}^{(10,10)}$ and $\mathbb{E}^{(18,10)}$ respectively that correspond to the non-singular cubic surfaces of kind I and II of Theorem 4.4 respectively. Note that according to Theorem 4.4 , the two sets $\mathbb{E}^{(10,10)}$ and $\mathbb{E}^{(18,10)}$ are subsets of $\mathbb{E}^{(6,4)}$. Then we get

Corollary 4.10. The non-singular cubic surfaces that corresponds to members in $\mathbb{E}^{(10)}$ and $\mathbb{E}^{(18)}$ have exactly 10 and 18 Eckardt points respectively.

Corollary 4.11. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(10)}(q)$ that corresponds to $c\left(\mathscr{S}^{(10)}\right) \in \mathbb{E}^{(10)}$ is of type $\left[(q-10)^{2}-1,27(q-8)+3,105,10\right]$.

Corollary 4.12. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(18)}(q)$ that corresponds to $c\left(\mathscr{S}^{(18)}\right) \in \mathbb{E}^{(18)}$ is of type $\left[(q-10)^{2}-9,27(q-7), 81,18\right]$.

Proposition 4.7. Let \mathscr{S} be a cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(4)}$ with 4 triples, namely the set $T \vee t$ mentioned in Corollary 4.4. Let $t^{\prime} \in \mathbb{T}^{(3)}$ be another triple on \mathscr{S} whose all lines in common with T. Then $c(\mathscr{S}) \in \mathbb{E}^{(9)}$.

Proposition 4.8. $\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}=\mathbb{S}^{(6)}=\mathbb{S}^{(5)}$.

Proposition 4.9. $\mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}=\mathbb{S}^{(7)}=\mathbb{S}^{(8)}=\mathbb{S}^{(9)}$.
Proposition 4.10. $\mathbb{S}^{(10)}=\mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}$.
Proposition 4.11.

$$
\mathbb{S}^{(11)}=\mathbb{S}^{(12)}=\mathbb{S}^{(13)}=\mathbb{S}^{(14)}=\mathbb{S}^{(15)}=\mathbb{S}^{(16)}=\mathbb{S}^{(17)}=\mathbb{S}^{(18)}=\mathbb{E}^{(18,10)}
$$

Corollary 4.13. For every $k>18$, we have $\mathbb{S}^{(k)}=\emptyset$.
Proposition 4.12. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and

$$
t=\left\{Q_{1}, Q_{2}, Q_{3}, \varphi_{123}\left(P_{4}\right), \varphi_{123}\left(P_{5}\right), \varphi_{123}\left(P_{6}\right)\right\}
$$

Then

$$
\mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{t} \mathbb{P}_{Y}^{2}
$$

In particular, if $s^{\prime} \in \mathbb{S}_{6}$ is obtained from s via quadratic transformation, then

$$
\mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{s^{\prime}} \mathbb{P}_{X}^{2}
$$

Lemma 4.3.1. Let $\mathbb{K}^{(1)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(12,34,56) \neq \emptyset\right\}$. Then $\mathbb{K}^{(1)}$ is an irreducible subset of \mathbb{S}_{6} and $\operatorname{codim} \mathbb{K}^{(1)}=1$.

Theorem 4.8. $\mathbb{S}^{(1)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 1.
Lemma 4.3.2. Let

$$
\mathbb{K}^{(2)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{7}\right\} \text { and } \wedge(12,35,46)=\left\{P_{8}\right\}\right\} .
$$

Then $\mathbb{K}^{(2)}$ is an irreducible subset of \mathbb{S}_{6} and $\operatorname{codim} \mathbb{K}^{(2)}=2$.
Theorem 4.9. $\mathbb{E}^{(2)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 2.
Lemma 4.3.3. Let

$$
\mathbb{K}^{(3)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{7}\right\} \text { and } \wedge(13,45,26)=\left\{P_{8}\right\}\right\} .
$$

Then $\mathbb{K}^{(3)}$ is an irreducible subset of \mathbb{S}_{6} and codim $\mathbb{K}^{(3)}=2$.
Theorem 4.10. $\mathbb{E}^{(3)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 2.

Corollary 4.14. $\mathbb{S}^{(1)}$ and $\mathbb{S}^{(2)}$ are closed subset of $\mathbb{S}_{s m}$. Moreover, $\mathbb{S}^{(2)}$ has two irreducible components $\mathbb{E}^{(2)}$ and $\mathbb{E}^{(3)}$ in $\mathbb{S}_{s m}$ with codimension 2.

Lemma 4.3.4. Let

$$
\mathbb{K}^{(4)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(13,24,56)=\left\{P_{7}\right\} \text { and } l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}\right\} .
$$

Then $\mathbb{K}^{(4)}$ is an irreducible subset of \mathbb{S}_{6} and codim $\mathbb{K}^{(4)}=3$.
Theorem 4.11. $\mathbb{E}^{(4)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.
Lemma 4.3.5. Let

$$
\mathbb{K}^{(6)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(14,23,56)=\left\{P_{7}\right\} \text { and } l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}\right\}
$$

Then $\mathbb{K}^{(6)}$ is an irreducible subset of \mathbb{S}_{6} with $\operatorname{codim} \mathbb{K}^{(6)}=3$.
Theorem 4.12. $\mathbb{E}^{(6)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.
Lemma 4.3.6. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and define

$$
\mathbb{K}^{(9)}:=\left\{\begin{array}{c}
s \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{8}\right\}, \wedge(15,24,36)=\left\{P_{7}\right\} \text { and } \\
l_{14} \text { tangent to } \mathscr{C}_{1} \text { at } P_{4}
\end{array}\right\} .
$$

Then $\mathbb{K}^{(9)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 3.
Theorem 4.13. $\mathbb{E}^{(9)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.
Corollary 4.15. $\mathbb{E}^{(4)}, \mathbb{E}^{(6)}$ and $\mathbb{E}^{(9)}$ are closed subset of $\mathbb{S}_{s m}$.
Lemma 4.3.7. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and define

$$
\mathbb{K}^{(10)}:=\left\{\begin{array}{c}
s \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{7}\right\} ; \wedge(14,23,56)=\left\{P_{8}\right\} \text { and } \\
l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}
\end{array}\right\}
$$

Then $\mathbb{K}^{(10)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 4 .
Theorem 4.14. $\mathbb{E}^{(10)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 4.
Lemma 4.3.8. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and define

$$
\mathbb{K}^{(18)}:=\left\{\begin{array}{c}
s \in \mathbb{S}_{6}: \wedge(15,24,36)=\left\{P_{7}\right\} ; \wedge(14,23,56)=\left\{P_{8}\right\} \text { and } \\
l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}
\end{array}\right\} .
$$

Then $\mathbb{K}^{(18)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 4.
Theorem 4.15. $\mathbb{E}^{(18)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 4.

Chapter 2

Classification of 6-ARCS OVER SOME FINITE FIELDS

The principal aim of this chapter is to classify all the projectively distinct 6 -arcs in the projective plane, namely $P G(2, q)$ for $q=17,19,23,29,31$. A great deal of work has been done on classifying the 6 -arcs in the projective plane over the Galois field of order q for $q=2, \ldots, 9$. A detailed account of these results can be found in ([15], Pages 389-413).

This chapter is subdivided into 7 sections as follows: Section 2.1 consists of some preliminary results on Galois fields, projective plane and projective space, and projectivities. Section 2.2 and Section 2.3 deal with some aspects of k-arcs and conics in $P G(2, q)$ for later reference.

Section 2.4, Section 2.5 and Section 2.6 proceeds from the projectively distinct 5 -arcs to the construction of the projectively distinct 6 -arcs and their group of projectivities with the help of a computer program. In Section 2.7 we will give some facts about the blow up of the plane at six points in general position.

2.1 The fundamental theorem of projective geometry

A Galois field is a finite field with $q=p^{h}$ elements, where p is a prime number and h is a natural number. This field is denoted by $G F(q)$ or \mathbb{F}_{q}. The prime number p is called the characteristic of this field and it is also the smallest integer such that $p x=0$ for all x in this field.

Let $f(x)$ be an irreducible polynomial of degree h over \mathbb{F}_{p}, then

$$
G F\left(p^{h}\right)=\mathbb{F}_{p^{h}}=\mathbb{F}_{p}[x] /\langle f(x)\rangle
$$

So

$$
\mathbb{F}_{p^{h}}=\left\{\alpha_{0}+\alpha_{0} t+\ldots+\alpha_{h-1} t^{h-1}: \alpha_{i} \in \mathbb{F}_{p}\right\}
$$

If q is a prime then the elements of \mathbb{F}_{q} can be represented as the residue classes $(\bmod q)$. Therefore,

$$
\mathbb{F}_{q}=\{0,1, \ldots, q-1\}
$$

As an example,

$$
\begin{aligned}
\mathbb{F}_{17} & =\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\} \\
& =\{0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6, \pm 7, \pm 8\}
\end{aligned}
$$

Here the operations addition and multiplication are performed (mod 17).
The elements of $\mathbb{F}_{q}, q=p^{h}$, satisfy,

$$
x^{q}-x=0,
$$

and there exists β in \mathbb{F}_{q} such that

$$
\mathbb{F}_{q}=\left\{0,1, \beta, \ldots, \beta^{q-2}\right\}
$$

where β is called a primitive element or primitive root of \mathbb{F}_{q}.
The $(n+1)$-dimensional vector space $\mathbb{F}^{\oplus n+1}$ over an arbitrary field \mathbb{F} and with origin $\mathbf{0}$ is denoted by $V=V(n+1, \mathbb{F})$. We define an equivalent relation on $V \backslash\{\mathbf{0}\}$ as follows: Let $X, Y \in V \backslash\{\mathbf{0}\}$ and for some basis $X=\left(x_{0}, \ldots, x_{n}\right), Y=\left(y_{0}, \ldots, y_{n}\right)$. Then we say that X is equivalent to Y and we write $X \sim Y$ if there is $t \in \mathbb{F} \backslash\{0\}$ such that $Y=t X$. The equivalence classes of previous relation are just the onedimensional subspaces of V with the origin deleted. The set of equivalence classes is the n-dimensional projective space over \mathbb{F} which is denoted by $P G(n, \mathbb{F})$ or, if $\mathbb{F}=G F(q)$, by $P G(n, q)=\mathbb{P}_{q}^{n}$. That is

$$
P G(n, q)=\frac{V(n+1, q) \backslash\{\mathbf{0}\}}{\sim} .
$$

A subspace of dimension m, or m-space, of $P G(n, \mathbb{F})$ is a set of points all of whose representing vectors form (together with the origin) a subspace of dimension $m+1$ of $V(n+1, \mathbb{F})$. Subspaces of dimension zero, one, two and three are respectively called a point, a line, a plane, and a solid. A subspace of dimension $n-1$ is called a prime or a hyperplane. So a prime is the set of points $P(X)$ whose vectors $X=\left(x_{0}, \ldots, x_{n}\right)$ satisfy an equation $\alpha_{0} x_{0}+\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=0$ where $\alpha_{i} \in \mathbb{F}$. Let Π_{r} denote an r-space and let $\mathbb{F}=G F(q)$. If S and S^{\prime} are two n-dimensional projective spaces, then a collineation $\Sigma: S \rightarrow S^{\prime}$ is a bijection which preserves incidence; that is, if $\Pi_{r} \subseteq \Pi_{s} \subseteq S$ then $\Sigma\left(\Pi_{r}\right) \subseteq \Sigma\left(\Pi_{s}\right) \subseteq S^{\prime}$.

For example, consider the projective plane $P G(2,7)$, and let

$$
\Sigma: P G(2,7) \rightarrow P G(2,7) \text { defined by }\left(x_{0}, x_{1}, x_{2}\right) \mapsto\left(3 x_{2}, x_{0}+3 x_{2}, x_{1}+3 x_{2}\right) .
$$

Then Σ is a collineation which preserves incidence. In fact, Σ is a bijection. Furthermore, Σ maps the line $L:=\mathbb{V}\left(x_{0}-x_{2}\right)$ to the line $\mathbb{V}\left(x_{0}+x_{1}\right)$. Note that $P:=(0: 1: 0) \in \mathbb{V}\left(x_{0}-x_{2}\right)$ and $\Sigma(P)=(0: 0: 1) \in \Sigma(L)=\mathbb{V}\left(x_{0}+x_{1}\right)$.

If the point $P(X)$ is the equivalence class of the vector X, then we will say that X is a vector representing $P(X)$. Then, a projectivity $\Sigma: S \rightarrow S^{\prime}$ is a bijection given by a non-singular matrix T; if $P\left(X^{\prime}\right)=\Sigma\left(P(X)\right.$, then $t X^{\prime}=X T$ where X^{\prime} and X are coordinate vectors for $P\left(X^{\prime}\right)$ and $P(X)$ respectively, and $t \in \mathbb{F} \backslash\{0\}$. Write $\Sigma=M(T)$, then $\Sigma=M(\lambda T)$ for any $\lambda \in \mathbb{F} \backslash\{0\}$.

For instance, the collineation in previous example, namely Σ, is a projectivity and $\Sigma=M(\lambda T)$ where

$$
T=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
3 & 3 & 3
\end{array}\right)
$$

Recall that the projective linear group $\operatorname{PGL}(n, q)$ is the group of projectivities of $\operatorname{PG}(n-1, q)$. The general linear group $G L(n, q)$ is the group of all non-singular matrices of $V(n, q)=V(n, \mathbb{F})$ where $\mathbb{F}=G F(q)$. Write $Z(G)$ for the center of the
group G. Let $Z=Z(G L(n, q))$. Then $Z=\left\{t I_{n}: t \in \mathbb{F} \backslash\{0\}\right\}, I_{n}$ is the identity of $G L(n, q)$. Then $P G L(n, q)$ is isomorphic to $G L(n, q) / Z$.

Theorem 2.1. ([15], Pages 30-31)[The fundamental theorem of projective geometry] Let S be a projective subspace of $P G(n, q)$, then

1. If $\Sigma^{\prime}: S \rightarrow S$ is a collineation, then $\Sigma^{\prime}=\sigma \Sigma$ where σ is an automorphism of the field and Σ is a projectivity. In particular if $\mathbb{F}=G F\left(p^{h}\right)$ and $P\left(X^{\prime}\right)=\Sigma^{\prime}(P(X))$ then there exists m in $\{1,2, \ldots, h\}, t_{i j}$ in \mathbb{F} such that for i, j in $\{0,1,2, \ldots, n\}$, and t in \mathbb{F}_{0} we have

$$
\begin{aligned}
t X^{\prime} & =X^{p^{m}} T \\
\text { where } X^{p^{m}} & =\left(x_{0}^{p^{m}}, \ldots, x_{n}^{p^{m}}\right) \\
\text { and } T & =\left(t_{i j}\right), i, j \in\{0,1,2, \ldots, n\} ; \\
\text { that is, } t x_{i}^{\prime} & =x_{0}^{p^{m}} t_{0 i}+\ldots+x_{n}^{p^{m}} t_{n i}
\end{aligned}
$$

2. If $\left\{P_{1}, \ldots, P_{n+2}\right\},\left\{P_{1}^{\prime}, \ldots, P_{n+2}^{\prime}\right\}$ are sets of $n+2$ points of $P G(n, \mathbb{F})$ such that no $n+1$ points chosen from the same set lie in a prime (or, in the language of k-arcs, the two sets form an $(n+2)$-arc $)$, then there exists a unique projectivity Σ such that $P_{i}^{\prime}=\Sigma\left(P_{i}\right)$, for all i in $\{1,2, \ldots, n+2\}$.

For example, consider the points

$$
P_{1}:=(1: 0: 0), P_{2}:=(0: 1: 0), P_{3}:=(0: 0: 1) \text { and } P_{4}:=(1: 1: 1),
$$

in $P G(2,7)$. The unique projectivity Σ_{i} which respectively maps the points P_{1}, P_{2}, P_{3} and P_{4} into the points $P_{1}^{\prime}:=\Sigma_{i}\left(P_{1}\right), P_{2}^{\prime}:=\Sigma_{i}\left(P_{2}\right), P_{3}^{\prime}:=\Sigma_{i}\left(P_{3}\right)$ and $P_{4}^{\prime}:=\Sigma_{i}\left(P_{4}\right)$ is shown in Table 2.1.

2.2 Projective plane and K-ARCS

Recall from Section 2.1, $P G(n, q)$ is defined as the n-dimensional projective space over $G F(q)$. In $P G(n, q)$ there is principle of duality, that is, there is a dual space

Table 2.1: The unique projectivity Σ_{i}

i	$\Sigma_{i}\left(\left(x_{0}: x_{1}: x_{2}\right)\right)=$	$P_{1}, P_{2}, P_{3}, P_{4} \mapsto$
1	$\left(x_{0}: x_{1}: x_{2}\right)$	$P_{1}, P_{2}, P_{3}, P_{4}$
2	$\left(x_{2}: x_{2}-x_{0}: x_{2}-x_{1}\right)$	$P_{2}, P_{3}, P_{4}, P_{1}$
3	$\left(x_{1}-x_{2}: x_{1}: x_{1}-x_{0}\right)$	$P_{3}, P_{4}, P_{1}, P_{2}$
4	$\left(x_{0}-x_{1}: x_{0}-x_{2}: x_{0}\right)$	$P_{4}, P_{1}, P_{2}, P_{3}$
5	$\left(x_{1}: x_{0}: x_{2}\right)$	$P_{2}, P_{1}, P_{3}, P_{4}$
6	$\left(x_{2}-x_{0}: x_{2}: x_{2}-x_{1}\right)$	$P_{1}, P_{3}, P_{4}, P_{2}$
7	$\left(x_{1}: x_{1}-x_{2}: x_{2}-x_{0}\right)$	$P_{3}, P_{4}, P_{2}, P_{1}$
8	$\left(x_{0}-x_{2}: x_{0}-x_{1}: x_{0}\right)$	$P_{4}, P_{2}, P_{1}, P_{3}$
9	$\left(x_{2}: x_{1}: x_{0}\right)$	$P_{3}, P_{2}, P_{1}, P_{4}$
10	$\left(x_{2}-x_{1}: x_{2}-x_{0}: x_{2}\right)$	$P_{2}, P_{1}, P_{4}, P_{3}$
11	$\left(x_{1}-x_{0}: x_{1}: x_{1}-x_{2}\right)$	$P_{1}, P_{4}, P_{3}, P_{2}$
12	$\left(x_{0}: x_{0}-x_{2}: x_{0}-x_{1}\right)$	$P_{4}, P_{3}, P_{2}, P_{1}$
13	$\left(x_{0}: x_{0}-x_{1}: x_{0}-x_{2}\right)$	$P_{4}, P_{2}, P_{3}, P_{1}$
14	$\left(x_{2}: x_{0}: x_{1}\right)$	$P_{2}, P_{3}, P_{1}, P_{4}$
15	$\left(x_{2}-x_{1}: x_{2}: x_{2}-x_{0}\right)$	$P_{3}, P_{1}, P_{4}, P_{2}$
16	$\left(x_{1}-x_{0}: x_{1}-x_{2}: x_{1}\right)$	$P_{1}, P_{4}, P_{2}, P_{3}$
17	$\left(x_{0}: x_{2}: x_{1}\right)$	$P_{1}, P_{3}, P_{2}, P_{4}$
18	$\left(x_{2}: x_{2}-x_{1}: x_{2}-x_{0}\right)$	$P_{3}, P_{2}, P_{4}, P_{1}$
19	$\left(x_{1}-x_{2}: x_{1}-x_{0}: x_{1}\right)$	$P_{2}, P_{4}, P_{1}, P_{3}$
20	$\left(x_{0}-x_{1}: x_{0}: x_{0}-x_{2}\right)$	$P_{4}, P_{1}, P_{3}, P_{2}$
21	$\left(x_{2}-x_{0}: x_{2}-x_{1}: x_{2}\right)$	$P_{1}, P_{2}, P_{4}, P_{3}$
22	$\left(x_{1}: x_{1}-x_{0}: x_{1}-x_{2}\right)$	$P_{2}, P_{4}, P_{3}, P_{1}$
23	$\left(x_{0}-x_{2}: x_{0}: x_{0}-x_{1}\right)$	$P_{4}, P_{3}, P_{1}, P_{2}$
24	$\left(x_{1}: x_{2}: x_{0}\right)$	$P_{3}, P_{1}, P_{2}, P_{4}$

$P G(n, q)^{*}$ whose points and primes are respectively the primes and points of $P G(n, q)$. For any theorem true in $P G(n, q)$, there is an equivalent theorem true in $P G(n, q)^{*}$. In particular, if \mathbf{T} is a theorem in $P G(n, q)$ stated in terms of points, primes, and incidence, the same theorem is true in $P G(n, q)^{*}$ and gives a dual theorem \mathbf{T}^{*} in $P G(n, q)$ by interchanging (point) and (prime) whenever they occur. Thus (join) and (meet) are dual. Hence the dual of an r-space in $P G(n, q)$ is an $(n-r-1)$-space.

In particular, in $P G(2, q)$, point and line are dual; in the projective space $\operatorname{PG}(3, q)$ point and plane are dual, whereas the dual of a line is a line in 3-dimensional projective space ([15], Page 31).

In the projective plane $P G(2, q)$, each point P is joined to the remaining points
by a pencil which consists of $q+1$ lines; each of these lines contains P and q other points. Hence the plane contains

$$
q(q+1)+1=q^{2}+q+1
$$

points, and by duality a plane contains $q^{2}+q+1$ lines. The integer q is called the order of the plane.

A set \mathcal{K} of $r>3$ points in a finite projective plane such that no three of them are collinear is called an r-arc. A line containing exactly one point of \mathcal{K} is called a tangent or a unisecant of \mathcal{K}. A line containing two points of \mathcal{K} is called a bisecant of \mathcal{K}, and a line that does not contain any points of \mathcal{K} will be called an exterior line of \mathcal{K}.

For example, in $P G(2,7)$, the bisecants, the tangents and the exterior lines of a 4-arc, namely

$$
\mathcal{K}:=\{(1: 0: 0),(0: 1: 0),(0: 0: 1),(1: 1: 1)\}
$$

are shown in Table2.2.
An r-arc containing $q+1$ points for q odd and $q+2$ points for q even, is called an oval.

A subset \mathscr{V} of $P G(n, q)$ is a variety over $G F(q)$ if there exist homogenous polynomials F_{1}, \ldots, F_{m} in $G F(q)\left[x_{0}, \ldots, x_{n}\right]$ such that

$$
\begin{aligned}
\mathscr{V} & =\left\{P(A) \in P G(n, q): F_{1}(A)=\ldots=F_{m}(A)=0\right\} \\
& :=\mathbb{V}\left(F_{1}, \ldots, F_{m}\right)
\end{aligned}
$$

where $G F(q)\left[x_{0}, \ldots, x_{n}\right]$ is the polynomial ring in x_{0}, \ldots, x_{n} over $G F(q)$ and the points $P(A)$ are the points of \mathscr{V}.

A variety $\mathbb{V}(F)$ determined by one homogenous polynomial is called a hypersurface. A hypersurface in $\operatorname{PG}(2, q)$ is called a curve, and hypersurface in $P G(3, q)$ is called a surface. The degree of a hypersurface is the degree of F.

Table 2.2: The bisecants, tangents and exterior lines of a 4-arc \mathcal{K}

lines of \mathcal{K}		tangents of \mathcal{K}	bisecants of \mathcal{K}
$\mathbb{V}\left(x_{0}+x_{1}+x_{2}\right)$	$\mathbb{V}\left(x_{0}-x_{1}-3 x_{2}\right)$	$\mathbb{V}\left(x_{0}+3 x_{1}\right)$	$\mathbb{V}\left(x_{0}\right)$
$\mathbb{V}\left(x_{0}-x_{1}-x_{2}\right)$	$\mathbb{V}\left(x_{0}-3 x_{1}-2 x_{2}\right)$	$\mathbb{V}\left(x_{1}+3 x_{2}\right)$	$\mathbb{V}\left(x_{1}\right)$
$\mathbb{V}\left(x_{0}+3 x_{1}-x_{2}\right)$	$\mathbb{V}\left(x_{0}+2 x_{1}-2 x_{2}\right)$	$\mathbb{V}\left(x_{0}+x_{1}-2 x_{2}\right)$	$\mathbb{V}\left(x_{2}\right)$
$\mathbb{V}\left(x_{0}+2 x_{1}+2 x_{2}\right)$	$\mathbb{V}\left(x_{0}+2 x_{1}+3 x_{2}\right)$	$\mathbb{V}\left(x_{0}+2 x_{2}\right)$	$\mathbb{V}\left(x_{0}-x_{2}\right)$
$\mathbb{V}\left(x_{0}+3 x_{1}+x_{2}\right)$	$\mathbb{V}\left(x_{0}-2 x_{1}+2 x_{2}\right)$	$\mathbb{V}\left(x_{0}-3 x_{1}+2 x_{2}\right)$	$\mathbb{V}\left(x_{0}-x_{1}\right)$
$\mathbb{V}\left(x_{1}-x_{2}\right)$	$\mathbb{V}\left(x_{0}-x_{1}-2 x_{2}\right)$	$\mathbb{V}\left(x_{0}-3 x_{2}\right)$	$\mathbb{V}\left(x_{0}+x_{1}+x_{2}\right)$
$\mathbb{V}\left(x_{0}-x_{1}+x_{2}\right)$	$\mathbb{V}\left(x_{0}+x_{1}-x_{2}\right)$	$\mathbb{V}\left(x_{0}+2 x_{1}-3 x_{2}\right)$	
$\mathbb{V}\left(x_{0}-x_{1}+3 x_{2}\right)$	$\mathbb{V}\left(x_{0}-2 x_{1}-x_{2}\right)$	$\mathbb{V}\left(x_{0}-3 x_{1}\right)$	
$\mathbb{V}\left(x_{0}-2 x_{1}-3 x_{2}\right)$	$\mathbb{V}\left(x_{0}+3 x_{1}-3 x_{2}\right)$	$\mathbb{V}\left(x_{1}-3 x_{2}\right)$	
$\mathbb{V}\left(x_{0}-3 x_{1}+x_{2}\right)$	$\mathbb{V}\left(x_{0}-3 x_{1}+3 x_{2}\right)$	$\mathbb{V}\left(x_{0}-2 x_{2}\right)$	
$\mathbb{V}\left(x_{0}+x_{1}+3 x_{2}\right)$	$\mathbb{V}\left(x_{0}-2 x_{1}+3 x_{2}\right)$	$\mathbb{V}\left(x_{0}+3 x_{2}\right)$	
$\mathbb{V}\left(x_{0}-2 x_{1}-2 x_{2}\right)$	$\mathbb{V}\left(x_{0}+x_{1}+2 x_{2}\right)$	$\mathbb{V}\left(x_{0}-2 x_{1}+x_{2}\right)$	
$\mathbb{V}\left(x_{0}+2 x_{1}-x_{2}\right)$		$\mathbb{V}\left(x_{0}+2 x_{1}\right)$	
$\mathbb{V}\left(x_{0}+3 x_{1}-2 x_{2}\right)$		$\mathbb{V}\left(x_{1}+2 x_{2}\right)$	
$\mathbb{V}\left(x_{0}+x_{1}-3 x_{2}\right)$	$\mathbb{V}\left(x_{0}-3 x_{1}-3 x_{2}\right)$		$\mathbb{V}\left(x_{0}+x_{1}\right)$
$\mathbb{V}\left(x_{0}-3 x_{1}-x_{2}\right)$	$\mathbb{V}\left(x_{1}+x_{2}\right)$		
$\mathbb{V}\left(x_{0}+3 x_{1}+2 x_{2}\right)$	$\mathbb{V}\left(x_{0}+2 x_{1}+x_{2}\right)$		$\mathbb{V}\left(x_{0}+3 x_{1}+3 x_{2}\right)$

2.3 Quadrics and conics

A hypersurface of degree two in $P G(n, q)$ is called a quadric. Let \mathscr{Q} be a quadric. Then $\mathscr{Q}=\mathbb{V}(Q)$ where Q is a quadratic form; that is,

$$
\begin{aligned}
Q & =\sum_{i, j=0}^{n} a_{i j} x_{i} x_{j} \\
& =a_{00} x_{0}^{2}+a_{01} x_{0} x_{1}+\ldots
\end{aligned}
$$

When $p \neq 2$, write $t_{i j}=t_{j i}=\left(a_{i j}+a_{j i}\right) / 2$. Therefore

$$
\begin{aligned}
Q & =\sum_{i, j=0}^{n} t_{i j} x_{i} x_{j} \\
& =X T X^{*} \text { where } T=\left(t_{i j}\right) .
\end{aligned}
$$

If there is a change of coordinate system which reduces the form into a form of fewer variables, then the form is called degenerate. So a quadric is degenerate if and only if it is singular.

Theorem 2.2. ([15], Pages 106-107) In $P G(n, q)$, the number of projectively distinct non-singular quadrics is one or two as n is even or odd. They have the following canonical forms.

1. $n=2 m, m \geq 0$:

$$
\mathscr{P}_{2 m}=\mathbb{V}\left(x_{0}^{2}+x_{1} x_{2}+x_{3} x_{4}+\ldots+x_{2 m-1} x_{2 m}\right)
$$

2. $n=2 m-1, m \geq 1$:

$$
\begin{aligned}
\mathscr{H}_{2 m-1} & =\mathbb{V}\left(x_{0} x_{1}+x_{2} x_{3}+\ldots+x_{2 m-2} x_{2 m-1}\right) \\
\mathscr{E}_{2 m-1} & =\mathbb{V}\left(f\left(x_{0}, x_{1}\right)+x_{2} x_{3}+x_{4} x_{5}+\ldots+x_{2 m-2} x_{2 m-1}\right),
\end{aligned}
$$

where f is any irreducible binary quadratic form. The quadrics $\mathscr{P}_{2 m}, \mathscr{H}_{2 m-1}$ and $\mathscr{E}_{2 m-1}$ are called parabolic, hyperbolic and elliptic respectively.

When $m=1$ in the above theorem, \mathscr{P}_{2} is a conic.
Let $Q:=Q(2, q)$ be the set of quadrics in $P G(2, q)$. Then
$Q=\left\{\mathbb{V}(F): F=a_{00} x_{0}^{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{01} x_{0} x_{1}+a_{02} x_{0} x_{2}+a_{12} x_{1} x_{2} ; a_{i j} \in \mathbb{F}_{q}\right\}$.

So the number of quadrics in $P G(2, q)$ is

$$
|Q(2, q)|:=\theta(5, q)=\frac{q^{6}-1}{q-1}=q^{5}+q^{4}+q^{3}+q^{2}+q+1
$$

The quadric $\mathbb{V}(F)$ is a conic when it is non-singular. The $\theta(5, q)$ quadrics of $Q(2, q)$ fall into four orbits under the projective general linear group, $\operatorname{PGL}(3, q)$ as follows:

1. Singular F :
a) $\mathbb{V}(F)=\mathbb{V}\left(x_{0}^{2}\right)$,
b) $\mathbb{V}(F)=\mathbb{V}\left(x_{0} x_{1}\right)$,
c) $\mathbb{V}(F)=\mathbb{V}\left(x_{0}^{2}+\alpha x_{0} x_{1}+\beta x_{1}^{2}\right)$;
2. Non-singular, $\mathbb{V}(F)=\mathbb{V}\left(x_{0}^{2}+x_{1} x_{2}\right)$.

Case (a) is a double line, the number of which is $q^{2}+q+1$. Case (b) is a pair of distinct lines defined over $G F(q)$, the number of which is $q(q+1)\left(q^{2}+q+1\right) / 2$. Case (c) is a pair of lines defined over $G F\left(q^{2}\right)$ whose point of intersection is defined over $G F(q)$, the number of which is $q(q-1)\left(q^{2}+q+1\right) / 2$. So the total number of reducible conics is $\left(q^{2}+q+1\right)\left(q^{2}+1\right)$. Hence the number of irreducible conics is

$$
\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)-\left(\left(q^{2}+q+1\right)\left(q^{2}+1\right)\right)=q^{5}-q^{2}
$$

which is the number of conics in orbit (2). Each conic contains $q+1$ points. Note that no 3 points of these $q+1$ points are collinear.

A conic is determined by the ratios of the coefficients $\left(a_{00}, a_{11}, a_{22}, a_{01}, a_{02}, a_{12}\right)$. Here is some important results on conics which can be found in ([15], Pages 140-143):

1. Denote the number of n-arcs by $L(n, q)$, and let N be the number of conics which are $(q+1)$-arcs, then

$$
N=L(5, q) /\binom{q+1}{5}=q^{5}-q^{2}
$$

So all irreducible conics comprise $q+1$ points.
2. The number of 6 -arcs in $P G(2, q)$ which do not lie on a conic is equal to

$$
L(5, q)\left(\ell^{*}(5, q)-(q-4)\right) / 6
$$

where $\ell^{*}(n, q)$ denotes the number points which are not on any bisecants of n-arcs in $P G(2, q)$.
3. If $\mathscr{F}=\mathbb{V}(F)=\mathbb{V}\left(a_{00} x_{0}^{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{01} x_{0} x_{1}+a_{02} x_{0} x_{2}+a_{12} x_{1} x_{2}\right)$, then \mathscr{F} is singular if and only if $\Delta=0$, where

$$
\Delta=4 a_{00} a_{11} a_{22}+a_{01} a_{02} a_{12}-a_{00} a_{12}^{2}-a_{11} a_{02}^{2}-a_{22} a_{01}^{2} .
$$

\mathscr{F} is singular at $Q=P\left(y_{0}, y_{1}, y_{2}\right)$ if

$$
\frac{\partial F}{\partial x_{0}}=\frac{\partial F}{\partial x_{1}}=\frac{\partial F}{\partial x_{2}}=0 \text { at } Q
$$

4. In $P G(2, q)$ with $q \geq 4$ there is a unique conic through a 5 -arc.
5. If a conic contains at least one point, it contains exactly $q+1$.
6. Every conic in $P G(2, q)$ is a $(q+1)$-arc.

2.4 Construction of 6 -ARCS

By the definition of a r-arc, given a 5 -arc \mathcal{F}, a 6 -arc is constructed by adding a point to \mathcal{F} which is not on any bisecant of \mathcal{F}. The 6 -arcs constructed in this way are not necessarily all projectively distinct. However, in this chapter we give all the projectively distinct 6 -arcs and their groups of projectivities. Moreover, we will distinguish between the ones that lie on a conic and the ones that do not lie on a conic.

Let $\mathcal{S}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ be a 6 -arc in $P G(2, q)$. If the three lines $\overline{P_{i} P_{j}}, \overline{P_{k} P_{l}}$ and $\overline{P_{m} P_{n}}, i \neq j \neq k \neq l \neq m \neq n$, meet at a point B, then B is called a Brianchon point, or a B-point for short. We write

$$
(i j, k l, m n)=\overline{P_{i} P_{j}} \cap \overline{P_{k} P_{l}} \cap \overline{P_{m} P_{n}}
$$

for a B-point. Thus there are the following 15 possibilities for the Brianchon point B, namely:

$$
\begin{array}{lll}
1 .(12,34,56) & 6 \cdot(13,26,45) & 11 \cdot(15,24,36) \\
\text { 2. }(12,35,46) & 7 \cdot(14,23,56) & 12 \cdot(15,26,34) \\
3 .(12,36,45) & 8 \cdot(14,25,36) & 13 \cdot(16,23,45) \\
\text { 4. }(13,24,56) & 9 \cdot(14,26,35) & 14 \cdot(16,24,35) \\
\text { 5. }(13,25,46) & 10 .(15,23,46) & 15 \cdot(16,25,34) .
\end{array}
$$

Definition 2.1. For an k-arc \mathcal{K} in $P G(2, q)$ we define the isotropy subgroup of \mathcal{K} as follows:

$$
G(\mathcal{K}):=\operatorname{PGL}_{3}(q)_{\mathcal{K}}=\left\{\gamma \in \operatorname{PGL}_{3}(q): \gamma(\mathcal{K})=\mathcal{K}\right\}
$$

Moreover, two n-arcs \mathcal{K} and \mathcal{K}^{\prime} in $P G(2, q)$ are said to be projectively equivalent if $\operatorname{PGL}_{3}(q)_{\mathcal{K}} \cong \mathrm{PGL}_{3}(q)_{\mathcal{K}^{\prime}}$.

Now, let \mathcal{F} be a 5 -arc in $\operatorname{PG}(2, q)$. According to our computer program (see Algorithm 2 in appendix), we have the set of c_{0} points $Q_{i}, i=1, \ldots, c_{0}$ which are on no bisecant of the 5 -arc \mathcal{F}. Note that the set $S=\left\{\mathcal{S}_{i}:=\mathcal{F} \cup\left\{Q_{i}\right\}: i=1, \ldots, c_{0}\right\}$ forms a collection of 6 -arcs in $P G(2, q)$. Let $\mathcal{S}_{i}, \mathcal{S}_{j} \in S$, and let $G\left(\mathcal{S}_{i}\right):=\mathrm{PGL}_{3}(q)_{\mathcal{S}_{i}}, G\left(\mathcal{S}_{j}\right):=$ $\mathrm{PGL}_{3}(q)_{\mathcal{S}_{j}}$. Then $\mathcal{S}_{i}, \mathcal{S}_{j}$ are projectively equivalent if $G\left(\mathcal{S}_{i}\right) \cong G\left(\mathcal{S}_{i}\right)$, otherwise we say $\mathcal{S}_{i}, \mathcal{S}_{j}$ are projectively distinct.

Henceforth, we write 1, 2, 3, and $\mathbf{4}$ to denote the points, namely (1:0:0), 0 : $1: 0),(0: 0: 1)$, and (1:1:1) respectively. By using our computer program (see Algorithm 1 in appendix), we get all the projectively distinct 5-arcs in $P G(2, q)$ for $q=17,19,23,29,31$, as shown in tables, namely Table 2.1, Table 2.2, Table 2.3, Table 2.4, and Table 2.5.

For example, let us consider the 4 -arc $\mathcal{A}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}\}$ in $P G(2,17)$. The number of points which do not lie on any bisecant of \mathcal{A} is $\ell^{*}(4, q)=(q-2)(q-3)=210$. These points partitioned into two sets, namely \mathcal{B} and \mathcal{B}^{\prime} such that $G(\mathcal{A} \cup\{Q\}) \cong \mathbb{Z} /(2)$ for any $Q \in \mathcal{B}$ and $G\left(\mathcal{A} \cup\left\{Q^{\prime}\right\}\right) \cong \mathbb{Z} /(4)$ for any $Q^{\prime} \in \mathcal{B}^{\prime}$ where the points of \mathcal{B}^{\prime} are shown Table2.3.

Table 2.3: Points of \mathcal{B}^{\prime}

$(1: 7: 9)$	$(1: 11: 4)$	$(1: 16: 13)$	$(1: 14: 2)$	$(1: 14: 13)$	$(1: 4: 16)$	$(1: 13: 7)$	$(1: 2: 14)$
$(1: 4: 13)$	$(1: 13: 4)$	$(1: 7: 14)$	$(1: 9: 7)$	$(1: 5: 4)$	$(1: 11: 9)$	$(1: 14: 5)$	$(1: 13: 16)$
$(1: 9: 11)$	$(1: 16: 4)$	$(1: 7: 11)$	$(1: 5: 11)$	$(1: 2: 5)$	$(1: 11: 5)$	$(1: 13: 14)$	$(1: 7: 13)$
$(1: 11: 7)$	$(1: 14: 7)$	$(1: 5: 2)$	$(1: 5: 14)$	$(1: 4: 11)$	$(1: 4: 5)$		

and the points the of \mathcal{B} are shown Table2.4.

If we denote to the points $(1: 7: 10)$ and $(1: 7: 9)$ by 6 and 7 respectively, we

Table 2.4: Points of \mathcal{B}

$(1: 7: 10)$	$(1: 2: 8)$	$(1: 10: 14)$	$(1: 15: 5)$	$(1: 13: 11)$	$(1: 8: 7)$	$(1: 12: 4)$	$(1: 16: 11)$	$(1: 8: 11)$
$(1: 11: 13)$	$(1: 3: 6)$	$(1: 11: 14)$	$(1: 15: 2)$	$(1: 14: 9)$	$(1: 2: 15)$	$(1: 5: 9)$	$(1: 2: 6)$	$(1: 3: 16)$
$(1: 10: 2)$	$(1: 14: 12)$	$(1: 6: 3)$	$(1: 4: 2)$	$(1: 3: 12)$	$(1: 6: 16)$	$(1: 9: 15)$	$(1: 9: 16)$	$(1: 9: 5)$
$(1: 10: 15)$	$(1: 5: 7)$	$(1: 12: 5)$	$(1: 13: 9)$	$(1: 15: 12)$	$(1: 6: 8)$	$(1: 10: 4)$	$(1: 16: 15)$	$(1: 15: 3)$
$(1: 6: 4)$	$(1: 16: 6)$	$(1: 11: 8)$	$(1: 10: 7)$	$(1: 12: 9)$	$(1: 2: 13)$	$(1: 3: 5)$	$(1: 13: 3)$	$(1: 4: 6)$
$(1: 4: 3)$	$(1: 3: 9)$	$(1: 2: 4)$	$(1: 16: 14)$	$(1: 15: 4)$	$(1: 16: 5)$	$(1: 13: 6)$	$(1: 11: 12)$	$(1: 6: 5)$
$(1: 16: 9)$	$(1: 5: 10)$	$(1: 15: 14)$	$(1: 15: 7)$	$(1: 12: 13)$	$(1: 3: 8)$	$(1: 10: 12)$	$(1: 10: 13)$	$(1: 3: 4)$
$(1: 6: 13)$	$(1: 3: 13)$	$(1: 3: 7)$	$(1: 8: 10)$	$(1: 7: 15)$	$(1: 5: 12)$	$(1: 6: 9)$	$(1: 2: 7)$	$(1: 12: 6)$
$(1: 14: 8)$	$(1: 10: 9)$	$(1: 2: 11)$	$(1: 8: 15)$	$(1: 5: 16)$	$(1: 12: 15)$	$(1: 5: 15)$	$(1: 16: 8)$	$(1: 10: 8)$
$(1: 11: 16)$	$(1: 9: 4)$	$(1: 14: 10)$	$(1: 11: 10)$	$(1: 7: 16)$	$(1: 9: 6)$	$(1: 11: 6)$	$(1: 2: 12)$	$(1: 6: 11)$
$(1: 2: 9)$	$(1: 2: 3)$	$(1: 4: 7)$	$(1: 12: 11)$	$(1: 12: 10)$	$(1: 7: 5)$	$(1: 16: 10)$	$(1: 7: 12)$	$(1: 6: 2)$
$(1: 8: 14)$	$(1: 15: 11)$	$(1: 8: 4)$	$(1: 16: 2)$	$(1: 9: 3)$	$(1: 8: 12)$	$(1: 6: 7)$	$(1: 12: 16)$	$(1: 9: 12)$
$(1: 6: 14)$	$(1: 3: 10)$	$(1: 7: 2)$	$(1: 12: 2)$	$(1: 14: 4)$	$(1: 16: 7)$	$(1: 12: 7)$	$(1: 12: 14)$	$(1: 15: 16)$
$(1: 14: 16)$	$(1: 8: 13)$	$(1: 9: 10)$	$(1: 7: 4)$	$(1: 16: 3)$	$(1: 4: 15)$	$(1: 4: 10)$	$(1: 7: 8)$	$(1: 10: 5)$
$(1: 13: 10)$	$(1: 8: 16)$	$(1: 9: 14)$	$(1: 15: 8)$	$(1: 10: 3)$	$(1: 4: 14)$	$(1: 15: 6)$	$(1: 11: 15)$	$(1: 8: 2)$
$(1: 4: 9)$	$(1: 13: 8)$	$(1: 10: 16)$	$(1: 9: 13)$	$(1: 3: 2)$	$(1: 14: 6)$	$(1: 15: 13)$	$(1: 3: 14)$	$(1: 15: 9)$
$(1: 15: 10)$	$(1: 7: 6)$	$(1: 11: 3)$	$(1: 2: 10)$	$(1: 3: 15)$	$(1: 5: 13)$	$(1: 3: 11)$	$(1: 8: 5)$	$(1: 13: 12)$
$(1: 5: 8)$	$(1: 10: 11)$	$(1: 8: 3)$	$(1: 4: 8)$	$(1: 6: 10)$	$(1: 7: 3)$	$(1: 13: 15)$	$(1: 14: 15)$	$(1: 5: 6)$
$(1: 8: 6)$	$(1: 9: 8)$	$(1: 12: 8)$	$(1: 4: 12)$	$(1: 12: 3)$	$(1: 13: 5)$	$(1: 16: 12)$	$(1: 11: 2)$	$(1: 10: 6)$
$(1: 8: 9)$	$(1: 14: 11)$	$(1: 6: 12)$	$(1: 9: 2)$	$(1: 13: 2)$	$(1: 14: 3)$	$(1: 2: 16)$	$(1: 6: 15)$	$(1: 5: 3)$

get the projectively distinct 5 -arcs, namely

$$
\begin{aligned}
& \mathcal{F}_{1}=\{\mathbf{1}, 2,3,4,6\} \\
& \mathcal{F}_{2}=\{\mathbf{1}, 2,3,4,7\}
\end{aligned}
$$

The group of projectivities of \mathcal{F}_{1} consists of two elements, namely

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
-3 & -8 & -6 \\
0 & -8 & -8 \\
0 & -8 & 8
\end{array}\right)
$$

The group of projectivities of \mathcal{F}_{2} consists of 4 elements, namely

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
2 & 0 & -2 \\
-3 & 3 & 0 \\
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 2 \\
-1 & 4 & -3 \\
-1 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 6 & 1 \\
8 & 0 & 1
\end{array}\right)
$$

Thus we have two projectively distinct 5 -arcs (see Table 2.5).
A 6 -arc is constructed by adding a point to a $5-\operatorname{arc} \mathcal{F}_{i}$ which is not on any bisecant of \mathcal{F}_{i}. In fact, the 6 -arcs constructed in this manner are not necessarily all projectively distinct. However, we will give all projectively distinct 6 -arcs in the next section.

Table 2.5: Projectively distinct 5 -arcs in $P G(2,17)$

\mathcal{F}_{i} in $P G(2,17)$	$\left\|G\left(\mathcal{F}_{i}\right)\right\|$	$G\left(\mathcal{F}_{i}\right)$
$\mathcal{F}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{F}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{7}\}$	4	$\mathbb{Z} /(4)$

where $\mathbf{6}=(1: 7:-7)$, and $\mathbf{7}=(1: 7:-8)$.
Table 2.6: Projectively distinct 5-arcs in $\operatorname{PG}(2,19)$

\mathcal{F}_{i} in $P G(2,19)$	$\left\|G\left(\mathcal{F}_{i}\right)\right\|$	$G\left(\mathcal{F}_{i}\right)$
$\mathcal{F}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{F}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{7}\}$	1	Trivial
$\mathcal{F}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 3}\}$	10	D_{5}
$\mathcal{F}_{4}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{4 8}\}$	6	\mathfrak{S}_{3}

where $\mathbf{6}=(1:-5:-8), \mathbf{7}=(1:-5:-7), \mathbf{1 3}=(1:-5: 6)$, and $\mathbf{4 8}=(1: 8: 7)$.
Table 2.7: Projectively distinct 5 -arcs in $\operatorname{PG}(2,23)$

\mathcal{F}_{i} in $P G(2,23)$	$\left\|G\left(\mathcal{F}_{i}\right)\right\|$	$G\left(\mathcal{F}_{i}\right)$
$\mathcal{F}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{F}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 1}\}$	1	Trivial

where $\mathbf{6}=(1: 9:-10), \mathbf{1 1}=(1:-1:-5)$.
Table 2.8: Projectively distinct 5-arcs in $\operatorname{PG}(2,29)$

\mathcal{F}_{i} in $P G(2,29)$	$\left\|G\left(\mathcal{F}_{i}\right)\right\|$	$G\left(\mathcal{F}_{i}\right)$
$\mathcal{F}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{F}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{7}\}$	1	Trivial
$\mathcal{F}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{2 5}\}$	4	$\mathbb{Z} /(4)$
$\mathcal{F}_{4}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 8 5}\}$	10	D_{5}

where $\mathbf{6}=(1: 11:-13), \mathbf{7}=(1: 11:-5), \mathbf{2 5}=(1:-1:-12), \mathbf{1 8 5}=(1: 5:-4)$.
Table 2.9: Projectively distinct 5-arcs in $P G(2,31)$

\mathcal{F}_{i} in $P G(2,31)$	$\left\|G\left(\mathcal{F}_{i}\right)\right\|$	$G\left(\mathcal{F}_{i}\right)$
$\mathcal{F}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{F}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{7}\}$	1	Trivial
$\mathcal{F}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{8 8}\}$	10	D_{10}
$\mathcal{F}_{4}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 2 1}\}$	6	\mathfrak{S}_{3}

where $\mathbf{6}=(1: 9:-9), \mathbf{7}=(1: 9: 11), \mathbf{8 8}=(1:-12:-11), \mathbf{1 2 1}=(1: 5:-6)$.

Theorem 2.3. There are respectively $2,4,2,4$ and 4 projectively distinct 5 -arcs in $P G(2, q)$ for $q=17,19,23,29,31$.

Proof. Our program used in this section have been used to prove the theorem. The projectively distinct 5 -arcs in $P G(2, q)$ with their automorphism groups, where $q=$ $17,19,23,29$ and 31, are shown in Table 2.5, Table 2.6, Table 2.7, Table 2.8 and Table 2.9 respectively.

2.5 The projectively distinct 6-ARCS

In this section, we will give the arithmetic method used in the computer program for determining the projectively distinct 6 -arcs in $P G(2, q)$ for $q=17,19,23,29,31$, and their groups of projectivities (see Algorithm 2 in appendix).

Let $P G(2, q)$ be the 2-dimensional projective space over a field $G F(q)$ where q odd. We consider 6 -arcs with the same number of B-points since any two 6 -arcs with different numbers of B-points are projectively distinct.

Let $\mathcal{S}=\left\{X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\}$ and $\mathcal{S}^{\prime}=\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}, Y_{5}, Y_{6}\right\}$ be two 6-arcs, where the coordinates of the points X_{i} and Y_{i} are

$$
\begin{aligned}
X_{i} & =\left(x_{i}(0), x_{i}(1), x_{i}(2)\right) \\
\text { and } Y_{i} & =\left(y_{i}(0), y_{i}(1), y_{i}(2)\right) .
\end{aligned}
$$

Let \mathcal{S} and \mathcal{S}^{\prime} have the same number of B-points. Then according to the fundamental theorem of projective geometry, there exists a unique projectivity which takes any set of four points of the 6 -arc \mathcal{S} to a set of four points of \mathcal{S}^{\prime}. Let the 3×3 matrix be $A=\left(a_{i j}\right), i, j=1,2,3$, take a fixed set of four points of the 6 -arcs \mathcal{S}, namely $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ to any set of four points of \mathcal{S}^{\prime}, namely $\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}\right\}$. The 6 -arcs \mathcal{S} and \mathcal{S}^{\prime} are said to be projectively equivalent if $A X_{i}=Y_{j}, i, j=5,6$; that is if the 3×3 projectivity matrix A takes the fifth point X_{5} and sixth point X_{6} of \mathcal{S} to the
corresponding points of \mathcal{S}^{\prime}, namely the points Y_{5}, and Y_{6}. The following conditions must be satisfied for \mathcal{S} and \mathcal{S}^{\prime} to be projectively equivalent:

1. if $A\left(X_{5}\right)=Y_{5}$, then we must have $A\left(X_{6}\right)=Y_{6}$;
2. if $A\left(X_{5}\right)=Y_{6}$, then we must have $A\left(X_{6}\right)=Y_{5}$.

To determine A, we fix a set of four points of \mathcal{S}. Then we work out the projectivity matrix A^{\prime} that takes the fixed set of four points of \mathcal{S} to one of $\binom{6}{4} \cdot(4!)$ set of four points of \mathcal{S}^{\prime}. Note that there are $\binom{6}{4}=15$ sets of four points, each of which has 4 ! unordered sets of four points. Therefore there are 360 matrices A^{\prime} to be checked. Now A^{\prime} is the projectivity matrix A if the conditions (1) and (2) above are satisfied for the two remaining points of \mathcal{S} and \mathcal{S}^{\prime}.

At this stage of our research the help of a computer was needed. For this a program was written in Fortran to classify all 6 -arcs in $P G(2, q)$ for $q=17,19,23,29,31$.

The following is the matrix arithmetic to determine the matrix A^{\prime}.
Let

$$
\mathcal{X}=\left(\begin{array}{lll}
x_{1}(0) & x_{2}(0) & x_{3}(0) \\
x_{1}(1) & x_{2}(1) & x_{3}(1) \\
x_{1}(2) & x_{2}(2) & x_{3}(2)
\end{array}\right) \quad \text { and } \quad \mathcal{Y}=\left(\begin{array}{lll}
y_{1}(0) & y_{2}(0) & y_{3}(0) \\
y_{1}(1) & y_{2}(1) & y_{3}(1) \\
y_{1}(2) & y_{2}(2) & y_{3}(2)
\end{array}\right)
$$

Now the (3×3) matrix A^{\prime} is such that it takes three points X_{i} of \mathcal{S} to three points Y_{i} of \mathcal{S}^{\prime}, when $i=1,2,3$. So

$$
A^{\prime} \mathcal{X}=\mathcal{Y}\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right)^{t}
$$

Thus

$$
A^{\prime}=\mathcal{Y}\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \tag{2.5.1}
\end{array}\right)^{t} \mathcal{X}^{-1}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3} \in G F(q) \backslash\{0\}$. The matrix A^{\prime} also has to take the fourth points $A^{\prime}\left(X_{4}\right)=Y_{4}$. So Equation (2.5.1) gives

$$
\mathcal{Y}\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \tag{2.5.2}
\end{array}\right)^{t} \mathcal{X}^{-1} X_{4}=Y_{4}
$$

Let

$$
\mathcal{X}^{-1} X_{4}=\left(\begin{array}{lll}
\gamma_{1} & \gamma_{2} & \gamma_{3}
\end{array}\right)^{t}
$$

where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in G F(q) \backslash\{0\}$, and let

$$
\Gamma=\left(\begin{array}{ccc}
\gamma_{1} & 0 & 0 \\
0 & \gamma_{2} & 0 \\
0 & 0 & \gamma_{3}
\end{array}\right)
$$

Thus Equation (2.5.2) can be written as

$$
\mathcal{Y} \Gamma\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right)^{t}=Y_{4} .
$$

So

$$
\left(\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right)^{t}=\Gamma^{-1} \mathcal{Y}^{-1} Y_{4} .
$$

Substituting the values of λ_{i} in Equation (2.5.1), we will have the matrix A^{\prime}.
There is also a program that checks whether or not the two remaining points of each 6-arc are mapped to each other under the matrix A^{\prime}.

Let $L(6, q)$ denotes the number of 6 -arcs in $P G(2, q)$, and let $G\left(\mathcal{S}_{i}\right)$ denotes the group of projectivities of the corresponding 6 -arc \mathcal{S}_{i}.

In the tables, namely Table 2.17, Table 2.18, Table 2.19, Table 2.20, and Table 2.21, all the 6 -arcs \mathcal{S} in $P G(2, q)$ for $q=17,19,23,29,31$ are classified up to their groups of projectivities, and the number of 6 -arcs, $L(6, q)$ for $q=17,19,23,29,31$, are indicated.

For example, let us consider the 5 -arc $\mathcal{F}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}\}$ in $P G(2,17)$. The number of points which do not lie on any bisecant of \mathcal{F}_{1} is $\ell^{*}(5, q)=(q-4)(q-5)+1=$ 157. These points partitioned into seven sets, namely $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, \mathcal{B}_{5}, \mathcal{B}_{6}$ and \mathcal{B}_{7} such that

$$
\begin{aligned}
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong I \text { for every } Q \in \mathcal{B}_{1} \\
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong \mathbb{Z} /(2) \text { for every } Q \in \mathcal{B}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong \mathbb{Z} /(2) \times \mathbb{Z} /(2) \text { for every } Q \in \mathcal{B}_{3} \\
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong \mathbb{Z} /(3) \text { for every } Q \in \mathcal{B}_{4} \\
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong \mathbb{Z} /(4) \text { for every } Q \in \mathcal{B}_{5} \\
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong \mathfrak{S}_{3} \text { for every } Q \in \mathcal{B}_{6} \\
& G\left(\mathcal{F}_{1} \cup\{Q\}\right) \cong \mathfrak{A}_{3} \text { for every } Q \in \mathcal{B}_{7}
\end{aligned}
$$

where \mathfrak{S}_{3} denotes the symmetric group on 3 letters, and \mathfrak{A}_{3} denotes the alternating group on 3 letters. In fact, the points of \mathcal{B}_{2} are shown in Table 2.10.

Table 2.10: Points of \mathcal{B}_{2}

$(1: \mathbf{1 3 : 1 1)}$	$(1: 12: 4)$	$(1: 16: 13)$	$(1: 3: 16)$	$(1: 14: 2)$	$(1: 9: 15)$	$(1: 9: 5)$	$(1: 13: 7)$	$(1: 4: 6)$
$(1: 15: 14)$	$(1: 15: 7)$	$(1: 10: 12)$	$(1: 10: 13)$	$(1: 16: 12)$	$(1: 8: 12)$	$(1: 6: 14)$	$(1: 14: 4)$	$(1: 15: 16)$
$(1: 9: 11)$	$(1: 16: 3)$	$(1: 10: 5)$	$(1: 13: 8)$	$(1: 11: 5)$	$(1: 4: 8)$	$(1: 3: 9)$	$(1: 14: 16)$.	

The points of \mathcal{B}_{3} are shown in Table 2.11.
Table 2.11: Points of \mathcal{B}_{3}

$(\mathbf{1 : 8 : 1 1)}$	$(1: 6: 8)$	$(1: 2: 3)$.

The points of \mathcal{B}_{4} are shown in Table 2.12.
Table 2.12: Points of \mathcal{B}_{4}

$(1: 8: 6)$	$(1: 6: 16)$	$(1: 6: 13)$	$(1: 10: 9)$	$(1: 16: 8)$	$(1: 10: 8)$	$(1: 16: 2)$	$(1: 13: 16)$	$(1: 6: 7)$
$(1: 10: 16)$	$(1: 5: 8)$	$(1: 12: 7)$.						

The points of \mathcal{B}_{5} are shown in Table 2.13.
Table 2.13: Points of \mathcal{B}_{5}

| $(1: 6: 3) \quad(1: 3: 13) \quad(1: 4: 7)$. |
| :--- | :--- | :--- |

The points of \mathcal{B}_{6} are shown in Table 2.14.
Table 2.14: Points of \mathcal{B}_{6}

$(1: 10: 15)$	$(1: 11: 8)$	$(1: 6: 9)$	$(1: 5: 16)$.

Table 2.15: Points of \mathcal{B}_{7}
\qquad

The points of \mathcal{B}_{7} are shown in Table 2.15.
The points of \mathcal{B}_{1} are shown in Table 2.16.
Table 2.16: Points of \mathcal{B}_{1}

$(1: 2: 8)$	$(1: 10: 14)$	$(1: 8: 7)$	$(1: 16: 11)$	$(1: 11: 13)$	$(1: 3: 6)$	$(1: 11: 14)$	$(1: 14: 9)$	$(1: 5: 9)$
$(1: 11: 4)$	$(1: 10: 2)$	$(1: 4: 2)$	$(1: 14: 13)$	$(1: 3: 12)$	$(1: 5: 3)$	$(1: 4: 16)$	$(1: 9: 16)$	$(1: 12: 8)$
$(1: 2: 14)$	$(1: 15: 12)$	$(1: 10: 4)$	$(1: 5: 14)$	$(1: 15: 3)$	$(1: 4: 12)$	$(1: 6: 4)$	$(1: 16: 6)$	$(1: 2: 13)$
$(1: 13: 3)$	$(1: 11: 7)$	$(1: 12: 3)$	$(1: 4: 3)$	$(1: 2: 4)$	$(1: 16: 14)$	$(1: 15: 4)$	$(1: 16: 5)$	$(1: 13: 6)$
$(1: 6: 5)$	$(1: 13: 5)$	$(1: 16: 9)$	$(1: 12: 13)$	$(1: 3: 8)$	$(1: 3: 7)$	$(1: 2: 7)$	$(1: 12: 6)$	$(1: 11: 2)$
$(1: 8: 15)$	$(1: 9: 7)$	$(1: 12: 15)$	$(1: 5: 15)$	$(1: 5: 4)$	$(1: 9: 4)$	$(1: 9: 6)$	$(1: 11: 9)$	$(1: 2: 12)$
$(1: 12: 11)$	$(1: 6: 2)$	$(1: 14: 11)$	$(1: 8: 14)$	$(1: 15: 11)$	$(1: 8: 4)$	$(1: 14: 5)$	$(1: 9: 3)$	$(1: 4: 11)$
$(1: 9: 12)$	$(1: 6: 12)$	$(1: 14: 7)$	$(1: 12: 2)$	$(1: 12: 14)$	$(1: 9: 2)$	$(1: 8: 13)$	$(1: 16: 4)$	$(1: 4: 15)$
$(1: 9: 14)$	$(1: 15: 8)$	$(1: 10: 3)$	$(1: 15: 6)$	$(1: 11: 15)$	$(1: 5: 11)$	$(1: 8: 2)$	$(1: 4: 9)$	$(1: 2: 5)$
$(1: 14: 6)$	$(1: 13: 14)$	$(1: 15: 13)$	$(1: 15: 9)$	$(1: 2: 16)$	$(1: 11: 3)$	$(1: 3: 15)$	$(1: 5: 13)$	$(1: 3: 11)$
$(1: 13: 12)$	$(1: 6: 15)$	$(1: 10: 11)$	$(1: 4: 5)$	$(1: 13: 15)$	$(1: 5: 2)$	$(1: 14: 15)$	$(1: 5: 6)$	$(1: 2: 6)$
$(1: 13: 9)$	$(1: 3: 5)$	$(1: 11: 12)$	$(1: 14: 8)$	$(1: 2: 9)$	$(1: 12: 16)$	$(1: 8: 16)$	$(1: 3: 2)$	$(1: 8: 5)$.

If we denoted to the points

$$
(1: 2: 8),(1: 13: 11),(1: 8: 11),(1: 8: 6),(1: 6: 3),(1: 10: 15) \text { and }(1: 16: 7)
$$

by $\mathbf{8}, \mathbf{1 3}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{3 5}, \mathbf{5 0}$ and $\mathbf{2 0 7}$ respectively, we get the projectively distinct 6 -arcs which are construct from the 5 -arc \mathcal{F}_{1}, namely

$$
\begin{aligned}
& \mathcal{S}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}\} \\
& \mathcal{S}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 3}\} \\
& \mathcal{S}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 7}\} \\
& \mathcal{S}_{4}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 8}\} \\
& \mathcal{S}_{5}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{3 5}\} \\
& \mathcal{S}_{6}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, 50\} \\
& \mathcal{S}_{7}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{2 0 7}\}
\end{aligned}
$$

The group of projectivities of \mathcal{S}_{1} consists of one element, while the group of projectivities of \mathcal{S}_{2} consists of two elements, namely

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
-3 & -8 & -6 \\
0 & -8 & -8 \\
0 & -8 & 8
\end{array}\right)
$$

The group of projectivities of \mathcal{S}_{3} consists of 4 elements, namely

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
8 & -1 & 0 \\
-6 & 0 & -1
\end{array}\right) \text { and }\left(\begin{array}{ccc}
1 & 0 & 0 \\
7 & 0 & 1 \\
-7 & 1 & 0
\end{array}\right) .
$$

The group of projectivities of \mathcal{S}_{4} consists of 3 elements, namely

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
8 & 0 & -7 \\
5 & 0 & -5 \\
-5 & -4 & -8
\end{array}\right) \text { and }\left(\begin{array}{ccc}
6 & -5 & 0 \\
6 & -6 & 7 \\
6 & 4 & 0
\end{array}\right)
$$

The group of projectivities of \mathcal{S}_{5} consists of 4 elements, namely

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & -1 & 2 \\
-8 & 0 & -3 \\
0 & 0 & 3
\end{array}\right) \text { and }\left(\begin{array}{ccc}
0 & -8 & -8 \\
4 & 0 & 3 \\
0 & 0 & -7
\end{array}\right)
$$

The group of projectivities of \mathcal{S}_{6} consists of 6 elements, namely

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -7 & 0 \\
-2 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
-3 & -8 & -6 \\
0 & -8 & -8 \\
0 & -8 & 8
\end{array}\right), \\
& \left(\begin{array}{ccc}
-4 & 4 & 1 \\
6 & 4 & 0 \\
-6 & 4 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 6 & -6 \\
0 & -8 & -8 \\
4 & 5 & 8
\end{array}\right) \text { and }\left(\begin{array}{ccc}
3 & -2 & 0 \\
4 & -3 & 0 \\
-4 & 4 & 1
\end{array}\right) .
\end{aligned}
$$

The group of projectivities of \mathcal{S}_{7} consists of 12 elements, namely

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
7 & 0 & 0 \\
0 & -7 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
7 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
-3 & -8 & -6 \\
0 & -8 & -8 \\
0 & -8 & 8
\end{array}\right), \\
\left(\begin{array}{ccc}
-8 & -8 & 0 \\
-5 & 8 & -3 \\
5 & -5 & 0
\end{array}\right),\left(\begin{array}{ccc}
-8 & 6 & 2 \\
-8 & 8 & 0 \\
-8 & -8 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & -8 & -8 \\
0 & 8 & -8 \\
-4 & -5 & -8
\end{array}\right),\left(\begin{array}{ccc}
-3 & 1 & 3 \\
-4 & 0 & 3 \\
4 & 0 & 3
\end{array}\right) \\
\left(\begin{array}{cc}
8 & -8 \\
-8 & -8
\end{array}\right) \\
5
\end{array}\right),\left(\begin{array}{ccc}
0 & 6 & -6 \\
3 & 8 & 6 \\
0 & -8 & -8
\end{array}\right),\left(\begin{array}{ccc}
3 & 0 & -2 \\
-3 & 1 & 3 \\
4 & 0 & -3
\end{array}\right),\left(\begin{array}{ccc}
4 & 0 & -3 \\
4 & 0 & 3 \\
4 & -7 & -4
\end{array}\right) .
$$

See Table 2.17. for the projectively distinct 6 -arcs in $P G(2,17)$.
Table 2.17: Projectively distinct 6 -arcs in $P G(2,17)$

$L(6,17)=318261467328$		
\mathcal{S}_{i}	$\left\|G\left(\mathcal{S}_{i}\right)\right\|$	$G\left(\mathcal{S}_{i}\right)$
$\mathcal{S}_{1}=\{1,2,3,4,6,8\}$	1	Trivial
$\mathcal{S}_{2}=\{1,2,3,4,6,13\}$	2	$\mathbb{Z} /(2)$
$\mathcal{S}_{3}=\{1,2,3,4,6,17\}$	4	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$
$\mathcal{S}_{4}=\{1,2,3,4,6,18\}$	3	$\mathbb{Z} /(3)$
$\mathcal{S}_{5}=\{1,2,3,4,6,35\}$	4	$\mathbb{Z} /(4)$
$\mathcal{S}_{6}=\{\mathbf{1 , 2 , 3 , 4 , 6 , 5 0 \}}$	6	\mathfrak{S}_{3}
$\mathcal{S}_{7}=\{1,2,3,4,6,207\}$	12	\mathfrak{A}_{4}
$\mathcal{S}_{8}=\{1,2,3,4,7,213\}$	24	\mathfrak{S}_{4}
$\mathcal{S}_{9}=\{1,2,3,4,24,29\}$	12	D_{6}

where

$$
\begin{array}{ccc}
\mathbf{8}=(1: 2: 8), & \mathbf{1 3}=(1:-4:-6), & \mathbf{1 7}=(1: 8:-6), \\
\mathbf{3 5}=(1: 6: 3), & \mathbf{5 0}=(1:-7:-2), & \mathbf{2 0 7}=(1:-1: 7), \\
\mathbf{1 8}=(1: 8: 6), & \mathbf{2 1 3}=(1: 9:-6), & \\
\mathbf{2 4}=(1: 2:-2), & \text { and } & \mathbf{2 9}=(1: 3:-1) .
\end{array}
$$

Table 2.18: Projectively distinct 6 -arcs in $P G(2,19)$

$L(6,19)=1349831775312$		
\mathcal{S}_{i}	$\left\|G\left(\mathcal{S}_{i}\right)\right\|$	$G\left(\mathcal{S}_{i}\right)$
$\mathcal{S}_{1}=\{1,2,3,4,6,14\}$	1	Trivial
$\mathcal{S}_{2}=\{1,2,3,4,6,32\}$	2	$\mathbb{Z} /(2)$
$\mathcal{S}_{3}=\{1,2,3,4,6,33\}$	6	\mathfrak{S}_{3}
$\mathcal{S}_{4}=\{\mathbf{1}, 2,3,4,6,50\}$	3	$\mathbb{Z} /(3)$
$\mathcal{S}_{5}=\{1,2,3,4,6,84\}$	4	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$
$\mathcal{S}_{6}=\{1,2,3,4,6,137\}$	4	$\mathbb{Z} /(4)$
$\mathcal{S}_{7}=\{1,2,3,4,6,285\}$	12	\mathfrak{A}_{4}
$\mathcal{S}_{8}=\{1,2,3,4,13,137\}$	60	\mathfrak{A}_{5}
$\mathcal{S}_{9}=\{1,2,3,4,48,260\}$	36	9 elements of order 2 8 elements of order 3
$\mathcal{S}_{10}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, 4,16,38\}$	12	$D_{6}=\mathbb{Z}_{2} \times \mathfrak{S}_{3}$

where

$$
\begin{array}{cccc}
\mathbf{1 4}=(1: 9:-1), & \mathbf{3 2}=(1:-6: 2), & \mathbf{3 3}=(1: 6: 9), \\
\mathbf{8 4}=(1: 2: 3), & 137=(1: 6:-5), & \mathbf{2 8 5}=(1: 3:-5), \\
\mathbf{5 0}=(1:-3:-6), & \mathbf{2 6 0}=(1: 9: 8), & \mathbf{3 8}=(1: 5: 9), \\
\mathbf{4 8}=(1: 8: 7) & \text { and } \mathbf{1 6}=(1: 9: 5) . & &
\end{array}
$$

Table 2.19: Projectively distinct 6 -arcs in $P G(2,23)$

$L(6,23)=15637818086968$		
\mathcal{S}_{i}	$\left\|G\left(\mathcal{S}_{i}\right)\right\|$	$G\left(\mathcal{S}_{i}\right)$
$\mathcal{S}_{1}=\{\mathbf{1 , 2 , 3 , 4 , 6 , 8}\}$	1	Trivial
$\mathcal{S}_{2}=\{\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{6}, \mathbf{9}\}$	3	$\mathbb{Z} /(3)$
$\mathcal{S}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{3 0}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{S}_{4}=\{\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{6}, \mathbf{3 3}\}$	6	\mathfrak{S}_{3}
$\mathcal{S}_{5}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 0 2}\}$	4	$\mathbb{Z} /(4)$
$\mathcal{S}_{6}=\{\mathbf{1 , 2 , 3}, \mathbf{4}, \mathbf{6}, \mathbf{1 3 6}\}$	12	\mathfrak{A}_{4}
$\mathcal{S}_{7}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{3 8 6}\}$	4	$\mathbb{Z} /(2) \times \mathbb{Z} /(2)$
$\mathcal{S}_{8}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{8 0}, \mathbf{1 1 4}\}$	12	$D_{6}=\mathbb{Z} /(2) \times \mathfrak{A}_{3}$

where

$$
\begin{array}{ccc}
\mathbf{8}=(1: 4: 5), & \mathbf{9}=(1: 8: 6), & \mathbf{3 0}=(1: 4: 11), \\
\mathbf{1 0 2}=(1:-4:-5), & \mathbf{1 3 6}=(1: 6: 9), & \mathbf{3 8 6}=(1:-8:-11), \\
\mathbf{3 3}=(1:-10: 11), & \mathbf{8 0}=(1:-1:-8), & \mathbf{1 1 4}=(1:-11: 8) .
\end{array}
$$

Table 2.20: Projectively distinct 6 -arcs in $P G(2,29)$

$L(6,29)=292771335510108$		
\mathcal{S}_{i}	$\left\|G\left(\mathcal{S}_{i}\right)\right\|$	$G\left(\mathcal{S}_{i}\right)$
$\mathcal{S}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}\}$	2	$\mathbb{Z} /(2)$
$\mathcal{S}_{2}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{9}\}$	1	Trivial
$\mathcal{S}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 1 7}\}$	3	$\mathbb{Z} /(3)$
$\mathcal{S}_{4}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{1 8 3}\}$	4	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
$\mathcal{S}_{5}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{3 4 2}\}$	6	\mathfrak{S}_{3}
$\mathcal{S}_{6}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{5 6 2}\}$	4	$\mathbb{Z} /(4)$
$\mathcal{S}_{7}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{5 8 9}\}$	12	\mathfrak{A}_{4}
$\mathcal{S}_{8}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{2 5}, \mathbf{7 0 0}\}$	24	\mathfrak{S}_{4}
$\mathcal{S}_{9}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{1 8 5}, \mathbf{7 5 8}\}$	60	\mathfrak{A}_{5}
$\mathcal{S}_{10}=\{\mathbf{1}, \mathbf{2 , 3}, \mathbf{4}, \mathbf{5 7}, \mathbf{1 0 0}\}$	12	$D_{6}=\mathbb{Z}_{2} \times \mathfrak{S}_{3}$

where

$$
\begin{array}{ccc}
\mathbf{5 7}=(1:-1:-3), & \mathbf{8}=(1:-2:-3), & \mathbf{9}=(1:-4: 11), \\
\mathbf{1 8 3}=(1: 2: 3), & \mathbf{3 4 2}=(1:-13:-5), & \mathbf{5 6 2}=(1: 14:-8), \\
\mathbf{7 0 0}=(1:-12: 9) & \mathbf{7 5 8}=(1:-4: 5) & \mathbf{1 1 7}=(1:-12:-7), \\
\mathbf{5 8 9}=(1:-12: 11), & \text { and } & \mathbf{1 0 0}=(1: 14:-1) .
\end{array}
$$

Theorem 2.4. There are respectively $9,10,8,10$ and 11 projectively distinct 6 -arcs in $P G(2, q)$ for $q=17,19,23,29,31$.

Proof. Our program used in this section has been used to prove the theorem. The projectively distinct 6-arcs in $P G(2, q)$ with their automorphism groups, where $q=$ $17,19,23,29$ and 31, are respectively shown in Table 2.17, Table 2.18, Table 2.19, Table 2.20 and Table 2.21.

2.6 The 6 -arcs not on a conic in $P G(2, q)$

In this section, we give an arithmetic method for determining the equation of the conic through a set of five points of a 6 -arc not on a conic. Our program is based on the following general algebraic method of solving $n-1$ equations with n unknowns. Recall if we have $n-1$ equations (see Equation(2.6.1))

Table 2.21: Projectively distinct 6 -arcs in $P G(2,31)$

$L(6,31)=675469393962720$		
\mathcal{S}_{i}	$\left\|G\left(\mathcal{S}_{i}\right)\right\|$	$G\left(\mathcal{S}_{i}\right)$
$\mathcal{S}_{1}=\{\mathbf{1 , 2 , 3 , 4 , 6 , 8 \}}$	1	Trivial
$\mathcal{S}_{2}=\{\mathbf{1}, 2,3,4,6,21\}$	2	$\mathbb{Z} /(2)$
$\mathcal{S}_{3}=\{1,2,3,4,6,259\}$	4	$\mathbb{Z} /(4)$
$\mathcal{S}_{4}=\{1,2,3,4,6,315\}$	6	\mathfrak{S}_{3}
$\mathcal{S}_{5}=\{1,2,3,4,6,383\}$	3	Z/(3)
$\mathcal{S}_{6}=\{\mathbf{1}, 2,3,4,6,605\}$	4	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
$\mathcal{S}_{7}=\{1,2,3,4,6,954\}$	12	\mathfrak{A}_{4}
$\mathcal{S}_{8}=\{1,2,3,4,7,290\}$	5	$\mathbb{Z} /(5)$
$\mathcal{S}_{9}=\{1,2,3,4,88,576\}$	60	\mathfrak{A}_{5}
$\mathcal{S}_{10}=\{1,2,3,4,121,553\}$	36	9 elements of order 2 8 elements of order 3
$\mathcal{S}_{11}=\{1,2,3,4,202,271\}$	12	$D_{6}=\mathbb{Z}_{2} \times \mathfrak{S}_{3}$

where

$$
\begin{array}{ccc}
\mathbf{2 0 2}=(1: 15:-15), & \mathbf{1 2 1}=(1: 5:-6), & \mathbf{8}=(1:-14:-10), \\
\mathbf{2 5 9}=(1: 3: 4), & \mathbf{3 1 5}=(1: 8:-10), & \mathbf{3 8 3}=(1:-1: 10), \\
\mathbf{9 5 4}=(1:-1: 9), & \mathbf{2 9 0}=(1: 13: 14), & \mathbf{5 7 6}=(1:-13:-12), \\
\mathbf{2 7 1 = (1 : - 1 5 : - 1 4) ,} & \mathbf{2 1}=(1: 14:-2), & \mathbf{8 8}=(1:-12:-11) \\
\mathbf{6 0 5}=(1: 2: 13), & \text { and } & \mathbf{5 5 3}=(1:-6: 5) .
\end{array}
$$

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} & =0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{1 n} x_{n} & =0 \tag{2.6.1}\\
\vdots & \vdots \\
a_{n-1,1} x_{1}+a_{n-1,2} x_{1}+\ldots+a_{n-1, n} x_{n} & =0
\end{align*}
$$

and $A=\left(a_{i j}\right)$ is the $(n-1) \times n$ matrix representing the system (2.6.1), then we have

$$
x_{i}=(-1)^{i-1} \operatorname{det} A_{i},
$$

where A_{k} is an $(n-1 \times n-1)$ matrix obtained from A by omitting the k-th column.

Now consider a conic \mathscr{C} in $P G(2, q)$ of the form

$$
\mathscr{C}=\mathbb{V}\left(a_{00} x_{0}^{2}+a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+2 a_{01} x_{0} x_{1}+2 a_{02} x_{0} x_{2}+2 a_{12} x_{1} x_{2}\right) .
$$

If \mathscr{C} passes through a five points $P_{i}=P\left(x_{i 1}, x_{i 2}, x_{i 3}\right)$ for $i \in\{1,2,3,4,5\}$, then we have the following five equations:

$$
\begin{array}{ccc}
a_{00} x_{11}^{2}+a_{11} x_{12}^{2}+a_{22} x_{13}^{2}+2 a_{01} x_{11} x_{12}+2 a_{02} x_{11} x_{13}+2 a_{12} x_{12} x_{13}=0, \\
\vdots & \vdots & \vdots \\
a_{00} x_{51}^{2}+a_{11} x_{52}^{2}+a_{22} x_{53}^{2}+2 a_{01} x_{51} x_{52}+2 a_{02} x_{51} x_{53}+2 a_{12} x_{52} x_{53}=0 .
\end{array}
$$

Consider the 5×6 matrix \mathcal{X} which is the same as matrix A above with $n=6$, namely

$$
\mathcal{X}=\left(\begin{array}{cccccc}
x_{11}^{2} & x_{12}^{2} & x_{13}^{2} & 2 x_{11} x_{12} & 2 x_{11} x_{13} & 2 x_{12} x_{13} \\
x_{21}^{2} & x_{22}^{2} & x_{23}^{2} & 2 x_{21} x_{22} & 2 x_{21} x_{23} & 2 x_{22} x_{23} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
x_{51}^{2} & x_{52}^{2} & x_{53}^{2} & 2 x_{51} x_{52} & 2 x_{51} x_{53} & 2 x_{52} x_{53}
\end{array}\right) .
$$

Let \mathcal{X}_{k} be a 5×5 matrix obtained from \mathcal{X} by omitting the k-th column. So we have:

$$
\alpha_{i}=(-1)^{i-1} \operatorname{det} \mathcal{X}_{i},
$$

where $\alpha_{1}=a_{00}, \alpha_{2}=a_{11}, \alpha_{3}=a_{22}, \alpha_{4}=2 a_{01}, \alpha_{5}=2 a_{02}$ and $\alpha_{6}=2 a_{12}$.
All the conics \mathscr{C}_{j} passing through set of five points of the projectively distinct 6 -arcs \mathcal{S}_{k} in $P G(2, q)$ for $q=17,19,23,29,31$, are given in tables, namely Table 2.11, Table 2.12, Table 2.13, Table 2.14, and Table 2.15. The conics \mathscr{C}_{j} in $P G(2, q)$ passing through five points of a 6 -arc \mathcal{S}_{k}, namely $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(q)$, are given in the form

$$
\mathbb{V}\left(\sum_{i, j=0}^{2} a_{i j} x_{i} x_{j}\right)=\mathbb{V}\left(X T X^{*}\right)
$$

Let us consider the 6 -arc $\mathcal{S}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}\}$ in $P G(2,17)$. Let \mathscr{C}_{1} be a conic passing through the five points $\{\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}\}$ of \mathcal{S}_{1}. Then we have

$$
\mathcal{X}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 2 & 2 & 2 \\
1 & -2 & -2 & -3 & 3 & 4 \\
1 & 4 & -4 & 4 & -1 & -2
\end{array}\right) \quad \begin{aligned}
& \operatorname{det} \mathcal{X}_{1}=-2 \\
& \operatorname{and} \quad \\
& \operatorname{det} \mathcal{X}_{2}=\mathcal{X}_{3}=0 \\
& \operatorname{det} \mathcal{X}_{4}=2 \\
& \operatorname{det} \mathcal{X}_{5}=-1 \\
& \operatorname{det} \mathcal{X}_{6}=-4
\end{aligned}
$$

Hence $\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right)$.

Let \mathscr{C}_{2} be a conic passing through the five points $\{\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}\}$ of \mathcal{S}_{1}. Then we have

Hence $\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+2 x_{0} x_{1}-5 x_{0} x_{2}+2 x_{1} x_{2}\right)$.

By the similar argument used previously, we can find the equations of the conics $\mathscr{C}_{3}, \mathscr{C}_{4}, \mathscr{C}_{5}$ and \mathscr{C}_{6} (see Table 2.22).

2.7 Blowing-up the plane in six points

First let us construct the blowing-up of the affine plane $\mathbb{A}_{\mathbb{R}}^{2}$ at the origin $\mathbf{O}=(0,0)$ (see [19],[23] and [30], Pages 47-50). Let $\left(x_{0}, x_{1}\right)$ be the affine coordinates of $\mathbb{A}_{\mathbb{R}}^{2}$ and let $\left(y_{0}: y_{1}\right)$ be the projective coordinates of $\mathbb{P}_{\mathbb{R}}^{1}$. The blowing-up of $\mathbb{A}_{\mathbb{R}}^{2}$ at the origin \mathbf{O} is the closed subset $\widetilde{\mathbb{A}_{\mathbb{R}}^{2}}$ of $\mathbb{A}_{\mathbb{R}}^{2} \times \mathbb{P}_{\mathbb{R}}^{1}$ which is defined by the equation $x_{0} y_{1}=x_{1} y_{0}$. In fact, we have a natural morphism $\beta: \widetilde{\mathbb{A}_{\mathbb{R}}^{2}} \rightarrow \mathbb{A}_{\mathbb{R}}^{2}$ which is obtained by restricting

Table 2.22: Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(17)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{1}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+2 x_{0} x_{1}-5 x_{0} x_{2}+2 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+3 x_{0} x_{1}+5 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-5 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$
\mathcal{S}_{2}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+4 x_{0} x_{1}+4 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-8 x_{0} x_{1}-3 x_{0} x_{2}-7 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-4 x_{0} x_{1}+3 x_{0} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+2 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+7 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$
\mathcal{S}_{4}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+3 x_{0} x_{1}-6 x_{0} x_{2}+2 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-5 x_{0} x_{1}-7 x_{0} x_{2}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+x_{0} x_{1}+2 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+6 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-5 x_{0} x_{2}+4 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{5}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-8 x_{0} x_{1}+3 x_{0} x_{2}+4 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+4 x_{0} x_{1}-2 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+x_{0} x_{1}+2 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-3 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+6 x_{0} x_{2}-7 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$
\mathcal{S}_{6}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-6 x_{0} x_{1}+6 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+4 x_{0} x_{1}-2 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+3 x_{0} x_{1}+5 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+3 x_{0} x_{2}+7 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+4 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$
\mathcal{S}_{7}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+7 x_{0} x_{1}-6 x_{0} x_{2}-2 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-8 x_{0} x_{1}-3 x_{0} x_{2}-7 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+2 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$

Table 2.23: Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(19)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{1}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+6 x_{0} x_{1}+9 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-2 x_{0} x_{1}-2 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+5 x_{0} x_{1}-3 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+4 x_{0} x_{2}+9 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right)$
\mathcal{S}_{3}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+8 x_{0} x_{1}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+3 x_{0} x_{1}+4 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+9 x_{0} x_{2}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+4 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right)$
\mathcal{S}_{4}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-8 x_{0} x_{1}-4 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+x_{0} x_{1}-6 x_{0} x_{2}+4 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-4 x_{0} x_{1}+9 x_{0} x_{2}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+8 x_{0} x_{2}+6 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-8 x_{0} x_{2}+7 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right)$
\mathcal{S}_{6}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-2 x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+8 x_{0} x_{2}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-8 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{7}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+9 x_{0} x_{1}+5 x_{0} x_{2}+4 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-6 x_{0} x_{1}-3 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+8 x_{0} x_{1}-7 x_{0} x_{2}-2 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+4 x_{0} x_{2}+9 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+2 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right)$
\mathcal{S}_{8}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-3 x_{0} x_{1}-3 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+x_{0} x_{1}+2 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+x_{0} x_{2}+7 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+3 x_{0} x_{2}-4 x_{1} x_{2}\right)$
\mathcal{S}_{9}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+4 x_{0} x_{1}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-6 x_{0} x_{1}+x_{0} x_{2}+4 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+5 x_{0} x_{1}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+6 x_{0} x_{2}-7 x_{1} x_{2}\right)$

Table 2.24: Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{1}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+3 x_{0} x_{1}-6 x_{0} x_{2}+2 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+7 x_{0} x_{1}+3 x_{0} x_{2}-11 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-8 x_{0} x_{1}-8 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+10 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+2 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{2}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+2 x_{0} x_{1}+3 x_{0} x_{2}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-6 x_{0} x_{1}+5 x_{0} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-8 x_{0} x_{1}-8 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-10 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+10 x_{0} x_{2}-11 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{3}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-2 x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+11 x_{0} x_{1}-10 x_{0} x_{2}-2 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+5 x_{0} x_{1}-10 x_{0} x_{2}+11 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+10 x_{0} x_{2}+11 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{5}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-5 x_{0} x_{1}-3 x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-3 x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+6 x_{0} x_{1}+4 x_{0} x_{2}-11 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+3 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{6}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-5 x_{0} x_{1}-3 x_{0} x_{2}+7 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-3 x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+6 x_{0} x_{1}+4 x_{0} x_{2}-11 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+3 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{7}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-5 x_{0} x_{1}-3 x_{0} x_{2}+7 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+2 x_{0} x_{1}+2 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+11 x_{0} x_{1}+5 x_{0} x_{2}+6 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+7 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+6 x_{0} x_{2}-7 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$

Table 2.25: Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}(29)$

\mathcal{S}_{j}	$\mathscr{C}_{\boldsymbol{m}}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{1}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+4 x_{0} x_{1}+12 x_{0} x_{2}+12 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+14 x_{0} x_{1}-3 x_{0} x_{2}-12 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+4 x_{0} x_{1}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-2 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+12 x_{0} x_{2}-13 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$
\mathcal{S}_{2}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+14 x_{0} x_{1}-11 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+3 x_{0} x_{1}+2 x_{0} x_{2}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-8 x_{0} x_{1}-13 x_{0} x_{2}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-12 x_{0} x_{2}-11 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$
\mathcal{S}_{3}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-2 x_{0} x_{1}-9 x_{0} x_{2}+10 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-6 x_{0} x_{1}+14 x_{0} x_{2}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+11 x_{0} x_{1}+10 x_{0} x_{2}+7 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+4 x_{0} x_{2}+6 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}+23 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$
\mathcal{S}_{5}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-10 x_{0} x_{1}-8 x_{0} x_{2}-12 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+8 x_{0} x_{1}+5 x_{0} x_{2}-14 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+3 x_{0} x_{1}+11 x_{0} x_{2}+14 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+7 x_{0} x_{2}+11 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+8 x_{0} x_{2}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{6}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+7 x_{0} x_{1}+8 x_{0} x_{2}+13 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+11 x_{0} x_{1}+x_{0} x_{2}-13 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-110_{0} x_{1}-9 x_{0} x_{2}-10 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$
\mathcal{S}_{7}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+7 x_{0} x_{1}+8 x_{0} x_{2}+13 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+x_{0} x_{1}-5 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-3 x_{0} x_{1}-10 x_{0} x_{2}+12 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+3 x_{0} x_{2}+14 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+2 x_{0} x_{2}-3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$
\mathcal{S}_{9}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-9 x_{0} x_{1}-9 x_{0} x_{2}-12 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+7 x_{0} x_{1}+8 x_{0} x_{2}+13 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+8 x_{0} x_{1}+7 x_{0} x_{2}+13 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+x_{0} x_{2}-13 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+4 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right)$

Table 2.26: Conics through $\mathcal{S}_{k} \backslash\left\{P_{j}\right\}($

\mathcal{S}_{j}	$\mathscr{C}_{\boldsymbol{m}}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{1}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+10 x_{0} x_{1}+x_{0} x_{2}-12 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+10 x_{0} x_{1}-7 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+5 x_{0} x_{1}+5 x_{0} x_{2}-13 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+13 x_{0} x_{2}+9 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+6 x_{0} x_{2}-7 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{2}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-9 x_{0} x_{1}-14 x_{0} x_{2}-9 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-6 x_{0} x_{1}+13 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-7 x_{0} x_{1}-9 x_{0} x_{2}+15 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+15 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}+3 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{3}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-5 x_{0} x_{1}+12 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-15 x_{0} x_{1}+x_{0} x_{2}+13 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+9 x_{0} x_{1}+2 x_{0} x_{2}-12 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+10 x_{0} x_{2}-x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-5 x_{0} x_{2}+4 x_{1} x_{2}\right)$
$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$	
\mathcal{S}_{4}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-6 x_{0} x_{1}-10 x_{0} x_{2}+15 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-4 x_{0} x_{1}-5 x_{0} x_{2}+8 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-14 x_{0} x_{1}-8 x_{0} x_{2}-10 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-11 x_{0} x_{2}+10 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$

\mathcal{S}_{j}	$\mathscr{C}_{m}:=$ conic through $\mathcal{S}_{j} \backslash\left\{P_{m}\right\}$
\mathcal{S}_{5}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+4 x_{0} x_{1}-7 x_{0} x_{2}+2 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-6 x_{0} x_{1}+13 x_{0} x_{2}-8 x_{2} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+6 x_{0} x_{1}-2 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-15 x_{0} x_{2}-12 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-2 x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{7}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-5 x_{0} x_{1}+12 x_{0} x_{2}-8 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+15 x_{0} x_{1}+10 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-3 x_{0} x_{1}-14 x_{0} x_{2}-15 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}-13 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}+3 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-9 x_{0} x_{2}+8 x_{1} x_{2}\right)$
\mathcal{S}_{9}	$\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+10 x_{0} x_{1}-6 x_{0} x_{2}-5 x_{1} x_{2}\right)$
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+10 x_{0} x_{1}-5 x_{0} x_{2}-6 x_{1} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-9 x_{0} x_{1}+4 x_{0} x_{2}+4 x_{1} x_{2}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-4 x_{0} x_{2}-4 x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-13 x_{0} x_{2}+12 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+12 x_{0} x_{2}-13 x_{1} x_{2}\right)$
$\mathscr{S}_{1}=\mathbb{V}\left(x_{0}^{2}-x_{1} x_{2}\right)$	
	$\mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}-x_{0} x_{2}\right)$
	$\mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}-x_{0} x_{1}\right)$
	$\mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}+x_{0} x_{2}+x_{1} x_{2}\right)$
	$\mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}+5 x_{1} x_{2}\right)$
	$\mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right)$

the projection $\mathbb{A}_{\mathbb{R}}^{2} \times \mathbb{P}_{\mathbb{R}}^{1}$ to the first factor as we shown in the following diagram (see Figure 2.1).

Figure 2.1: Blowing-up the plane.

In ([13], Pages 28,400,401), there are many facts demonstrate properties of the blowing-up:

Fact 2.1. With the previous notations, we have

- The restriction of β to the set $\widetilde{\mathbb{A}_{\mathbb{R}}^{2}} \backslash \beta^{-1}(\mathbf{O})$ is bijection.
- $\beta^{-1}(\mathbf{O}) \cong \mathbb{P}_{\mathbb{R}}^{1}$.
- The points of $\beta^{-1}(\mathbf{O})$ are in $1-1$ correspondence with set of lines through \mathbf{O} in $\mathbb{A}_{\mathbb{R}}^{2}$.

If $C \subseteq \mathbb{A}_{\mathbb{R}}^{2}$ is a curve in $\mathbb{A}_{\mathbb{R}}^{2}$, we will call $\widetilde{C}:=\left.\overline{\beta^{-1}}\right|_{\mathbb{A}_{\mathbb{R}}^{2} \backslash \mathbf{O}}(C \backslash\{\mathbf{O}\})$ the strict transform of C (see [31]). The generalization of the above notions can be found in ([13], Pages $14,136-171$ or [11].

Fact 2.2. Let $\mathcal{S}:=\left\{P_{1}, \ldots, P_{6}\right\} \subseteq \mathbb{P}^{2}$ be a six points in the plane, such that no three are collinear and not all the six points are on a common conic. Then the blowing-up $\widetilde{\mathbb{P}^{2}}$ of the projective plane \mathbb{P}^{2} in S can be embedded as a smooth cubic surface in projective three-space \mathbb{P}^{3}.

According to the embedding $\varphi: \mathbb{P}^{2} \hookrightarrow \mathbb{P}^{3}$ and the projection as in the figure above, we have:

Fact 2.3. Let $\mathcal{S}:=\left\{P_{1}, \ldots, P_{6}\right\} \subseteq \mathbb{P}^{2}$ be a six points in the plane, such that no three are collinear and not all the six points are on a common conic. Let $\mathscr{C}_{i} \subseteq \mathbb{P}^{2}$ denote the unique conic through the five points $S \backslash\left\{P_{i}\right\}$ for $i=1,2, \ldots, 6$, and let $l_{i j} \subseteq \mathbb{P}^{2}$ denote the line through the points P_{i} and P_{j} for $i, j=1,2, \ldots, 6, i \neq j$. Then the 27 lines lying on the cubic surface are as follows:

- The 6 exceptional lines over the 6 base points P_{i} :

$$
a_{i}:=\widetilde{\varphi}\left(\beta^{-1}\left(P_{i}\right)\right) \subseteq \mathbb{P}^{3}, i=1,2, \ldots, 6
$$

- The 6 strict transforms of the 6 plane conics \mathscr{C}_{i} :

$$
b_{i}:=\widetilde{\varphi}\left(\widetilde{\mathscr{C}}_{i}\right) \subseteq \mathbb{P}^{3}, i=1,2, \ldots, 6
$$

- The 15 strict transforms of the $\binom{6}{2}=15$ lines $l_{i j}$ joining the P_{i} :

$$
c_{i j}:=\widetilde{\varphi}\left(\widetilde{l_{i j}}\right) \subseteq \mathbb{P}^{3}, i, j=1,2, \ldots, 6, i \neq j
$$

Moreover, the lines a_{i} and $b_{i}, i=1,2, \ldots, 6$ form a double six, and $c_{i j}, i \neq j$ are the remaining 15 lines on the smooth cubic surface.

An Eckardt point on a non-singular cubic surface is a smooth point, where three of its lines meet. Next we will discuss the problem of number of Eckardt points on a non-singular cubic surface with 27 lines in more detail.

Fact 2.4. Let $\mathcal{S}:=\left\{P_{1}, \ldots, P_{6}\right\} \subseteq \mathbb{P}^{2}$ be a six points in the plane, such that no three are collinear and not all the six points are on a common conic. Denote by $l_{i j}$ the 15 lines through the points P_{i} and $P_{j}, i \neq j$ and by $\mathscr{C}_{i} \subseteq \mathbb{P}^{2}$ the unique conic through the five points $S \backslash\left\{P_{i}\right\}$ for $i=1,2, \ldots, 6$. Then

- If three of $l_{i j}$ meet in a point $E \in \mathbb{P}^{2} \backslash S$, then the corresponding lines $\widetilde{l_{i j}}$ on the cubic surface meet in an Eckardt point.
- If $l_{i j}$ touches the conic \mathscr{C}_{i} in P_{j} for some $i, j=1,2, \ldots, 6, i \neq j$, then the corresponding lines $a_{j}:=\left(\beta^{-1} \circ \widetilde{\varphi}\right)\left(\left(P_{j}\right), b_{i}:=\widetilde{\mathscr{C}}_{i}\right.$ and $c_{i j}:=\widetilde{l_{i j}}$ on the cubic surface meet in an Eckardt point.
- The application $\beta^{-1} \circ \widetilde{\varphi}$ is bijection on $\mathbb{P}^{2} \backslash S$.
- Both \mathscr{C}_{i} and $l_{i j}$ have the same tangent direction in P_{j}, so the corresponding lines $b_{i}:=\widetilde{\mathscr{C}}_{i}$ and $c_{i j}:=\widetilde{l_{i j}}$ meet the line $a_{j}:=\widetilde{P}_{j}$ in the same point.

Chapter 3

Classification of non-Singular cubic surfaces up TO e-INVARIANTS

The main result of this chapter is the classification of non-singular cubic surfaces with twenty-seven lines up to e-invariants over the finite fields \mathbb{F}_{q} where $q=17,19,23,29,31$. Some structures on cubic surfaces with 27 lines, in $P G(2, q)$ with $q=17,19,23,29,31$, are discussed. Furthermore, the classification of these cubic surfaces is done by classifying the 6 -arcs not lying on a conic (6 points in general position) in the projective planes $P G(2, q)$ for $q=17,19,23,29,31$.

3.1 Double-sixes and Eckardt points on a non-singular cubic SURFACE

Let $\operatorname{PG}(3, q)$ be the 3 -dimensional projective space over the Galois field $G F(q)$. The space $P G(3, q)$ contains $q^{3}+q^{2}+q+1$ points and planes, as well as $\left(q^{2}+q+1\right)\left(q^{2}+1\right)$ lines. There are $q^{2}+q+1$ lines through every point, and $q+1$ planes through a line.

In $P G(3, q)$, planes and lines are characterized as follows: a subset Π_{2} is a plane if and only if it has $q^{2}+q+1$ points and meets every line; a subset Π_{1} is a line if and only if it has $q+1$ points and meets every plane ([16], Pages 3,4).

A point $P(X)=P\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ in $P G(3, q)$, where $x_{0}, x_{1}, x_{2}, x_{3} \in G F(q)$ and not all zero, is denoted by $\left(x_{0}: x_{1}: x_{2}: x_{3}\right)$.

In $P G(3, q)$, a cubic surface \mathscr{S}, is the zero set of a homogeneous cubic polynomial in four variables over $G F(q)$, that is

$$
\mathscr{S}=\mathbb{V}\left(\sum a_{i j k l} x_{0}^{i} x_{1}^{j} x_{2}^{k} x_{3}^{l}\right)
$$

where $i, j, k, l \in\{0,1,2,3\}, i+j+k+l=3$, and $a_{i j k l} \in G F(q)$. Therefore, to determine a cubic surface $\mathscr{S}, 19$ conditions are required since there are 20 monomials of degree 3 in four variables.

A double-six D in $P G(3, q)$ is a set of 12 lines

$$
D: \begin{array}{llllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \tag{3.1.1}\\
b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6}
\end{array}
$$

such that each line only meets the five lines which are not in the same row or column.
The intensive study of the cubic surfaces started in 1849, when the British mathematicians Salmon and Cayley published the results of their correspondence on the number of lines on a non-singular cubic surface (see [6], pages 118-132 and [26], Pages 252-60). Moreover, Cayley and Salmon showed that a non-singular cubic surface over the complex field contains exactly twenty-seven lines. In 1858, Schläfli ([27]) found the required notation for the complete figure formed by these 27 lines. In fact, Clebsch constructed the famous Diagonal surface in ([7], Pages 284-345) and showed that it contained 27 real lines. The computer programs allow mathematicians of the $21^{\text {st }}$ century not only to make static models of surfaces and curves, but also to manipulate them interactively. For this purpose, we have the following important theorem of Clebsch ([7], Pages 359-380).

Theorem 3.1. Every non-singular cubic surface can be represented in the plane using 4 plane cubic curves through six points in general position and vice versa.

The construction and existences of a double-six are described by the following main facts in ([16], Pages 182,187,188).

1. Given five skew lines $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ with a single transversal b_{6} such that each set of four a_{i} omitting a_{j} has a unique further transversal b_{j}, then the five lines $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ also have a transversal a_{6}. These twelve lines form a double-six.
2. A double-six lies on a unique cubic surface \mathscr{S} with 15 further lines $c_{i j}$ given by the intersection of $\left[a_{i}, b_{j}\right]$ (sometimes denoted by $a_{i} \vee b_{j}$) and $\left[a_{j}, b_{i}\right]$, where [a_{i}, b_{j}] is the plane containing a_{i} and b_{j}.
3. A necessary and sufficient condition for the existence of a double-six, and so of a cubic surface with 27 lines in $P G(3, q)$, is the existence over the same field of a plane 6 -arc not on a conic. This occurs when $q \neq 2,3,5$.

Given a double-six D

$$
D: \begin{array}{llllll}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array} a_{6}+\quad \begin{array}{llllll}
\\
b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6}
\end{array}
$$

then the incidence diagram of a double-six D is shown in Table 3.1.
Table 3.1: Incidence diagram

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
b_{1}		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
b_{2}	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
b_{3}	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark
b_{4}	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
b_{5}	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
b_{6}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	

where \checkmark indicates that the two lines intersect.
The following are some results on skew lines in $P G(3, q)$:
(a) If five skew lines $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ have a transversal b, then each set of four a_{i} has a unique, distinct second transversal if and only if each set of five of the six lines is linearly independent.
(b) The configuration in part (a) exists if and only if a plane 6 -arc not on a conic exists in $P G(2, q)$. This occurs for $q \neq 2,3$ or 5.
(c) Given five skew lines $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ with a transversal b_{6} such that each five of the six lines are linearly independent, the second transversals $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ of sets of four of the a_{i} have themselves a transversal a_{6}.
(d) A double-six lies on a unique cubic surface \mathscr{S}, which contains a further 15 lines. A cubic surface is determined by 19 conditions. According to Bézout's Theorem, if four points of a line l lie on a cubic surface, then the whole line lies on it. Let D be the double-six above. Then, to put $a_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}$ on a cubic surface requires $4+5 \cdot 3=19$ conditions. So there exists a cubic surface \mathscr{S} containing these lines. Then, each of $a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ meets four of these lines and therefore lies on \mathscr{S}. Now \mathscr{S} is unique, since if there was another cubic surface \mathscr{S}^{\prime} containing these lines, then \mathscr{S} and \mathscr{S}^{\prime} would intersect in a curve of degree at least 12 (number of points on that curve), which is impossible unless \mathscr{S} and \mathscr{S}^{\prime} have a common component of lower order, but the definition of double-six does not allow this. So $\mathscr{S}=\mathscr{S}^{\prime}$. Note that \mathscr{S} also contains the 15 lines

$$
c_{i j}=\left[a_{i}, b_{j}\right] \cap\left[a_{j}, b_{i}\right], i, j=1, \ldots, 6 \text { and } i \neq j .
$$

In $P G(2, q)$, consider a $6-\operatorname{arc} \mathcal{S}=\left\{P_{i}: i=1, \ldots, 6\right\}$ not on a conic (sometimes these points are called six points in general position). Then a set of plane cubic curves through all six P_{i} is called the web W of cubic curves. The lines $\overline{P_{1} P_{2}}, \overline{P_{3} P_{4}}, \overline{P_{5} P_{6}}$ compose a curve of W.

Given a line ℓ in $P G(3, q)$, two of whose points are $P(Y)$ and $P\left(Y^{\prime}\right)$, where $Y=\left(y_{0}: y_{1}: y_{2}: y_{3}\right)$ and $Y^{\prime}=\left(y_{0}^{\prime}: y_{1}^{\prime}: y_{2}^{\prime}: y_{3}^{\prime}\right)$. The Plücker coordinates of ℓ is defined as

$$
L:=\left(\ell_{01}, \ell_{02}, \ell_{03}, \ell_{12}, \ell_{13}, \ell_{23}\right)
$$

where $\ell_{i j}=y_{i} y_{j}^{\prime}-y_{i}^{\prime} y_{j}$. Note that $L \in P G(5, q)$.
Define a map from the set of all of lines \mathscr{L} (as points of $P G(5, q)$) to the set of points of the hyperbolic quadric $\mathscr{H}_{5}=\mathbb{V}\left(z_{0} z_{1}+z_{2} z_{3}+z_{4} z_{5}\right)$ in $P G(5, q)$ as

$$
\mathscr{K}: \mathscr{L} \rightarrow \mathscr{H}_{5}, L=\left(\ell_{01}, \ell_{02}, \ell_{03}, \ell_{12}, \ell_{13}, \ell_{23}\right) \mapsto\left(\ell_{01}, \ell_{23},-\ell_{02}, \ell_{13}, \ell_{03}, \ell_{12}\right)
$$

The map \mathscr{K} is bijective and its image is the simplest, non-trivial example of a Grassmannian. In fact, $\mathscr{H}_{5}=\mathbb{G}_{2,4}$

Now, Let ℓ_{1} and ℓ_{1}^{\prime} be two lines in $P G(3, q)$ with Plücker coordinates

$$
\begin{aligned}
L & =\left(\ell_{01}, \ell_{02}, \ell_{03}, \ell_{12}, \ell_{13}, \ell_{23}\right) \\
L^{\prime} & =\left(\ell_{01}^{\prime}, \ell_{02}^{\prime}, \ell_{03}^{\prime}, \ell_{12}^{\prime}, \ell_{13}^{\prime}, \ell_{23}^{\prime}\right),
\end{aligned}
$$

then ℓ_{1} and ℓ_{1}^{\prime} intersect if and only if $\varpi\left(\mathscr{K}\left(\ell_{1}\right), \mathscr{K}\left(\ell_{2}\right)\right)=0(\bmod q)$, where

$$
\varpi\left(\mathscr{K}\left(\ell_{1}\right), \mathscr{K}\left(\ell_{1}^{\prime}\right)\right)=\ell_{01} \ell_{23}^{\prime}+\ell_{23} \ell_{01}^{\prime}-\ell_{02} \ell_{13}^{\prime}-\ell_{13} \ell_{02}^{\prime}+\ell_{03} \ell_{12}^{\prime}+\ell_{12} \ell_{03}^{\prime} .
$$

It follows that ℓ_{1} and ℓ_{1}^{\prime} are skew if $\varpi\left(\mathscr{K}\left(\ell_{1}\right), \mathscr{K}\left(\ell_{1}^{\prime}\right)\right) \neq 0(\bmod q)$ (see [8], Pages $4,28)$.

Let us give an example. Consider the non-singular cubic surface with 27 lines in $P G(3,13)$, namely

$$
\mathscr{S}=\mathbb{V}\left(y_{3}^{3}-y_{0}^{2} y_{3}-y_{1}^{2} y_{3}-y_{2}^{2} y_{3}-4 y_{0} y_{1} y_{2}\right)
$$

Let us consider the following twelve lines on \mathscr{S} :

$$
\begin{aligned}
& a_{1}=\{(\lambda: 2 \lambda: \mu: \mu):(\lambda: \mu) \in P G(1,13)\}, \\
& a_{2}=\{(\lambda:-2 \lambda: \mu:-\mu):(\lambda: \mu) \in P G(1,13)\}, \\
& a_{3}=\{(\lambda: \mu: 6 \lambda:-\mu):(\lambda: \mu) \in P G(1,13)\}, \\
& a_{4}=\{(\lambda: \mu:-6 \lambda: \mu):(\lambda: \mu) \in P G(1,13)\},
\end{aligned}
$$

$$
\begin{aligned}
& a_{5}=\{(\lambda: \mu:-2 \mu:-\lambda):(\lambda: \mu) \in P G(1,13)\}, \\
& a_{6}=\{(\lambda: \mu: 2 \mu: \lambda):(\lambda: \mu) \in P G(1,13)\}, \\
& b_{1}=\{(\lambda: 6 \lambda: \mu:-\mu):(\lambda: \mu) \in P G(1,13)\}, \\
& b_{2}=\{(\lambda:-6 \lambda: \mu: \mu):(\lambda: \mu) \in P G(1,13)\}, \\
& b_{3}=\{(\lambda: \mu: 2 \lambda: \mu):(\lambda: \mu) \in P G(1,13)\}, \\
& b_{4}=\{(\lambda: \mu:-2 \lambda:-\mu):(\lambda: \mu) \in P G(1,13)\}, \\
& b_{5}=\{(\lambda: \mu:-6 \mu: \lambda):(\lambda: \mu) \in P G(1,13)\}, \\
& b_{6}=\{(\lambda: \mu: 6 \mu:-\lambda):(\lambda: \mu) \in P G(1,13)\} .
\end{aligned}
$$

The values of $\mathscr{K}\left(a_{i}\right), \mathscr{K}\left(b_{i}\right)$ for $i, j=1, \ldots, 6$ are:

$$
\begin{aligned}
& \mathscr{K}\left(a_{1}\right)=(0,0,-1,2,1,2), \\
& \mathscr{K}\left(a_{2}\right)=(0,0,-1,2,-1,-2), \\
& \mathscr{K}\left(a_{3}\right)=(1,-6,0,0,-1,-6), \\
& \mathscr{K}\left(a_{4}\right)=(1,-6,0,0,1,6), \\
& \mathscr{K}\left(a_{5}\right)=(1,-2,2,1,0,0), \\
& \mathscr{K}\left(a_{6}\right)=(1,-2,-2,-1,0,0), \\
& \mathscr{K}\left(b_{1}\right)=(0,0,-1,-6,-1,6), \\
& \mathscr{K}\left(b_{2}\right)=(0,0,-1,-6,1,-6), \\
& \mathscr{K}\left(b_{3}\right)=(1,2,0,0,1,-2), \\
& \mathscr{K}\left(b_{4}\right)=(1,2,0,0,-1,2), \\
& \mathscr{K}\left(b_{5}\right)=(1,6,6,-1,0,0), \\
& \mathscr{K}\left(b_{6}\right)=(1,6,-6,1,0,0) .
\end{aligned}
$$

Consequently, we have the symmetric table (see Table 3.2)

Table 3.2: The values of $\varpi\left(\mathscr{K}\left(\ell_{1}\right), \mathscr{K}\left(\ell_{1}^{\prime}\right)\right)(\bmod 13)$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}	b_{6}
a_{1}	0	5	5	8	3	10	8	0	0	0	0	0
a_{2}	5	0	8	5	3	10	0	8	0	0	0	0
a_{3}	5	8	0	2	5	5	0	0	5	0	0	0
a_{4}	8	5	2	0	5	5	0	0	0	5	0	0
a_{5}	3	3	5	5	0	5	0	0	0	0	8	0
a_{6}	10	10	5	5	5	0	0	0	0	0	0	8
b_{1}	8	0	0	0	0	0	0	11	8	5	4	9
b_{2}	0	8	0	0	0	0	11	0	5	8	4	9
b_{3}	0	0	5	0	0	0	8	5	0	8	8	8
b_{4}	0	0	0	0	0	0	5	8	8	0	8	8
b_{5}	0	0	0	8	8	0	4	4	8	8	0	11
b_{6}	0	0	0	0	0	8	9	9	8	8	11	0

where the entries of table represent the values of $\varpi\left(\mathscr{K}\left(\ell_{1}\right), \mathscr{K}\left(\ell_{1}^{\prime}\right)\right)(\bmod 13)$ for

$$
\ell_{1}, \ell_{1}^{\prime} \in\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

It follows that the above six lines form a double-six (see Figure 3.1).
The 15 further lines $c_{i j}$ on \mathscr{S} are given by the intersection of the plane $\left[a_{i}, b_{j}\right]$ and the plane $\left[a_{j}, b_{i}\right]$ (see Table 3.3). For instant,
$c_{12}=\left[a_{1}, b_{2}\right] \cap\left[a_{2}, b_{1}\right]=\mathbb{V}\left(y_{2}-y_{3}\right) \cap \mathbb{V}\left(y_{2}+y_{3}\right)=\{(\lambda: \mu: 0: 0):(\lambda: \mu) \in P G(1,13)\}$.

A Clebsch mapping $s: \mathscr{S} \longrightarrow P G(2, q)$ is a special birational map that we will describe in more detail later. Such a map s induces a bijection

$$
\mathscr{S} \backslash \bigcup_{i=1}^{6} a_{i} \rightarrow P G(2, q) \backslash \mathcal{S} .
$$

The lines a_{i} form one half of the double-six D; any five of them have a unique transversal and these six transversals b_{i} form the other half of D. Let $\mathcal{S}=\left\{P_{i}: i=\right.$ $1, \ldots, 6\}$ be a 6 -arc not on any conic in $P G(2, q)$. Every point of $P G(2, q)$ other than the $P_{i} \in \mathcal{S}$ is the image of a single point of \mathscr{S}. Every curve in $\operatorname{PG}(2, q)$ is the image of a curve on \mathscr{S}. An intersection of two curves in $P G(2, q)$ that is not equal to P_{i} is also the image of an intersection of the corresponding curves on \mathscr{S}. Two curves in

Figure 3.1: Configuration of a double-six on \mathscr{S}
$P G(2, q)$ through $P_{i} \in \mathcal{S}$ correspond to two curves on \mathscr{S} meeting a_{i}. Two curves in $P G(2, q)$ touching at $P_{i} \in \mathcal{S}$ also correspond to two curves on \mathscr{S} meeting at a_{i}. The plane sections of \mathscr{S} (sometimes called plane cubic curves) are mapped to the web W of cubic curves through all six P_{i}. Every plane section is mapped to such a cubic curve and every such plane cubic curve is the image a plane section. If the cubic of W is composite, then so is the plane section of \mathscr{S}. The number of intersections of a curve on \mathscr{S} with a plane is called the order of that curve. This is the number of intersections of the image curve in $P G(2, q)$ with a cubic of W such that the points P_{i} are excluded from this number of intersections. If the order of a curve on \mathscr{S} is one then it is a line on \mathscr{S}. For example, a line $\overline{P_{i} P_{j}}$ meets a cubic curve in $P G(2, q)$ in three points and if the cubic belongs to W, there is a single point of intersection

Table 3.3: The 15 lines $c_{i j}$ on \mathscr{S}

$[i, j]$	$c_{i j}=\left[a_{i}, b_{j}\right] \cap\left[a_{j}, b_{i}\right]$
$[1,2]$	$c_{12}=\mathbb{V}\left(y_{2}-y_{3}\right) \cap \mathbb{V}\left(y_{2}+y_{3}\right)$
$[1,3]$	$c_{13}=\mathbb{V}\left(y_{0}+6 y_{1}+6 y_{2}-6 y_{3}\right) \cap \mathbb{V}\left(y_{0}+2 y_{1}+2 y_{2}+2 y_{3}\right)$
$[1,4]$	$c_{14}=\mathbb{V}\left(y_{0}+6 y_{1}-6 y_{2}+6 y_{3}\right) \cap \mathbb{V}\left(y_{0}+2 y_{1}-2 y_{2}-2 y_{3}\right)$
$[1,5]$	$c_{15}=\mathbb{V}\left(y_{0}+6 y_{1}+y_{2}-12 y_{3}\right) \cap \mathbb{V}\left(y_{0}+2 y_{1}+y_{2}+y_{3}\right)$
$[1,6]$	$c_{16}=\mathbb{V}\left(y_{0}+6 y_{1}-y_{2}+y_{3}\right) \cap \mathbb{V}\left(y_{0}+2 y_{1}-y_{3}\right)$
$[2,3]$	$c_{23}=\mathbb{V}\left(y_{0}-6 y_{1}+6 y_{2}+6 y_{3}\right) \cap \mathbb{V}\left(y_{0}-2 y_{1}+2 y_{2}-2 y_{3}\right)$
$[2,4]$	$c_{24}=\mathbb{V}\left(y_{0}-6 y_{1}-6 y_{2}-6 y_{3}\right) \cap \mathbb{V}\left(y_{0}-2 y_{1}-2 y_{2}+2 y_{3}\right)$
$[2,5]$	$c_{25}=\mathbb{V}\left(y_{0}-6 y_{1}-y_{2}-y_{3}\right) \cap \mathbb{V}\left(y_{0}-2 y_{1}-y_{2}+y_{3}\right)$
$[2,6]$	$c_{26}=\mathbb{V}\left(y_{0}-6 y_{1}+y_{2}+y_{3}\right) \cap \mathbb{V}\left(y_{0}-2 y_{1}+y_{2}-y_{3}\right)$
$[3,4]$	$c_{34}=\mathbb{V}\left(y_{1}+y_{3}\right) \cap \mathbb{V}\left(y_{1}-y_{3}\right)$
$[3,5]$	$c_{35}=\mathbb{V}\left(y_{0}-y_{1}+2 y_{2}-y_{3}\right) \cap \mathbb{V}\left(y_{0}-y_{1}+6 y_{2}+y_{3}\right)$
$[3,6]$	$c_{36}=\mathbb{V}\left(y_{0}+y_{1}+2 y_{2}+y_{3}\right) \cap \mathbb{V}\left(y_{0}+y_{1}+6 y_{2}-y_{3}\right)$
$[4,5]$	$c_{45}=\mathbb{V}\left(y_{0}+y_{1}-2 y_{2}-y_{3}\right) \cap \mathbb{V}\left(y_{0}+y_{1}-6 y_{2}+y_{3}\right)$
$[4,6]$	$c_{46}=\mathbb{V}\left(y_{0}-y_{1}-2 y_{2}+y_{3}\right) \cap \mathbb{V}\left(y_{0}-y_{1}-6 y_{2}-y_{3}\right)$
$[5,6]$	$c_{56}=\mathbb{V}\left(y_{0}+y_{3}\right) \cap \mathbb{V}\left(y_{0}-y_{3}\right)$

with the cubic apart from the points P_{i} and P_{j}. The line $\overline{P_{i} P_{j}}$ is the image of a line $c_{i j}$, a transversal to a_{i} and a_{j}, and there are 15 bisecants $\overline{P_{i} P_{j}}$ of a 6 -arc \mathcal{K} as there are $15 c_{i j}$. Two of $c_{i j}$ intersect when they do not share a suffix, and they are skew if they have a suffix in common. That is, the lines c_{12}, c_{34}, c_{56} intersect each other and the lines c_{12}, c_{23} are skew.

Let \mathscr{C}_{i} be the conic through the five points of $\mathcal{S} \backslash\left\{P_{i}\right\}$ for $i=1, \ldots, 6$. A conic and a cubic in $\operatorname{PG}(2, q)$ have six points of intersection; so the conic \mathscr{C}_{i} has one free intersection with a cubic of W. Therefore, a \mathscr{C}_{i} maps a line b_{i} on \mathscr{S}, where b_{i} is the transversal to five $a_{i}, i \neq j$. The line $c_{i j}$ of \mathscr{S} is the line of intersection of two planes, one containing the two intersecting lines a_{i} and b_{j} and the other containing the two intersecting lines a_{j} and b_{i}.

The cubic surface \mathscr{S} has a tangent plane $T_{P} \mathscr{S}$ at every point $P \in \mathscr{S}$. Note that \mathscr{S} has to be non-singular. If the point P lies on the line l of \mathscr{S}, then the tangent plane $T_{P} \mathscr{S}$ contains l.

We know that the lines $\overline{P_{1} P_{2}}, \overline{P_{3} P_{4}}, \overline{P_{5} P_{6}}$ compose a cubic curve of the web W,
and we also know that a curve of W maps a plane section of the cubic surface \mathscr{S}. So the curve composed of the bisecants $\overline{P_{1} P_{2}}, \overline{P_{3} P_{4}}, \overline{P_{5} P_{6}}$, of the 6 -arc \mathcal{S} maps a plane section of \mathscr{S} composed of c_{12}, c_{34}, c_{56}. This plane section meeting \mathscr{S} in three lines is called a tritangent plane. Note that a tritangent plane can meet \mathscr{S} in three lines a_{i}, b_{j} and $c_{i j}, i \neq j=1, \ldots, 6$.

Theorem 3.2. ([16], Page 191) Let \mathscr{S} be a non-singular cubic surface and let P be a point of \mathscr{S}. Then

1. If a point P is on no line of \mathscr{S}, then $T_{P} \mathscr{S} \cap \mathscr{S}$ is an irreducible cubic with a double point at P.
2. If a point P is on exactly one line l of \mathscr{S}, then $T_{P} \mathscr{S} \cap \mathscr{S}$ consists of l and a conic through P.
3. If a point P is on exactly two lines l_{1} and l_{2} of \mathscr{S}, then $T_{P} \mathscr{S} \cap \mathscr{S}$ consists of l_{1}, l_{2} and a third line forming a triangle.
4. If a point P is on exactly three lines l_{1}, l_{2} and l_{3} of \mathscr{S}, then $T_{P} \mathscr{S} \cap \mathscr{S}$ consists of these three lines.

We note here that, in cases (3) and (4) above, $T_{P} \mathscr{S}$ is a tritangent plane. In Case (4), the point P at which three lines of a cubic surface \mathscr{S} are meet is called an Eckardt point or an E-point.

Let these three concurrent lines of \mathscr{S} be c_{12}, c_{34} and c_{56}. We denote this E-point as $E_{12,34,56}$. The image of $E_{12,34,56}$ in the plane $P G(2, q)$ is the Brianchon point $(12,34,56)$ of the $6-\operatorname{arc} \mathcal{S}=\left\{P_{i}: i=1, \ldots, 6\right\}$ not on a conic. Thus, a possible type of an E-point is $E_{i j, k l, m n}=c_{i j} \cap c_{k l} \cap c_{m n}$. Also another possible type of an E-point is $E_{i j}=a_{i} \cap b_{j} \cap c_{i j}$. The image of $E_{i j}$ in the projective plane $P G(2, q)$ is a conic \mathscr{C}_{j} having a tangent $\overline{P_{i} P_{j}}$ where $P_{i} \in \mathscr{C}_{j}$ and $P_{j} \notin \mathscr{C}_{j}$.

Theorem 3.3. ([27], Pages 192,193) Let \mathscr{S} be a non-singular cubic surface in $P G(3, q)$ containing at least one line. Then the following are equivalent:

1. The $q+1$ residual intersections with \mathscr{S} of the planes through any line of \mathscr{S} contain exactly five line pairs;
2. \mathscr{S} has 27 lines;
3. \mathscr{S} has $q^{2}+7 q+1$ points.

3.2 Some classical structures on cubic surfaces

Consider a set of six tritangent planes divided into two triads, such that the three planes of each triad contain the same set of nine distinct lines of the cubic surface \mathscr{S}. This set is called a trihedral pair (See [14], Page 11).

Let \mathscr{S} be a cubic surface with 27 lines $a_{i}, b_{j}, c_{i j}, i, j \in\{1,2,3,4,5,6\}$, where $c_{i j}=c_{j i}$. Then they are as follows:

$$
\begin{array}{llllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} \\
c_{12} & c_{13} & c_{14} & c_{15} & c_{16} & \\
c_{23} & c_{24} & c_{25} & c_{26} & & \\
c_{34} & c_{35} & c_{36} & & & \\
c_{45} & c_{46} & & & & \\
c_{56} & & & & &
\end{array}
$$

Each line meets 10 others, namely

$$
\begin{array}{cccc}
a_{i} & \text { meets } & b_{j}, c_{i j} & \text { with } i \neq j \\
b_{j} & \text { meets } & a_{i}, c_{i j} & \text { with } i \neq j \\
c_{i j} & \text { meets } & a_{i}, a_{j}, b_{i}, b_{j}, c_{r s} & \text { with } r, s \neq i, j .
\end{array}
$$

For example,

$$
\begin{aligned}
& a_{1} \text { meets } b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, c_{12}, c_{13}, c_{14}, c_{15}, c_{16} ; \\
& b_{2} \text { meets } a_{1}, a_{3}, a_{4}, a_{5}, a_{6}, c_{12}, c_{23}, c_{24}, c_{25}, c_{26} ; \\
& c_{12} \text { meets } a_{1}, a_{2}, b_{1}, b_{2}, c_{34}, c_{35}, c_{36}, c_{45}, c_{46}, c_{56} .
\end{aligned}
$$

A tritangent plane meets \mathscr{S} in three lines of the form $c_{i j} c_{k l} c_{m n}$ or $a_{i} b_{j} c_{i j}$ with $i, j, k, l, m, n \in\{1,2,3,4,5,6\}$. Thus, there are 45 tritangent planes, namely,

$$
\begin{aligned}
& 30 \text { of the kind } a_{i} b_{j} c_{i j} \\
& 15 \text { of the kind } c_{i j} c_{k l} c_{m n} .
\end{aligned}
$$

The 27 lines form 36 double-sixes: $D, D_{i j}, D_{i j k}$, namely,

$$
\begin{array}{rcccccc}
D: & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\
& b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} \\
D_{12}: & a_{1} & b_{1} & c_{23} & c_{24} & c_{25} & c_{26} \\
& a_{2} & b_{2} & c_{13} & c_{14} & c_{15} & c_{16} \\
& a_{1} & a_{2} & a_{3} & c_{56} & c_{46} & c_{45} \\
D_{123}: & c_{23} & c_{13} & c_{12} & b_{4} & b_{5} & b_{6}
\end{array}
$$

There is one double-six of type $D, 15$ of type $D_{i j}$, and 20 of type $D_{i j k}$. From the definitions of the tritangent planes and trihedral pair, the 45 tritangent planes form 120 trihedral pairs. Let the six planes of a trihedral pair be given the rows and columns of a 3×3 array. Then the 120 trihedral pairs are the following arrays:

| c_{23} | a_{3} | b_{2} | | a_{1} | b_{4} | c_{14} | | c_{14} | c_{25} | c_{36} | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $T_{123}:$ | b_{3} | c_{13} | a_{1} | $T_{12,43}:$ | b_{3} | a_{2} | c_{23} | $T_{123,456}:$ | c_{26} | c_{34} | c_{15} |
| a_{2} | b_{1} | c_{12} | | c_{13} | c_{24} | c_{56} | | c_{35} | c_{16} | c_{24} | |

There are 20, 90 and 10 trihedral pairs of kind $T_{123}, T_{12,34}$ and $T_{123,456}$ respectively. Now consider a trihedral pair, namely T_{123}

Let the three planes sections $c_{23} a_{3} b_{2}, b_{3} c_{13} a_{1}, a_{2} b_{1} c_{12}$ be given by $\mathbb{V}\left(L_{1}\right), \mathbb{V}\left(L_{2}\right)$, $\mathbb{V}\left(L_{3}\right)$ for L_{1}, L_{2}, L_{3} linear polynomials, and let the three planes sections $c_{23} b_{3} a_{2}$, $a_{3} c_{13} b_{1}, b_{2} a_{1} c_{12}$ be given by $\mathbb{V}\left(L_{1}^{\prime}\right), \mathbb{V}\left(L_{2}^{\prime}\right), \mathbb{V}\left(L_{3}^{\prime}\right)$ for $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ linear polynomials. Then the equation of a cubic surface \mathscr{S} is given by

$$
\begin{equation*}
\mathscr{S}=\mathbb{V}\left(L_{1} L_{2} L_{3}+\lambda L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime}\right), \tag{3.2.1}
\end{equation*}
$$

for some $\lambda \in G F(q) \backslash\{0\}$ (See [27], Page 196 and [4], pages 4,7). Note that the nine lines each being the intersection of two cubic plane sections of a trihedral pair, are: $\mathbb{V}\left(L_{i}, L_{j}^{\prime}\right), i, j \in\{1,2,3\}$. More precisely, for a trihedral pair T_{123} we have:

$$
\begin{aligned}
& \mathbb{V}\left(L_{1}, L_{1}^{\prime}\right)=\mathbb{V}\left(L_{1}\right) \cap \mathbb{V}\left(L_{1}^{\prime}\right)=c_{23}, \\
& \mathbb{V}\left(L_{1}, L_{2}^{\prime}\right)=\mathbb{V}\left(L_{1}\right) \cap \mathbb{V}\left(L_{2}^{\prime}\right)=a_{3}, \\
& \mathbb{V}\left(L_{1}, L_{3}^{\prime}\right)=\mathbb{V}\left(L_{1}\right) \cap \mathbb{V}\left(L_{3}^{\prime}\right)=b_{2}, \\
& \mathbb{V}\left(L_{2}, L_{1}^{\prime}\right)=\mathbb{V}\left(L_{2}\right) \cap \mathbb{V}\left(L_{1}^{\prime}\right)=b_{3}, \\
& \mathbb{V}\left(L_{2}, L_{2}^{\prime}\right)=\mathbb{V}\left(L_{2}\right) \cap \mathbb{V}\left(L_{2}^{\prime}\right)=c_{13}, \\
& \mathbb{V}\left(L_{2}, L_{3}^{\prime}\right)=\mathbb{V}\left(L_{2}\right) \cap \mathbb{V}\left(L_{3}^{\prime}\right)=a_{1}, \\
& \mathbb{V}\left(L_{3}, L_{1}^{\prime}\right)=\mathbb{V}\left(L_{3}\right) \cap \mathbb{V}\left(L_{1}^{\prime}\right)=a_{2}, \\
& \mathbb{V}\left(L_{3}, L_{2}^{\prime}\right)=\mathbb{V}\left(L_{3}\right) \cap \mathbb{V}\left(L_{2}^{\prime}\right)=b_{1}, \\
& \mathbb{V}\left(L_{3}, L_{3}^{\prime}\right)=\mathbb{V}\left(L_{3}\right) \cap \mathbb{V}\left(L_{3}^{\prime}\right)=c_{12} .
\end{aligned}
$$

Let \mathscr{S} be a non-singular cubic surface with 27 lines. Then we have the following facts in ([27], Pages 198,199):

1. If \mathscr{S} contains exactly 6 E-points, they form 6 vertices of a plane quadrilateral.
2. If \mathscr{S} contains exactly 10 E-points, they form the 10 vertices of a pentahedron \mathcal{P}, lying 2 on each of the 15 lines residual to a double-six and whose collinear triples lie on the 10 edges of \mathcal{P}; that is, a non-planar Desargues configuration.

A cubic surface \mathscr{S} with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$, exist and have $q^{2}+7 q+1$ points. The possible two types of E-point, namely, $E_{i j, k l, m n}$ and $E_{s t}$ which correspond to $(i j, k l, m n):=\overline{P_{i} P_{j}} \cap \overline{P_{k} P_{l}} \cap \overline{P_{m} P_{n}}$ and $\mathscr{C}_{t} \cap \overline{P_{s} P_{t}}$ respectively are found, as we will show in the following example:

Let us consider the 6 -arc $\mathcal{S}_{1}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{8}\}$ in $P G(2,17)$. From Table 2.11, we have

$$
\begin{aligned}
& \mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right), \\
& \mathscr{C}_{2}=\mathbb{V}\left(x_{1}^{2}+2 x_{0} x_{1}-5 x_{0} x_{2}+2 x_{1} x_{2}\right), \\
& \mathscr{C}_{3}=\mathbb{V}\left(x_{2}^{2}+3 x_{0} x_{1}+5 x_{0} x_{2}+8 x_{1} x_{2}\right), \\
& \mathscr{C}_{4}=\mathbb{V}\left(x_{0} x_{1}-5 x_{0} x_{2}-4 x_{1} x_{2}\right), \\
& \mathscr{C}_{5}=\mathbb{V}\left(x_{0} x_{1}-6 x_{0} x_{2}+5 x_{1} x_{2}\right), \\
& \mathscr{C}_{6}=\mathbb{V}\left(x_{0} x_{1}-7 x_{0} x_{2}+6 x_{1} x_{2}\right),
\end{aligned}
$$

where \mathscr{C}_{j} is a conic passing through the points of $\mathcal{S}_{1} \backslash\left\{P_{j}\right\}$. The 15 bisecants of \mathcal{S}_{1} are:

$$
\begin{aligned}
& \overline{P_{1} P_{2}}=\mathbb{V}\left(x_{2}\right), \\
& \overline{P_{1} P_{3}}=\mathbb{V}\left(x_{1}\right), \\
& \overline{P_{1} P_{4}}=\mathbb{V}\left(x_{1}-x_{2}\right), \\
& \overline{P_{1} P_{5}}=\mathbb{V}\left(x_{1}+x_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \overline{P_{1} P_{6}}=\mathbb{V}\left(x_{1}+4 x_{2}\right), \\
& \overline{P_{2} P_{3}}=\mathbb{V}\left(x_{0}\right), \\
& \overline{P_{2} P_{4}}=\mathbb{V}\left(x_{0}-x_{2}\right), \\
& \overline{P_{2} P_{5}}=\mathbb{V}\left(x_{0}+5 x_{2}\right), \\
& \overline{P_{2} P_{6}}=\mathbb{V}\left(x_{0}+2 x_{2}\right), \\
& \overline{\overline{P_{3} P_{4}}}=\mathbb{V}\left(x_{0}-x_{1}\right), \\
& \overline{P_{3} P_{5}}=\mathbb{V}\left(x_{0}-5 x_{1}\right), \\
& \overline{P_{3} P_{6}}=\mathbb{V}\left(x_{0}+8 x_{1}\right), \\
& \overline{P_{4} P_{5}}=\mathbb{V}\left(x_{0}-3 x_{1}+2 x_{2}\right), \\
& \overline{P_{4} P_{6}}=\mathbb{V}\left(x_{0}-4 x_{1}+3 x_{2}\right), \\
& \overline{P_{5} P_{6}}=\mathbb{V}\left(x_{0}+x_{1}+6 x_{2}\right),
\end{aligned}
$$

Consequently, there is only E-point of type $E_{i j, k l, m n}$ which corresponds to Brianchon point, namely

$$
(13,26,45)=\overline{P_{1} P_{3}} \cap \overline{P_{2} P_{6}} \cap \overline{P_{4} P_{5}}=(1: 0: 8) .
$$

However, there are two E-points of type $E_{i j}$, namely E_{25} and E_{46} which correspond to

$$
\begin{aligned}
& \mathscr{C}_{5} \cap \overline{P_{2} P_{5}}=(0: 1: 0), \\
& \mathscr{C}_{6} \cap \overline{P_{4} P_{6}}=(1: 1: 1) .
\end{aligned}
$$

Over the Galois field $G F(q)$ with $q=17,19$, we have the Table 3.4 and Table 3.5 which illustrate the Brianchon points of 6 -arcs over $G F(17), G F(19)$ respectively.

Let $\mathscr{S}^{(j)}(q)$ denotes the smooth cubic surface corresponding to the 6 -arcs \mathcal{S} not on a conic, with j Eckardt points. Then from Theorem 2.3, such non-singular cubic

Table 3.4: The Brianchon points of \mathcal{S}_{j} over $G F(17)$

$P G(2,17)$				$P G(2,17)$			
\mathcal{S}_{j}	\mathscr{C}_{t}	$E_{s t}$	$E_{i j, k l, m n}$	\mathcal{S}_{j}	\mathscr{C}_{t}	$E_{s t}$	$E_{i j, k l, m n}$
\mathcal{S}_{1}	\mathscr{C}_{1}	-	$E_{13,26,45}$	\mathcal{S}_{5}	\mathscr{C}_{1}	-	$E_{12,35,46}$
	\mathscr{C}_{2}	-			\mathscr{C}_{2}	-	
	\mathscr{C}_{3}	-			\mathscr{C}_{3}	E_{43}	$E_{12,36,45}$
	\mathscr{C}_{4}	-			\mathscr{C}_{4}	E_{34}	
	\mathscr{C}_{5}	E_{25}			\mathscr{C}_{5}	E_{65}	
	\mathscr{C}_{6}	E_{46}			\mathscr{C}_{6}	E_{56}	
\mathcal{S}_{2}	\mathscr{C}_{1}	-	$E_{16,23,45}$	\mathcal{S}_{6}	\mathscr{C}_{1}	-	$E_{12,34,56}$
	\mathscr{C}_{2}	-	$E_{16,25,34}$		\mathscr{C}_{2}	-	$E_{14,25,36}$
	\mathscr{C}_{3}	E_{23}			\mathscr{C}_{3}	-	$E_{16,23,45}$
	\mathscr{C}_{4}	-			\mathscr{C}_{4}	-	$E_{16,25,34}$
	\mathscr{C}_{5}	E_{45}			\mathscr{C}_{5}	-	
	\mathscr{C}_{6}	-			\mathscr{C}_{6}	-	
\mathcal{S}_{4}	\mathscr{C}_{1}	-	$E_{12,34,56}$	\mathcal{S}_{7}	\mathscr{C}_{1}	-	$E_{12,35,46}$
	\mathscr{C}_{2}	E_{52}	$E_{13,25,46}$		\mathscr{C}_{2}	-	$E_{13,24,56}$
	\mathscr{C}_{3}	E_{43}	$E_{16,24,35}$		\mathscr{C}_{3}	-	$E_{14,26,35}$
	\mathscr{C}_{4}	-			\mathscr{C}_{4}	-	$E_{15,24,36}$
	\mathscr{C}_{5}	-			\mathscr{C}_{5}	-	$E_{16,23,45}$
	\mathscr{C}_{6}	E_{16}			\mathscr{C}_{6}	-	$E_{16,25,34}$

surfaces $\mathscr{S}^{(j)}(q)$ exist and have $409,495,691,1045$ and 1179 points in $P G(3, q)$ for $q=17,19,23,29,31$ respectively.

$3.3 e$-INVARIANTS AND A NON-SINGULAR CUBIC SURFACES WITH 27 LINES

A cubic surface \mathscr{S} always has 27 lines in this section. Recall a point E is said to be an Eckardt point if it lies on exactly three lines of the non-singular cubic surface \mathscr{S} in $\operatorname{PG}(3, q)$. Let us define $e_{r}=e_{r}(\mathscr{S})$ to be the number of points of \mathscr{S} on exactly r lines of \mathscr{S}. So e_{3} is the number of Eckardt points of \mathscr{S}. The numbers e_{r} have been computed for any non-singular cubic surface over $G F(q)$ for $q=17,19,23,29,31$, as we will show later in Section 3.6.

Let n_{q} be the total number of points on the lines of \mathscr{S} over $G F(q)$. Then

$$
n_{q}=e_{3}+e_{2}+e_{1} .
$$

Table 3.5: The Brianchon points of \mathcal{S}_{j} over $G F(19)$

$P G(2,19)$				$P G(2,19)$			
\mathcal{S}_{j}	\mathscr{C}_{t}	$E_{s t}$	$E_{i j, k l, m n}$	\mathcal{S}_{j}	\mathscr{C}_{t}	$E_{s t}$	$E_{i j, k l, m n}$
\mathcal{S}_{1}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \end{aligned}$	E_{46}, E_{56}	-	\mathcal{S}_{7}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \end{aligned}$		$E_{12,35,46}$ $E_{13,24,56}$ $E_{14,26,35}$ $E_{15,24,36}$ $E_{16,23,45}$ $E_{16,25,34}$
\mathcal{S}_{3}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \end{aligned}$	$\begin{gathered} \hline E_{31}, E_{51} \\ E_{52}, E_{62} \\ - \\ E_{34}, E_{64} \end{gathered}$	$E_{13,26,45}$ $E_{15,23,46}$ $E_{16,23,45}$ $E_{16,25,34}$	\mathcal{S}_{8}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \end{aligned}$		$E_{12,34,56}, E_{12,36,45}$ $E_{13,24,56}, E_{13,25,46}$ $E_{14,25,36}, E_{14,26,35}$ $E_{15,23,46}, E_{15,26,34}$ $E_{16,23,45}, E_{16,24,35}$
\mathcal{S}_{4}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \end{aligned}$		$E_{12,35,46}$ $E_{14,23,56}$ $E_{15,26,34}$	\mathcal{S}_{9}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \end{aligned}$	$\begin{aligned} & E_{31}, E_{61} \\ & E_{42}, E_{52} \\ & E_{13}, E_{63} \\ & E_{24}, E_{54} \\ & E_{25}, E_{45} \\ & E_{16}, E_{36} \\ & \hline \end{aligned}$	$\begin{aligned} & E_{12,34,56} \\ & E_{12,35,46} \\ & E_{14,23,56} \\ & E_{14,26,35} \\ & E_{15,23,46} \\ & E_{15,26,34} \\ & \hline \end{aligned}$
\mathcal{S}_{6}	$\begin{aligned} & \mathscr{C}_{1} \\ & \mathscr{C}_{2} \\ & \mathscr{C}_{3} \\ & \mathscr{C}_{4} \\ & \mathscr{C}_{5} \\ & \mathscr{C}_{6} \\ & \hline \end{aligned}$	$\begin{gathered} E_{21}, E_{41} \\ E_{12}, E_{62} \\ - \\ E_{24}, E_{64} \\ -\quad \\ E_{16}, E_{46} \end{gathered}$	$\begin{aligned} & E_{14,26,35} \\ & E_{16,24,35} \end{aligned}$				

Now let $l_{i}, i=1, \ldots, 27$, be the 27 lines of \mathscr{S} and let $e_{r}^{(i)}$ be the number of points of l_{i} on exactly r lines of \mathscr{S}. then

$$
\begin{aligned}
& \sum_{i=1}^{27} e_{3}^{(i)}=3 e_{3} \\
& \sum_{i=1}^{27} e_{2}^{(i)}=2 e_{2} \\
& \sum_{i=1}^{27} e_{1}^{(i)}=e_{1}
\end{aligned}
$$

Also we know that each line meets ten others. So we have

$$
\begin{aligned}
2 e_{3}^{(i)}+e_{2}^{(i)} & =10 \\
e_{3}^{(i)}+e_{2}^{(i)}+e_{1}^{(i)} & =q+1
\end{aligned}
$$

So when we take sum over all $i=1, \ldots, 27$, we get

$$
\begin{aligned}
6 e_{3}+2 e_{2} & =270, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1) .
\end{aligned}
$$

More precisely, we obtain

$$
\begin{aligned}
e_{2}+e_{1} & =27(q-4), \\
n_{q} & =27(q-4)+e_{3} .
\end{aligned}
$$

From Section 2.1, we have $\#(\mathscr{S})=q^{2}+7 q+1$. Hence

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

or

$$
\begin{aligned}
n_{q} & =27(q-4)+e_{3}, \\
e_{3}+e_{0} & =q^{2}+7 q+1-27(q-4)=(q-10)^{2}+9 .
\end{aligned}
$$

So

$$
\#(\mathscr{S})=n_{q}+e_{0} .
$$

We define the e-invariants that correspond to a non-singular cubic surface with 27 lines, \mathscr{S}, as the set $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$. Our classifications over $G F(q)$ for $q=17,19$, 23, 29, 31 of non-singular cubic surfaces with 27 lines (up to e-invariants), are given in Section 3.6.

Theorem 3.4. ([27], Page 194) Let \mathscr{S} be a non-singular cubic surface with 27 lines. Then for $q \leq 16$, upper and lower bounds for e_{3} are given by the Table 3.6.

Table 3.6: Lower and upper bound for e_{3}

q	4	5	7	8	9	11	13	16
Upper bound for e_{3}	45	34	18	13	10	10	18	16
Lower bound for e_{3}	45	36	18	9	0	0	0	45

Table 3.6 does not give exactly the minimal and maximal value of e_{3} over $G F(q)$ for $q \leq 16$. Furthermore, in Table 3.6 we can see that for the case $q=5$ the upper
bound for e_{3} is 34 while the lower bound is 36 . This is impossible. Thus there is no cubic surface with 27 lines for $q=5$. In fact, if there is such cubic surface, we get

$$
e_{3} \leq e_{3}+e_{0}=(q-10)^{2}+9=34
$$

which is contradiction.
The exact value of minimal and maximal value of e_{3} over $G F(13)$, is given by [2]. In our work, we completed the above table and give the exact value of minimal and maximal value of e_{3} over $G F(q)$ for $q=17,19,23,29,31$, and we have the following theorem.

Theorem 3.5. Let \mathscr{S} be a non-singular cubic surface with 27 lines. Then for $q=$ $17,19,23,29,31$, the minimal and maximum value for e_{3} are given in Table 3.7

Table 3.7: Minimal and maximal value of e_{3}

q	17	19	23	29	31
Maximal value of e_{3}	6	18	6	10	18
Minimal value of e_{3}	1	2	1	0	0

Proof. All the detail of the above table are given in our work in Section 3.6.
In the next three sections of this chapter, we will discuss the geometrical configuration formed by six E-points in $P G(3, q)$ for $q=17,19,23,29,31$. Furthermore, we will determine the equations of all the correspond non-singular cubic surfaces with 27 lines. The maximal number of Eckardt points on a non-singular cubic surface will be indicated. Additionally, we will find all elliptic and hyperbolic lines on a non-singular cubic surface with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$.

3.4 The geometrical configuration formed by six and ten E-points IN $P G(3, q)$

In this section, we will give some examples to explain the geometrical configuration formed by six, ten and eighteen E-points in $P G(3, q)$ for $q=17,19,23,29,31$.

From previous chapter, and by using our program, we know that a six E-points of a non-singular cubic surface are the 6 vertices of a plane quadrilateral. The nonsingular cubic surface correspond to the 6 -arc \mathcal{S}_{7} in $P G(2,19)$, has $6 E$-points, which correspond to $E_{12,35,46}, E_{13,24,56}, E_{14,26,35}, E_{15,24,36}, E_{16,23,45}$ and $E_{16,25,34}$, is denoted by $\mathscr{S}^{(6)}(19)$. Also, the $10 E$-points of a non-singular cubic surface $\mathscr{S}^{(10)}(19)$, which correspond to

$$
E_{31}, E_{51}, E_{52}, E_{62}, E_{34}, E_{64}, E_{13,26,45}, E_{15,23,46}, E_{16,23,45} \text { and } E_{16,25,34}
$$

of \mathcal{S}_{3} in $P G(2,19)$, are the 10 vertices of a pentahedron \mathcal{P} lying 2 on each of the 15 lines residual to a double-six and whose collinear triples lie on the 10 edges of \mathcal{P}. In fact, such configuration of the E-points exists since $x^{2}-x-1=0$ has two roots in $G F(19)$, namely 5 and -4 ([16], Page 201). A cubic surface whose $10 E$-points form such a configuration is called a diagonal surface, and we have that, in a suitable coordinate system, the diagonal surface can be written in the form

$$
\mathscr{S}=\mathbb{V}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}\right) \text { for } p \neq 3
$$

where $x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0$.
Furthermore, in $P G(2,19)$, we have the configuration of $18 E$-points, two on each of the 27 lines lying by threes on the six axes of a triad of trihedral pairs $T_{123}, T_{456}, T_{123,456}$. In fact, such configuration exists in $\operatorname{PG}(2,19)$ since $19 \equiv 1 \bmod 3$, that is, the equation $x^{2}+x+1=0$ has two roots in $G F(19)$, namely 7 and -8 ([27], Page 200). For the later case and in a suitable coordinate system, the cubic surfaces can be written in the form

$$
\mathscr{S}=\mathbb{V}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right) .
$$

The following configurations, namely $\mathcal{Q}^{(6)}(19)$ which is the plane quadrilateral formed by the $6 E$-points of $\mathscr{S}^{(6)}(19)$, and $\mathcal{Q}^{(10)}(19)$ which is pentahedron formed by the 10 E-points of $\mathscr{S}^{(10)}(19)$, are shown in Figure 3.2 and Figure 3.3 respectively.

Figure 3.2: The configuration $\mathcal{Q}^{(6)}(19)$.

Figure 3.3: The configuration $\mathcal{Q}^{(10)}(19)$.

3.5 Elliptic and hyperbolic lines on a non-Singular cubic surfaces

In this section, we introduce the concepts of resultant and involution. Furthermore, we define the concepts of elliptic and hyperbolic lines on a non-singular cubic surface, and then we demonstrate these concepts by giving some examples.

Let $f(x)=a_{n} x^{n}+\ldots+a_{0}$ and $g(x)=b_{m} x^{m}+\ldots+b_{0}$ be two polynomials of degrees n and m respectively, with coefficients in an arbitrary field \mathbb{F}. Their resultant $R(f, g)=R_{n, m}(f, g)$ is the element of \mathbb{F} given by the determinant of the
$(m+n) \times(m+n)$ Sylvester matrix $S y l(f, g)=S y l_{n, m}(f, g)$ defined as

$$
\operatorname{Syl}_{n, m}(f, g)=\left(\begin{array}{ccccccc}
a_{n} & a_{n-1} & a_{n-2} & \ldots & 0 & 0 & 0 \\
0 & a_{n} & a_{n-1} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & a_{1} & a_{0} & 0 \\
0 & 0 & 0 & \ldots & a_{2} & a_{1} & a_{0} \\
b_{m} & b_{m-1} & b_{m-2} & \ldots & 0 & 0 & 0 \\
0 & b_{m} & b_{m-1} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & b_{1} & b_{0} & 0 \\
0 & 0 & 0 & \ldots & b_{2} & b_{1} & b_{0}
\end{array}\right)
$$

where the m first rows contain the coefficients $a_{n}, a_{n-1}, \ldots, a_{0}$ of f shifted $0,1, \ldots, m-$ 1 steps and padded with zeros, and the n last rows contain the coefficients b_{m}, b_{m-1}, \ldots, b_{0} of g shifted $0,1, \ldots, n-1$ steps and padded with zeros. The following facts are taken from ([8], Pages 162,163 and [20]):

1. Let $f(x)=a_{n} x^{n}+\ldots+a_{0}$ and $g(x)=b_{m} x^{m}+\ldots+b_{0}$ be two polynomials of degrees n and m respectively, with coefficients in an arbitrary field \mathbb{F}. Suppose that, in some extension field of \mathbb{F} (for example in an algebraically closed extension), f has n roots ξ_{1}, \ldots, ξ_{n} and g has m roots $\eta_{1}, \ldots, \eta_{m}$ (not necessarily distinct). Then

$$
\begin{aligned}
R(f, g) & =a_{n}^{m} b_{m}^{n} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(\xi_{i}-\eta_{j}\right) \\
& =a_{n}^{m} \prod_{i=1}^{n} g\left(\xi_{i}\right) \\
& =(-1)^{n m} b_{m}^{n} \prod_{j=1}^{m} f\left(\eta_{j}\right) .
\end{aligned}
$$

2. Let f and g be two non-zero polynomials of degrees n and m respectively with coefficients in an arbitrary field \mathbb{F}. Then f and g have a common root in some extension of \mathbb{F} if and only if $R(f, g)=0$.
3. If f and g are polynomials of degrees n and $m \geq 1$, then

$$
\Delta(f g)=\Delta(f) \Delta(g) R(f, g)^{2}
$$

where $\Delta(f)$ is the discriminant of f, which is given by

$$
\Delta(f)=a_{n}{ }^{2 n-2} \prod_{1 \leq i<j \leq n}\left(\xi_{i}-\xi_{j}\right)
$$

For the special case, say $n=m=2$, we have

$$
\begin{aligned}
R(f, g) & =\left|\begin{array}{cccc}
a_{2} & a_{1} & a_{0} & 0 \\
0 & a_{2} & a_{1} & a_{0} \\
b_{2} & b_{1} & b_{0} & 0 \\
0 & b_{2} & b_{1} & b_{0}
\end{array}\right| \\
& =\left(a_{2} b_{0}-b_{2} a_{0}\right)^{2}-\left(a_{2} b_{1}-b_{2} a_{1}\right)\left(a_{1} b_{0}-b_{1} a_{0}\right) .
\end{aligned}
$$

Segre divided the lines on cubic surfaces into two species called hyperbolic and elliptic. Consider a real line on the cubic surface. The tangent plane to any point on this line will intersect the surface in the line itself and a further residual conic (perhaps another pair of lines). This residual conic will intersect the line in two points, one of which being the point where we took the tangent plane from. We define an involution on the line by exchanging these two points of intersection. The fixed points of this involution are called parabolic points [28]. It is possible that the parabolic points only exist in the complexification. The real line is called a hyperbolic line if the involution has two real parabolic points. The real line is called an elliptic line if it has a pair of complex conjugate parabolic points.

More concretely, choose projective coordinates $x_{0}, x_{1}, x_{2}, x_{3}$ on $\mathbb{P}_{\mathbb{R}}^{3}$ so that the line l is given by $x_{0}=x_{1}=0$. Then the defining polynomial of the surface \mathscr{S} has the
form

$$
f=x_{2}^{2} \mathfrak{l}_{11}+2 x_{2} x_{3} \mathfrak{l}_{12}+x_{3}^{2} \mathfrak{l}_{22}+x_{2} \mathfrak{q}_{1}+x_{3} \mathfrak{q}_{2}+\mathfrak{c}
$$

where $\mathfrak{l}_{i j}, \mathfrak{q}_{i}$ and \mathfrak{c} are of degree one, two, and three homogeneous polynomial in x_{0}, x_{1}. Any plane containing l is given by the equation $b x_{0}-a x_{1}=0$ for projective coordinates a, b. The pairs of conjugate points (the intersection of l and residual conic) are given by the roots of the projective quadratic in x_{2}, x_{3}

$$
\begin{equation*}
x_{2}^{2} \mathfrak{l}_{11}+2 x_{2} x_{3} \mathfrak{l}_{12}+x_{3}^{2} \mathfrak{l}_{22} \tag{3.5.1}
\end{equation*}
$$

with $\mathfrak{l}_{i j}$ being evaluated at $x_{0}=a, x_{1}=b$. A parabolic point is given by the unique root of this quadratic when its discriminant $\mathfrak{l}_{12}^{2}-\mathfrak{l}_{11} \mathfrak{l}_{22}$ is zero. This discriminant is a quadratic form in $x_{0}=a$ and $x_{1}=b$. Let us call it \mathcal{Q}. If \mathcal{Q} is indefinite, there are two real values of $[a: b]$ which make \mathcal{Q} zero, and each of these values gives a real parabolic point by plugging it into Equation 3.3 and finding the root. If \mathcal{Q} is definite, there are two complex conjugate values of $[a: b]$ making \mathcal{Q} zero, which give the complex conjugate parabolic points. If we let $\mathfrak{l}_{i j}=l_{i j} x_{0}+m_{i j} x_{1}$, then the \mathcal{Q} is explicitly

$$
\left(l_{12}^{2}-l_{11} l_{22}\right) x_{0}^{2}+\left(2 l_{12} m_{12}-l_{11} m_{22}-l_{22} m_{11}\right) x_{0} x_{1}+\left(m_{12}^{2}-m_{11} l_{22}\right) x_{1}^{2}
$$

Write this as $\mathcal{Q}=A x_{0}^{2}+B x_{0} x_{1}+C x_{1}^{2}$. Then \mathcal{Q} is definite (l is elliptic) if $B^{2}-4 A C<0$ and indefinite (l hyperbolic) if $B^{2}-4 A C>0$.

In [12], Finashin-Kharlamov and Okonek-Teleman observed that the equality
\# real hyperbolic lines on $\mathscr{S}-\#$ real elliptic lines on $\mathscr{S}=3$
can be deduced from Segre's work.
We discussed these results over some finite fields, namely $G F(q)$ for $q=17,19$, 23, 29, 31. Just as in the real case, a line $l \subset \mathscr{S}$ admits a distinguished involution, and we classify l as either hyperbolic or elliptic using Proposition 14 in [21].

When all 27 lines on \mathscr{S} are defined over $G F(q)$, we have

$$
\# \text { elliptic lines on } \mathscr{S}=0 \bmod 2
$$

In [21], we see that if \mathscr{S} is any smooth cubic surface over $G F(q)$ and \mathfrak{e} denoted to the total number of elliptic lines on \mathscr{S} with field of definition $G F\left(q^{\alpha}\right)$ for α odd, and \mathfrak{h} denoted to the total number of hyperbolic lines on \mathscr{S} with field of definition $G F\left(q^{\alpha}\right)$ for α even, then we have

$$
\mathfrak{e}+\mathfrak{h}=0 \bmod 2 .
$$

In our work, we used an arithmetic method to determine the hyperbolic and elliptic lines on a non-singular cubic surface by using Proposition 14 in [21]. The residual intersections of a non-singular cubic surface \mathscr{S} with the hyperplanes containing l are conic curves that determine an involution of l, defined so that two points are exchanged if they lie on a common conic. Lines are classified as either hyperbolic or elliptic according to whether the involution is hyperbolic or elliptic as an element of $P G L(2, q)$ (i.e. whether the fixed points are defined over $G F(q)$ or not).

Let l be any line among the 27 lines on a non-singular cubic surface $\mathscr{S}=\mathbb{V}(f)$ over $G F(q)$. Let $\left(a_{0}: a_{1}: a_{2}: a_{3}\right),\left(b_{0}: b_{1}: b_{2}: b_{3}\right)$ be any points on l, then we can parameterize l by

$$
l=\left\{\left(a_{0} \lambda+b_{0} \mu: a_{1} \lambda+b_{1} \mu: a_{2} \lambda+b_{2} \mu: a_{3} \lambda+a_{3} \mu\right):(\lambda: \mu) \in P G(1, q)\right\} .
$$

On the other hand, we can pick a basis $\beta_{3}, \beta_{2}, \beta_{1}, \beta_{0}$ for $G F(q)^{\oplus 4}$ so that $\beta_{3}=$ $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ and $\beta_{2}=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$.

According to Proposition 14 ([21], Page 9) if we compute the resultant of the partial derivative of homogeneous polynomial defining \mathscr{S} with respect to β_{0} and β_{1} and then restrict the result to the line l, then we get

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial \beta_{0}}\right|_{l}=a \lambda^{2}+b \lambda \mu+c \mu^{2} \\
& \left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}=a^{\prime} \lambda^{2}+b^{\prime} \lambda \mu+c^{\prime} \mu^{2}
\end{aligned}
$$

where $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in G F(q)$. Hence

$$
R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right)=\left|\begin{array}{cccc}
a & b & c & 0 \\
0 & a & b & c \\
a^{\prime} & b^{\prime} & c^{\prime} & 0 \\
0 & a^{\prime} & b^{\prime} & c^{\prime}
\end{array}\right|
$$

The line l is elliptic (hyperbolic) if $R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right)$ is non-square (square) as an element of $G F(q)$.

Let us first give an example for the real case: The Clebsch diagonal surface, namely

$$
\mathscr{S}=\mathbb{V}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}\right),
$$

has 27 lines on it. The following are some lines on \mathscr{S} which are given parametrically in $P G(3, \mathbb{R})$ by:

$$
\begin{aligned}
\text { 1. }(\mu:-\mu: \lambda: 0), & \text { 2. }(\mu: \lambda:-\mu: 0), \\
\text { 3. }(\mu: \lambda:-\lambda: 0), & \text { 4. }(\lambda: \mu:-\mu: 0), \\
\text { 5. }(-\mu: \lambda: \mu: 0), & \text { 6. }(\lambda:-\lambda: \mu: \mu), \\
\text { 7. }(\lambda:-\lambda: 0: \mu), & \text { 8. }(\lambda:-\mu:-\lambda: \mu), \\
\text { 9. }(\lambda: 0:-\lambda: \mu), & \text { 10. }(-\mu: \lambda:-\lambda: \mu), \\
\text { 11. }(\lambda:-\lambda+a \mu: a \lambda-\mu: \mu), & \text { 12. }(\lambda:-\lambda+b \mu: b \lambda-\mu: \mu), \\
\text { 13. }(\lambda:-\lambda+a \mu:-a \lambda-a \mu: \mu), & \text { 14. }(\lambda:-\lambda+b \mu:-b \lambda-b \mu: \mu),
\end{aligned}
$$

$$
\begin{aligned}
\text { 15. }(\lambda: a \lambda-\mu:-\lambda+a \mu: \mu), & \text { 16. }(\lambda: b \lambda-\mu:-\lambda+b \mu: \mu), \\
\text { 17. }(\lambda:-a \lambda-a \mu:-\lambda+a \mu: \mu), & \text { 18. }(\lambda:-b \lambda-b \mu:-\lambda+b \mu: \mu), \\
\text { 19. }(\lambda:-a \lambda-\mu: a \lambda+a \mu: \mu), & \text { 20. }(\lambda:-b \lambda-\mu: b \lambda+b \mu: \mu), \\
\text { 21. }(\lambda: a \lambda+a \mu:-a \lambda-\mu: \mu), & \text { 22. }(\lambda: b \lambda+b \mu:-b \lambda-\mu: \mu),
\end{aligned}
$$

where $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}([[3]$, Page 25). Let $l:=(\mu:-\mu: \lambda: 0)$. For l, picking the basis $\beta_{3}=(0,0,1,0), \beta_{2}=(1,-1,0,0), \beta_{1}=(0,0,0,1)$, and $\beta_{0}=(0,0,0,1)$ for $\mathbb{R}^{\oplus 4}$, we get

$$
R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right)=\left|\begin{array}{cccc}
-3 & 0 & 3 & 0 \\
0 & -3 & 0 & 3 \\
-3 & 0 & 0 & 0 \\
0 & -3 & 0 & 0
\end{array}\right|=81 \text { square . }
$$

Hence l is hyperbolic line. In fact, all the first 10 lines are hyperbolic.
Now let us work over the Galois field $G F(q)$: consider the non-singular cubic surface $\mathscr{S}=\mathbb{V}(f)$ over $G F(17)$, where

$$
f\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=y_{0}^{2} y_{1}+4 y_{1}^{2} y_{0}+y_{2}^{2} y_{3}+2 y_{3}^{2} y_{2}-8 y_{0} y_{1} y_{2}-4 y_{0} y_{2} y_{3}-5 y_{1} y_{2} y_{3}
$$

Let us determine the kind of the following two lines l and m on \mathscr{S}, namely

$$
\begin{aligned}
l & =\{(\lambda: 0: \mu: 0):(\lambda: \mu) \in P G(1,17)\}, \\
m & =\{(0: \lambda: \mu: 0):(\lambda: \mu) \in P G(1,17)\} .
\end{aligned}
$$

For l, picking the basis $\beta_{3}=(0,0,1,0), \beta_{2}=(1,0,0,0), \beta_{1}=(0,0,0,1)$, and $\beta_{0}=$ $(0,1,0,0)$, we get

$$
R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right)=\left|\begin{array}{cccc}
1 & -8 & 0 & 0 \\
0 & 1 & -8 & 0 \\
0 & -4 & 1 & 0 \\
0 & 0 & -4 & 1
\end{array}\right|=3 \text { non-square }(\bmod 17)
$$

Hence l is an elliptic line.
For m, picking the basis $\beta_{3}=(0,0,1,0), \beta_{2}=(0,1,0,0), \beta_{1}=(0,0,0,1)$, and $\beta_{0}=(1,0,0,0)$, we get

$$
R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{m},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{m}\right)=\left|\begin{array}{cccc}
8 & -8 & 0 & 0 \\
0 & 8 & -8 & 0 \\
0 & -5 & 1 & 0 \\
0 & 0 & -5 & 1
\end{array}\right|=16 \text { square }(\bmod 17)
$$

Hence m is hyperbolic line.
All the hyperbolic and elliptic lines on a non-singular cubic surface with 27 lines over $G F(q)$ for $q=17,19,23,29,31$ are indicated in tables for the next section.

3.6 The Equation of a non-Singular cubic surface

In this section, we will give the equation of a non-singular cubic surface with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$. Furthermore, we will find the lines and Eckardt points on each of them, and we will determine whether the line is elliptic or hyperbolic.

Recall that a cubic surface \mathscr{S} with 27 lines in $P G(3, q)$ can be mapped onto the plane in the following way. Let $\mathscr{S}=V(F)$ be given, as in Equation 3.2, by

$$
F=L_{1} L_{2} L_{3}+L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime}=\left|\begin{array}{ccc}
0 & L_{1} & L_{3}^{\prime} \\
L_{1}^{\prime} & 0 & L_{2} \\
L_{3} & L_{2}^{\prime} & 0
\end{array}\right|=0
$$

where $L_{1}, L_{2}, L_{3}, L_{1}^{\prime}, L_{2}^{\prime}$ and L_{3}^{\prime} are homogeneous linear polynomials in 4 variables, namely y_{0}, y_{1}, y_{2} and y_{3}. The above homogeneous linear polynomials can be written

$$
\begin{aligned}
& L_{1}=\alpha_{00} y_{0}+\alpha_{01} y_{1}+\alpha_{02} y_{2}+\alpha_{03} y_{3}, \\
& L_{2}=\alpha_{10} y_{0}+\alpha_{11} y_{1}+\alpha_{12} y_{2}+\alpha_{13} y_{3}, \\
& L_{3}=\alpha_{30} y_{0}+\alpha_{31} y_{1}+\alpha_{32} y_{2}+\alpha_{33} y_{3}, \\
& L_{1}^{\prime}=\beta_{00} y_{0}+\beta_{01} y_{1}+\beta_{02} y_{2}+\beta_{03} y_{3}, \\
& L_{2}^{\prime}=\beta_{10} y_{0}+\beta_{11} y_{1}+\beta_{12} y_{2}+\beta_{13} y_{3}, \\
& L_{3}^{\prime}=\beta_{30} y_{0}+\beta_{31} y_{1}+\beta_{32} y_{2}+\beta_{33} y_{3},
\end{aligned}
$$

where $\alpha_{i j}$ and $\beta_{i j}$ are elements in $G F(q)$. Let $P(Y):=P\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ be a point in the projective space $P G(3, q)$ such that $P(Y) \notin \mathbb{V}\left(L_{1}\right) \cup \mathbb{V}\left(L_{2}\right) \cup \mathbb{V}\left(L_{3}\right) \cup \mathbb{V}\left(L_{1}^{\prime}\right) \cup$ $\mathbb{V}\left(L_{2}^{\prime}\right) \cup \mathbb{V}\left(L_{3}^{\prime}\right)$. A point $P(Y)$ is on \mathscr{S} if and only if

$$
\left|\begin{array}{ccc}
0 & L_{1} & L_{3}^{\prime} \\
L_{1}^{\prime} & 0 & L_{2} \\
L_{3} & L_{2}^{\prime} & 0
\end{array}\right|=0
$$

Consequently, there exists a point $P(X)=\left(x_{0}, x_{1}, x_{2}\right) \in P G(2, q)$ such that the following system has a non-trivial unique solution:

$$
\begin{align*}
& L_{1}^{\prime}(Y) x_{1}+L_{3}(Y) x_{2}=0 \\
& L_{1}(Y) x_{0}+L_{2}^{\prime}(Y) x_{2}=0, \tag{3.6.1}\\
& L_{3}^{\prime}(Y) x_{0}+L_{2}(Y) x_{1}=0 .
\end{align*}
$$

Let us illustrate the Clebsch map, namely $s: \mathscr{S} \rightarrow P G(2, q)$, in more detail: This map takes $P(Y):=P\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ to $P(X)=\left(x_{0}, x_{1}, x_{2}\right)$, where

$$
\begin{aligned}
& \frac{x_{0}}{x_{1}}=-\frac{L_{2}(Y)}{L_{3}^{\prime}(Y)} \\
& \frac{x_{0}}{x_{2}}=-\frac{L_{2}^{\prime}(Y)}{L_{1}(Y)} \\
& \frac{x_{1}}{x_{2}}=-\frac{L_{3}(Y)}{L_{1}^{\prime}(Y)}=-\frac{L_{2}^{\prime}(Y) L_{3}^{\prime}(Y)}{L_{1}(Y) L_{2}(Y)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& x_{0}=L_{2}(Y) L_{3}(Y) L_{2}^{\prime}(Y), \\
& x_{1}=-L_{3}(Y) L_{2}^{\prime}(Y) L_{3}^{\prime}(Y), \\
& x_{2}=-L_{1}(Y) L_{2}(Y) L_{3}(Y)
\end{aligned}
$$

Moreover, if we assume that $x_{2}=1$ then

$$
\begin{aligned}
& x_{0}=\frac{x_{0}}{x_{1}} \frac{x_{1}}{x_{2}}=\frac{L_{2}(Y) L_{3}(Y)}{L_{1}^{\prime}(Y) L_{3}^{\prime}(Y)} \\
& x_{1}=\frac{x_{1}}{x_{2}}=-\frac{L_{3}(Y)}{L_{1}^{\prime}(Y)} \\
& x_{2}=\frac{x_{1}}{x_{2}} \cdot \frac{x_{2}}{x_{0}} \cdot \frac{x_{0}}{x_{1}}=-\frac{L_{1}(Y) L_{2}(Y) L_{3}(Y)}{L_{1}^{\prime}(Y) L_{2}^{\prime}(Y) L_{3}^{\prime}(Y)}=1 .
\end{aligned}
$$

At this stage, we find rational functions, namely

$$
\begin{aligned}
& x_{0}=\rho_{0}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=\frac{L_{2}(Y) L_{3}(Y)}{L_{1}^{\prime}(Y) L_{3}^{\prime}(Y)} \\
& x_{1}=\rho_{1}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=-\frac{L_{3}(Y)}{L_{1}^{\prime}(Y)} \\
& x_{2}=\rho_{1}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=1
\end{aligned}
$$

Hence the Clebsch map, namely s, is a rational map. In order to prove that s is a birational map, it is enough to show there ia a map $s^{-1}: P G(2, q) \rightarrow-\mathscr{S}$ such that $s s^{-1}=I$. Rewrite the system in Equation 3.6.1 as

$$
\begin{aligned}
& L_{11}\left(x_{0}, x_{1}, x_{2}\right) y_{0}+L_{12}\left(x_{0}, x_{1}, x_{2}\right) y_{1}+L_{13}\left(x_{0}, x_{1}, x_{2}\right) y_{2}+L_{14}\left(x_{0}, x_{1}, x_{2}\right) y_{3}=0, \\
& L_{21}\left(x_{0}, x_{1}, x_{2}\right) y_{0}+L_{22}\left(x_{0}, x_{1}, x_{2}\right) y_{1}+L_{23}\left(x_{0}, x_{1}, x_{2}\right) y_{2}+L_{24}\left(x_{0}, x_{1}, x_{2}\right) y_{3}=0, \\
& L_{31}\left(x_{0}, x_{1}, x_{2}\right) y_{0}+L_{32}\left(x_{0}, x_{1}, x_{2}\right) y_{1}+L_{33}\left(x_{0}, x_{1}, x_{2}\right) y_{2}+L_{34}\left(x_{0}, x_{1}, x_{2}\right) y_{3}=0,
\end{aligned}
$$

where $L_{i j} ; i, j \in\{1,2,3,4\}$ are linear forms in the variables x_{0}, x_{1} and x_{2}. Hence, we have the system $L Y^{t}=0$ where

$$
L=\left(\begin{array}{cccc}
L_{11} & L_{12} & L_{13} & L_{14} \\
L_{21} & L_{22} & L_{23} & L_{24} \\
L_{31} & L_{32} & L_{33} & L_{34}
\end{array}\right)
$$

Let

$$
L^{\prime}=\left(\begin{array}{ccc}
L_{11} & L_{12} & L_{13} \\
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33}
\end{array}\right)
$$

Then

$$
\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right)=\operatorname{Adj}\left(L^{\prime}\right)\left(\begin{array}{c}
L_{14} \\
L_{24} \\
L_{34}
\end{array}\right) \text { and } y_{3}=-\operatorname{det}\left(L^{\prime}\right)
$$

where $\operatorname{Adj}\left(L^{\prime}\right)$ is the adjoint of L^{\prime}. In other words, we get

$$
\begin{aligned}
y_{0} & =\gamma_{01} x_{0}^{2} x_{1}+\gamma_{02} x_{0}^{2} x_{2}+\gamma_{03} x_{1}^{2} x_{0}+\gamma_{04} x_{1}^{2} x_{2}+\gamma_{05} x_{2}^{2} x_{0}+\gamma_{06} x_{2}^{2} x_{1}+\gamma_{07} x_{0} x_{1} x_{2} \\
& :=W_{0}(X), \\
y_{1} & =\gamma_{11} x_{0}^{2} x_{1}+\gamma_{12} x_{0}^{2} x_{2}+\gamma_{13} x_{1}^{2} x_{0}+\gamma_{14} x_{1}^{2} x_{2}+\gamma_{15} x_{2}^{2} x_{0}+\gamma_{16} x_{2}^{2} x_{1}+\gamma_{17} x_{0} x_{1} x_{2} \\
& :=W_{1}(X), \\
y_{2} & =\gamma_{21} x_{0}^{2} x_{1}+\gamma_{22} x_{0}^{2} x_{2}+\gamma_{23} x_{1}^{2} x_{0}+\gamma_{24} x_{1}^{2} x_{2}+\gamma_{25} x_{2}^{2} x_{0}+\gamma_{26} x_{2}^{2} x_{1}+\gamma_{27} x_{0} x_{1} x_{2} \\
& :=W_{2}(X), \\
y_{3} & =\gamma_{31} x_{0}^{2} x_{1}+\gamma_{32} x_{0}^{2} x_{2}+\gamma_{33} x_{1}^{2} x_{0}+\gamma_{34} x_{1}^{2} x_{2}+\gamma_{35} x_{2}^{2} x_{0}+\gamma_{36} x_{2}^{2} x_{1}+\gamma_{37} x_{0} x_{1} x_{2} \\
& :=W_{3}(X),
\end{aligned}
$$

where $\gamma_{i j}$ is in $G F(q)$ and each W_{i} is plane cubic curve. So There is a map s^{-1} such that $s^{-1}: P G(2, q) \rightarrow \mathscr{S}$, and s^{-1} maps $P(X)=P\left(x_{0}, x_{1}, x_{2}\right)$ to $P(Y)=$ $P\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ where $y_{i}=W_{i}(X), i=0,1,2,3$. Note that s^{-1} is again a rational map and $s s^{-1}=I$. It follows that s is a birational map.

Since the L_{i} and L_{i}^{\prime} are linear, solving for the y_{i} gives

$$
\left(y_{0}: y_{1}: y_{2}: y_{3}\right)=\left(W_{0}(X): W_{1}(X): W_{2}(X): W_{3}(X)\right)
$$

where each W_{i} is plane cubic curve. So we have a birational map

$$
s: \mathscr{S} \rightarrow P G(2, q)
$$

given by $s(P(Y))=P(X)$ which is the Clebsch mapping mentioned in Section 3.1. Recall that s maps plane sections of \mathscr{S} to cubic curves through the set \mathscr{B} of base points, where

$$
\mathscr{B}=\mathbb{V}\left(W_{0}, W_{1}, W_{2}, W_{3}\right)
$$

In fact, $\mathscr{B}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ is a 6 -arc not on a conic. Then there exists one half of a double-six on \mathscr{S}, namely $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$, such that if \mathscr{A} is the set of points on the lines a_{i} then the restriction of s is a bijection

$$
s: \mathscr{S} \backslash \mathscr{A} \rightarrow P G(2, q) \backslash \mathscr{B} .
$$

Let \mathscr{C}_{j} be the conic through the 5 points of \mathscr{B} other than P_{j}. Then we have

$$
\begin{aligned}
s\left(a_{i}\right) & =P_{i} \\
s\left(b_{j}\right) & =\mathscr{C}_{j} \\
s\left(c_{i j}\right) & =\overline{P_{i} P_{j}}
\end{aligned}
$$

Let us give some examples: consider the 6 -arc not on a conic in $P G(2,13)$, namely

$$
\mathcal{S}:=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}
$$

where

$$
\begin{array}{ll}
P_{1}=(1: 7: 0), & P_{4}=(1: 0: 7), \\
P_{2}=(1: 6: 0), & P_{5}=(0: 1: 11), \\
P_{3}=(1: 0: 6), & P_{6}=(0: 1: 2) .
\end{array}
$$

In fact, the six points form a 6 -arc, and $\mathscr{C}_{1}:=\mathbb{V}\left(x_{0}^{2}+3 x_{1}^{2}-4 x_{2}^{2}-3 x_{0} x_{1}\right)$ is a conic through $\mathcal{S} \backslash\left\{P_{1}\right\}$. The corresponding non-singular cubic surface with 27 lines, namely \mathscr{S} in $P G(3,13)$ can be determined in 5 stages as follows:

Stage(1): We find all bisecants $\overline{P_{i} P_{j}}$ of the 6 -arc \mathcal{S}. The 15 bisecants of \mathcal{S} are

$$
\begin{array}{ll}
\overline{P_{1} P_{2}}=\mathbb{V}\left(x_{2}\right), & \overline{P_{2} P_{6}}=\mathbb{V}\left(x_{0}+2 x_{1}-x_{2}\right), \\
\overline{P_{1} P_{3}}=\mathbb{V}\left(x_{0}-2 x_{1}+2 x_{2}\right), & \overline{P_{3} P_{4}}=\mathbb{V}\left(x_{1}\right), \\
\overline{P_{1} P_{4}}=\mathbb{V}\left(x_{0}-2 x_{1}-2 x_{2}\right), & \overline{P_{3} P_{5}}=\mathbb{V}\left(x_{0}+4 x_{1}+2 x_{2}\right), \\
\overline{P_{1} P_{5}}=\mathbb{V}\left(x_{0}-2 x_{1}-x_{2}\right), & \overline{P_{3} P_{6}}=\mathbb{V}\left(x_{0}-3 x_{1}+2 x_{2}\right), \\
\overline{P_{1} P_{6}}=\mathbb{V}\left(x_{0}-2 x_{1}+x_{2}\right), & \overline{\overline{P_{4} P_{5}}}=\mathbb{V}\left(x_{0}-3 x_{1}-2 x_{2}\right), \\
\overline{P_{2} P_{3}}=\mathbb{V}\left(x_{0}+2 x_{1}+2 x_{2}\right), & \overline{P_{4} P_{6}}=\mathbb{V}\left(x_{0}+4 x_{1}-2 x_{2}\right), \\
\overline{P_{2} P_{4}}=\mathbb{V}\left(x_{0}+2 x_{1}-2 x_{2}\right), & \overline{P_{5} P_{6}}=\mathbb{V}\left(x_{0}\right) . \\
\overline{P_{2} P_{5}}=\mathbb{V}\left(x_{0}+2 x_{1}+x_{2}\right), &
\end{array}
$$

Stage(2): We find all the conics \mathscr{C}_{i} through $S \backslash\left\{P_{i}\right\} ; i=1,2,3,4,5,6$. The conics \mathscr{C}_{i} are

$$
\begin{aligned}
& \mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+3 x_{1}^{2}-4 x_{2}^{2}-3 x_{0} x_{1}\right), \\
& \mathscr{C}_{2}=\mathbb{V}\left(x_{0}^{2}+3 x_{1}^{2}-4 x_{2}^{2}+3 x_{0} x_{1}\right), \\
& \mathscr{C}_{3}=\mathbb{V}\left(x_{0}^{2}-4 x_{1}^{2}+x_{2}^{2}+4 x_{0} x_{1}\right), \\
& \mathscr{C}_{4}=\mathbb{V}\left(x_{0}^{2}-4 x_{1}^{2}+x_{2}^{2}-4 x_{0} x_{1}\right), \\
& \mathscr{C}_{5}=\mathbb{V}\left(x_{0}^{2}-4 x_{1}^{2}-4 x_{2}^{2}-3 x_{0} x_{1}\right), \\
& \mathscr{C}_{6}=\mathbb{V}\left(x_{0}^{2}-4 x_{1}^{2}-4 x_{2}^{2}+3 x_{0} x_{1}\right),
\end{aligned}
$$

Stage(3): We find all the plane cubics $\omega_{i}:=\mathbb{V}\left(W_{i}\right)$ through \mathcal{S}. The 30 cubic curves of the form $\mathbb{V}\left(\mathscr{C}_{j} \cdot \overline{P_{i} P_{j}}\right)$ are

$$
\begin{aligned}
\omega_{1}= & \mathbb{V}\left(x_{0}^{3}+5 x_{1}^{3}+2 x_{2}^{3}+2 x_{0}^{2} x_{1}+6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+2 x_{2}^{2} x_{1}\right. \\
& \left.-5 x_{0} x_{1} x_{2}\right), \\
\omega_{2}= & \mathbb{V}\left(x_{0}^{3}-6 x_{1}^{3}+5 x_{2}^{3}-5 x_{0}^{2} x_{1}+2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-5 x_{2}^{2} x_{1}\right. \\
& \left.-6 x_{0} x_{1} x_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{3}=\mathbb{V}\left(x_{0}^{3}+6 x_{1}^{3}+5 x_{2}^{3}+5 x_{0}^{2} x_{1}+2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+5 x_{2}^{2} x_{1}\right. \\
& \left.+6 x_{0} x_{1} x_{2}\right), \\
& \omega_{4}=\mathbb{V}\left(x_{0}^{3}-5 x_{1}^{3}+2 x_{2}^{3}-2 x_{0}^{2} x_{1}+6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-2 x_{2}^{2} x_{1}\right. \\
& \left.+5 x_{0} x_{1} x_{2}\right), \\
& \omega_{5}=\mathbb{V}\left(x_{0}^{3}-5 x_{1}^{3}-2 x_{2}^{3}-2 x_{0}^{2} x_{1}-6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-2 x_{2}^{2} x_{1}\right. \\
& \left.-5 x_{0} x_{1} x_{2}\right), \\
& \omega_{6}=\mathbb{V}\left(x_{0}^{3}-6 x_{1}^{3}-5 x_{2}^{3}-5 x_{0}^{2} x_{1}-2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-5 x_{2}^{2} x_{1}\right. \\
& \left.+6 x_{0} x_{1} x_{2}\right), \\
& \omega_{7}=\mathbb{V}\left(x_{0}^{3}-5 x_{1}^{3}+4 x_{2}^{3}-2 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-2 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{8}=\mathbb{V}\left(x_{0}^{3}-6 x_{1}^{3}+4 x_{2}^{3}-5 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-5 x_{2}^{2} x_{1}\right. \\
& +3 x_{0} x_{1} x_{2} \text {), } \\
& \omega_{9}=\mathbb{V}\left(x_{0}^{3}-5 x_{1}^{3}-4 x_{2}^{3}-2 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-2 x_{2}^{2} x_{1}\right. \\
& \left.+3 x_{0} x_{1} x_{2}\right), \\
& \omega_{10}=\mathbb{V}\left(x_{0}^{3}-6 x_{1}^{3}-4 x_{2}^{3}-5 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-5 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{11}=\mathbb{V}\left(x_{0}^{3}+5 x_{1}^{3}-2 x_{2}^{3}+2 x_{0}^{2} x_{1}-6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+2 x_{2}^{2} x_{1}\right. \\
& \left.+5 x_{0} x_{1} x_{2}\right), \\
& \omega_{12}=\mathbb{V}\left(x_{0}^{3}+6 x_{1}^{3}-5 x_{2}^{3}+5 x_{0}^{2} x_{1}-2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+5 x_{2}^{2} x_{1}\right. \\
& \left.-6 x_{0} x_{1} x_{2}\right), \\
& \omega_{13}=\mathbb{V}\left(x_{0}^{3}+5 x_{1}^{3}-4 x_{2}^{3}+2 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+2 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{14}=\mathbb{V}\left(x_{0}^{3}+6 x_{1}^{3}-4 x_{2}^{3}+5 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+5 x_{2}^{2} x_{1}\right. \\
& \left.+3 x_{0} x_{1} x_{2}\right), \\
& \omega_{15}=\mathbb{V}\left(x_{0}^{3}+5 x_{1}^{3}+4 x_{2}^{3}+2 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+2 x_{2}^{2} x_{1}\right. \\
& \left.+3 x_{0} x_{1} x_{2}\right), \\
& \omega_{16}=\mathbb{V}\left(x_{0}^{3}+6 x_{1}^{3}+4 x_{2}^{3}+5 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+5 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{17}=\mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}+5 x_{2}^{3}+4 x_{0}^{2} x_{1}+2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{18}=\mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}+2 x_{2}^{3}+4 x_{0}^{2} x_{1}+6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.+3 x_{0} x_{1} x_{2}\right), \\
& \omega_{19}=\mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}+5 x_{2}^{3}-4 x_{0}^{2} x_{1}+2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& +3 x_{0} x_{1} x_{2} \text {), } \\
& \omega_{20}=\mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}+2 x_{2}^{3}-4 x_{0}^{2} x_{1}+6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{21}=\mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}-5 x_{2}^{3}-4 x_{0}^{2} x_{1}-2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{22}=\mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}-2 x_{2}^{3}-4 x_{0}^{2} x_{1}-6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.+3 x_{0} x_{1} x_{2}\right), \\
& \omega_{23}=\mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}-5 x_{2}^{3}+4 x_{0}^{2} x_{1}-2 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-6 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.+3 x_{0} x_{1} x_{2}\right), \\
& \omega_{24}=\mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}-2 x_{2}^{3}+4 x_{0}^{2} x_{1}-6 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-5 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{25}=\mathbb{V}\left(x_{0}^{3}-4 x_{1}^{2} x_{0}-4 x_{2}^{2} x_{0}+3 x_{0} x_{1} x_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{26}=\mathbb{V}\left(x_{1}^{3}+3 x_{0}^{2} x_{1}+3 x_{2}^{2} x_{1}+x_{0} x_{1} x_{2}\right), \\
& \omega_{27}=\mathbb{V}\left(x_{2}^{3}+3 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{2}-4 x_{0} x_{1} x_{2}\right), \\
& \omega_{28}=\mathbb{V}\left(x_{0}^{3}-4 x_{1}^{2} x_{0}-4 x_{2}^{2} x_{0}-3 x_{0} x_{1} x_{2}\right), \\
& \omega_{29}=\mathbb{V}\left(x_{1}^{3}+3 x_{0}^{2} x_{1}+3 x_{2}^{2} x_{1}-x_{0} x_{1} x_{2}\right), \\
& \omega_{30}=\mathbb{V}\left(x_{2}^{3}+3 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{2}+4 x_{0} x_{1} x_{2}\right)
\end{aligned}
$$

The 15 cubic curves of the form $\mathbb{V}\left(\overline{P_{i} P_{j}} \cdot \overline{P_{k} P_{l}} \cdot \overline{P_{m} P_{n}}\right)$ are

$$
\begin{aligned}
\omega_{31}= & \mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}-4 x_{2}^{3}+4 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.+x_{0} x_{1} x_{2}\right), \\
\omega_{32}= & \mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}+4 x_{2}^{3}-4 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.+2 x_{0} x_{1} x_{2}\right), \\
\omega_{33}= & \mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}-4 x_{2}^{3}-4 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.-x_{0} x_{1} x_{2}\right), \\
\omega_{34}= & \mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}-4 x_{2}^{3}+4 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.+2 x_{0} x_{1} x_{2}\right), \\
\omega_{35}= & \mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}-4 x_{2}^{3}-4 x_{0}^{2} x_{1}+x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}+3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.-2 x_{0} x_{1} x_{2}\right), \\
\omega_{36}= & \mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}+4 x_{2}^{3}+4 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.-2 x_{0} x_{1} x_{2}\right), \\
\omega_{37}= & \mathbb{V}\left(x_{0}^{3}-3 x_{1}^{3}+4 x_{2}^{3}+4 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}+4 x_{2}^{2} x_{1}\right. \\
& \left.-x_{0} x_{1} x_{2}\right), \\
\omega_{38}= & \mathbb{V}\left(x_{0}^{3}+3 x_{1}^{3}+4 x_{2}^{3}-4 x_{0}^{2} x_{1}-x_{0}^{2} x_{2}-4 x_{1}^{2} x_{0}-3 x_{1}^{2} x_{2}-4 x_{2}^{2} x_{0}-4 x_{2}^{2} x_{1}\right. \\
& \left.+x_{0} x_{1} x_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{39}=\mathbb{V}\left(x_{1}^{3}+3 x_{0}^{2} x_{1}+3 x_{2}^{2} x_{1}+6 x_{0} x_{1} x_{2}\right), \\
& \omega_{40}=\mathbb{V}\left(x_{1}^{3}+3 x_{0}^{2} x_{1}+3 x_{2}^{2} x_{1}-6 x_{0} x_{1} x_{2}\right), \\
& \omega_{41}=\mathbb{V}\left(x_{0}^{3}-4 x_{1}^{2} x_{0}-4 x_{2}^{2} x_{0}+5 x_{0} x_{1} x_{2}\right), \\
& \omega_{42}=\mathbb{V}\left(x_{0}^{3}-4 x_{1}^{2} x_{0}-4 x_{2}^{2} x_{0}-5 x_{0} x_{1} x_{2}\right), \\
& \omega_{43}=\mathbb{V}\left(x_{2}^{3}+3 x_{0}^{2} x_{1}-4 x_{1}^{2} x_{2}-2 x_{0} x_{1} x_{2}\right), \\
& \omega_{44}=\mathbb{V}\left(x_{2}^{3}+3 x_{0}^{2} x_{1}-4 x_{1}^{2} x_{2}+2 x_{0} x_{1} x_{2}\right), \\
& \omega_{45}=\mathbb{V}\left(x_{0} x_{1} x_{2}\right) .
\end{aligned}
$$

Stage(4): We choose four base cubic curves through \mathcal{S}, namely $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$. The corresponding tritangent planes on \mathscr{S} (called base tritangent planes) are chosen as

$$
\begin{aligned}
& \pi_{\omega_{1}}=\mathbb{V}\left(\Pi_{W_{1}}\right):=\mathbb{V}\left(y_{0}\right), \\
& \pi_{\omega_{2}}=\mathbb{V}\left(\Pi_{W_{2}}\right):=\mathbb{V}\left(y_{1}\right), \\
& \pi_{\omega_{3}}=\mathbb{V}\left(\Pi_{W_{3}}\right):=\mathbb{V}\left(y_{2}\right), \\
& \pi_{\omega_{4}}=\mathbb{V}\left(\Pi_{W_{4}}\right):=\mathbb{V}\left(y_{3}\right),
\end{aligned}
$$

where $\Pi_{W_{j}}$ is a linear form defining $\pi_{\omega_{j}}$ and correspond to the cubic form W_{j} defining ω_{j}. Every tritangent plane on \mathscr{S} can be written as a linear combination of $y_{0}, y_{1}, y_{2}, y_{3}$. For instance, the plane cubic curve ω_{27} is a linear combination of the 4 base cubic curves:

$$
\begin{aligned}
\omega_{27}=\mathbb{V}\left(W_{27}\right) & =\mathbb{V}\left(x_{2}^{3}+3 x_{0}^{2} x_{2}-4 x_{1}^{2} x_{2}-4 x_{0} x_{1} x_{2}\right) \\
W_{27}:=s\left(\Pi_{W_{27}}\right) & =\lambda_{1} W_{1}+\lambda_{2} W_{2}+\lambda_{3} W_{3}+\lambda_{4} W_{4} ; \lambda_{i} \in G F(13) \\
& =\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\right) x_{0}^{3}+\left(5 \lambda_{1}-6 \lambda_{2}+6 \lambda_{3}-5 \lambda_{4}\right) x_{1}^{3} \\
& +\left(2 \lambda_{1}+5 \lambda_{2}+5 \lambda_{3}+2 \lambda_{4}\right) x_{2}^{3}+\left(2 \lambda_{1}-5 \lambda_{2}+5 \lambda_{3}-2 \lambda_{4}\right) x_{0}^{2} x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(6 \lambda_{1}+2 \lambda_{2}+2 \lambda_{3}+6 \lambda_{4}\right) x_{0}^{2} x_{2}+\left(-4 \lambda_{1}-4 \lambda_{2}-4 \lambda_{3}-4 \lambda_{4}\right) x_{1}^{2} x_{0} \\
& +\left(5 \lambda_{1}+6 \lambda_{2}+6 \lambda_{3}+5 \lambda_{4}\right) x_{1}^{2} x_{2}+\left(-4 \lambda_{1}-4 \lambda_{2}-4 \lambda_{3}-4 \lambda_{4}\right) x_{2}^{2} x_{0} \\
& +\left(2 \lambda_{1}-5 \lambda_{2}+5 \lambda_{3}-2 \lambda_{4}\right) x_{2}^{2} x_{1}+\left(-5 \lambda_{1}-6 \lambda_{2}+6 \lambda_{3}+5 \lambda_{4}\right) x_{0} x_{1} x_{2}
\end{aligned}
$$

By some calculations, we get $\lambda_{1}=-6, \lambda_{2}=5, \lambda_{3}=0$ and $\lambda_{4}=1$. It follows that

$$
\begin{aligned}
s\left(\Pi_{W_{27}}\right) & =-6 W_{1}+5 W_{2}+W_{4} \\
& =-6 s\left(\Pi_{W_{1}}\right)+5 s\left(\Pi_{W_{2}}\right)+s\left(\Pi_{W_{4}}\right) \\
& =s\left(-6 \Pi_{W_{1}}+5 \Pi_{W_{2}}+\Pi_{W_{4}}\right) \\
& =s\left(-6 y_{0}+5 y_{1}+y_{3}\right) .
\end{aligned}
$$

So

$$
\Pi_{W_{27}}=-6 y_{0}+5 y_{1}+y_{3} \text { and } \pi_{\omega_{27}}=\mathbb{V}\left(-6 y_{0}+5 y_{1}+y_{3}\right)
$$

By using similar augment as above, we get all the 45 tritangent planes on \mathscr{S}, namely

$$
\begin{aligned}
& \pi_{\omega_{1}}=\mathbb{V}\left(y_{0}\right), \\
& \pi_{\omega_{2}}=\mathbb{V}\left(y_{1}\right), \\
& \pi_{\omega_{3}}=\mathbb{V}\left(y_{2}\right), \\
& \pi_{\omega_{4}}=\mathbb{V}\left(y_{3}\right), \\
& \pi_{\omega_{5}}=\mathbb{V}\left(y_{0}-3 y_{1}+y_{3}\right), \\
& \pi_{\omega_{6}}=\mathbb{V}\left(y_{0}+5 y_{1}+5 y_{2}-6 y_{3}\right), \\
& \pi_{\omega_{7}}=\mathbb{V}\left(y_{0}-3 y_{1}+4 y_{3}\right), \\
& \pi_{\omega_{8}}=\mathbb{V}\left(y_{0}-2 y_{1}+5 y_{2}-6 y_{3}\right), \\
& \pi_{\omega_{9}}=\mathbb{V}\left(y_{0}-3 y_{1}-3 y_{3}\right), \\
& \pi_{\omega_{10}}=\mathbb{V}\left(y_{0}-6 y_{1}+5 y_{2}-6 y_{3}\right), \\
& \pi_{\omega_{11}}=\mathbb{V}\left(y_{0}-3 y_{2}+y_{3}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{\omega_{12}}=\mathbb{V}\left(y_{0}-3 y_{1}-3 y_{2}+2 y_{3}\right), \\
& \pi_{\omega_{13}}=\mathbb{V}\left(y_{0}+y_{2}+4 y_{3}\right), \\
& \pi_{\omega_{14}}=\mathbb{V}\left(y_{0}-3 y_{1}+y_{2}+2 y_{3}\right), \\
& \pi_{\omega_{15}}=\mathbb{V}\left(y_{0}-4 y_{2}-3 y_{3}\right), \\
& \pi_{\omega_{16}}=\mathbb{V}\left(y_{0}-3 y_{1}-4 y_{2}+2 y_{3}\right), \\
& \pi_{\omega_{17}}=\mathbb{V}\left(y_{1}-4 y_{2}\right), \\
& \pi_{\omega_{18}}=\mathbb{V}\left(y_{0}+4 y_{3}\right), \\
& \pi_{\omega_{19}}=\mathbb{V}\left(y_{1}+3 y_{2}\right), \\
& \pi_{\omega_{20}}=\mathbb{V}\left(y_{0}-3 y_{3}\right), \\
& \pi_{\omega_{21}}=\mathbb{V}\left(y_{0}-5 y_{1}-5 y_{2}+4 y_{3}\right), \\
& \pi_{\omega_{22}}=\mathbb{V}\left(y_{0}+2 y_{1}-5 y_{2}+y_{3}\right), \\
& \pi_{\omega_{23}}=\mathbb{V}\left(y_{0}-5 y_{1}+2 y_{2}+y_{3}\right), \\
& \pi_{\omega_{24}}=\mathbb{V}\left(y_{0}+2 y_{1}+2 y_{2}-3 y_{3}\right), \\
& \pi_{\omega_{25}}=\mathbb{V}\left(y_{0}-4 y_{1}-3 y_{2}-3 y_{3}\right), \\
& \pi_{\omega_{26}}=\mathbb{V}\left(y_{1}-y_{2}\right), \\
& \pi_{\omega_{27}}=\mathbb{V}\left(y_{0}-3 y_{1}+2 y_{3}\right), \\
& \pi_{\omega_{28}}=\mathbb{V}\left(y_{0}+y_{1}-3 y_{2}+4 y_{3}\right), \\
& \pi_{\omega_{29}}=\mathbb{V}\left(y_{0}-y_{3}\right), \\
& \pi_{\omega_{30}}=\mathbb{V}\left(y_{0}+5 y_{2}-6 y_{3}\right), \\
& \pi_{\omega_{31}}=\mathbb{V}\left(y_{1}+5 y_{3}\right), \\
& \pi_{\omega_{32}}=\mathbb{V}\left(y_{1}-6 y_{3}\right), \\
& \pi_{\omega_{33}}=\mathbb{V}\left(y_{0}-4 y_{1}+y_{2}-3 y_{3}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{\omega_{34}}=\mathbb{V}\left(y_{0}+4 y_{1}-3 y_{2}+4 y_{3}\right), \\
& \pi_{\omega_{35}}=\mathbb{V}\left(y_{0}-5 y_{2}\right), \\
& \pi_{\omega_{36}}=\mathbb{V}\left(y_{0}+y_{1}-4 y_{2}+4 y_{3}\right), \\
& \pi_{\omega_{37}}=\mathbb{V}\left(y_{0}-y_{1}-3 y_{2}-3 y_{3}\right), \\
& \pi_{\omega_{38}}=\mathbb{V}\left(y_{1}-6 y_{3}\right), \\
& \pi_{\omega_{39}}=\mathbb{V}\left(y_{0}-y_{1}+y_{2}-y_{3}\right), \\
& \pi_{\omega_{40}}=\mathbb{V}\left(y_{0}+4 y_{1}-4 y_{2}-y_{3}\right), \\
& \pi_{\omega_{41}}=\mathbb{V}\left(y_{0}-3 y_{2}\right), \\
& \pi_{\omega_{42}}=\mathbb{V}\left(y_{1}+4 y_{3}\right), \\
& \pi_{\omega_{43}}=\mathbb{V}\left(y_{0}+y_{1}+2 y_{2}+4 y_{3}\right), \\
& \pi_{\omega_{44}}=\mathbb{V}\left(y_{0}-6 y_{1}-5 y_{2}-3 y_{3}\right), \\
& \pi_{\omega_{45}}=\mathbb{V}\left(y_{0}+3 y_{1}-3 y_{2}-y_{3}\right) .
\end{aligned}
$$

Stage(5): We choose one trihedral pairs among the 120 trihedral pairs, namely

$T_{123}:$	c_{23}	b_{3}	a_{2}	$\rightsquigarrow \pi_{\omega_{1}}=V\left(y_{0}\right)$
a_{3}	c_{13}	b_{1}	$\rightsquigarrow \pi_{\omega_{2}}=\mathbb{V}\left(y_{1}\right)$	
b_{2}	a_{1}	c_{12}		
\vdots	\vdots			
$\pi_{\omega_{3}}$	$\pi_{\omega_{4}}$			
॥				
$\mathbb{V}\left(y_{2}\right)$	$\mathbb{V}\left(y_{3}\right)$			

where $\pi_{\omega_{1}}, \pi_{\omega_{2}}, \pi_{\omega_{3}}, \pi_{\omega_{4}}$ are the 4 tritangent planes on \mathscr{S} corresponding to the six plane cubics $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ which passing through S. From Stage 4 , the tritangent planes on \mathscr{S}, which correspond to the third row and third column, are respectively
$\pi_{\omega_{27}}$ and $\pi_{\omega_{30}}$. Consequently, the equation of the non-singular cubic surface \mathscr{S} is

$$
\mathscr{S}=\mathbb{V}\left(y_{0} y_{1}\left(y_{0}-3 y_{1}+2 y_{3}\right)+\lambda y_{2} y_{3}\left(y_{0}+5 y_{2}-6 y_{3}\right)\right)
$$

To find the non-zero value $\lambda \in G F(13)$, we pick a point $P\left(x_{0}: x_{1}: x_{2}\right) \in P G(2,13)$ which is not on any of the basic plane cubics $\omega_{1}, \omega_{2}, \omega_{3}$ and ω_{4}. Let us choose the point $P(1: 1: 1)$. Then according to Clebsch map, we have

$$
P \mapsto\left(W_{1}(P): W_{2}(P): W_{3}(P): W_{4}(P)\right)=(1: 1:-5-5) \in \mathscr{S} .
$$

Therefore, we find $\lambda=-2$. It follows that

$$
\mathscr{S}=\mathbb{V}\left(y_{0}^{2} y_{1}-3 y_{1}^{2} y_{0}+3 y_{2}^{2} y_{3}-y_{3}^{2} y_{2}+2 y_{0} y_{1} y_{3}-2 y_{0} y_{2} y_{3}\right)
$$

The 27 lines on \mathscr{S} are

$$
\begin{aligned}
& \ell_{1}=\{(\lambda: 0: 0: \mu)\} \\
& \ell_{2}=\{(\mu:-4 \mu: \lambda: 0)\} \\
& \ell_{3}=\{(\mu: 0: \lambda+\mu: 3 \lambda+\mu)\} \\
& \ell_{4}=\{(\mu: \lambda: \lambda: 3 \lambda-\mu)\} \\
& \ell_{5}=\{(\lambda: \mu:-3 \mu: 3 \lambda)\} \\
& \ell_{6}=\{(\lambda: \mu: 4 \mu:-4 \lambda)\} \\
& \ell_{7}=\{(\lambda+\mu:-4 \lambda: 0: 6 \mu)\} \\
& \ell_{8}=\{(\mu: \lambda: \lambda-4 \mu: 3 \lambda)\} \\
& \ell_{9}=\{(\mu: \lambda: 3 \lambda+6 \mu: 3 \mu)\} \\
& \ell_{10}=\{(0: \lambda: 0: \mu)\} \\
& \ell_{11}=\{(\mu: \lambda: 6 \mu: 4 \lambda+3 \mu)\} \\
& \ell_{12}=\{(\mu: \lambda: 6 \lambda-\mu: 5 \lambda)\} \\
& \ell_{13}=\{(\mu: \lambda:-3 \lambda: 4 \lambda+3 \mu)\}
\end{aligned}
$$

$$
\begin{aligned}
& \ell_{14}=\{(\mu: \lambda+2 \mu:-4 \lambda:-4 \mu)\}, \\
& \ell_{15}=\{(\mu: \lambda-4 \mu:-4 \mu: 3 \lambda)\}, \\
& \ell_{16}=\{(\lambda: \mu: 6 \lambda: 5 \mu)\}, \\
& \ell_{17}=\{(\lambda: 0 \mu: 0)\}, \\
& \ell_{18}=\{(\lambda: \mu:-5 \lambda:-2 \mu)\}, \\
& \ell_{19}=\{(\lambda+\mu: 2 \lambda:-3 \mu:-4 \lambda)\}, \\
& \ell_{20}=\{(\mu: \lambda: 4 \lambda:-\lambda-4 \mu)\}, \\
& \ell_{21}=\{(0: \lambda: \mu: 3 \mu)\}, \\
& \ell_{22}=\{(\mu: \lambda:-5 \mu:-\lambda-4 \mu)\}, \\
& \ell_{23}=\{(0: \lambda: \mu: 0)\}, \\
& \ell_{24}=\{(\lambda+\mu: \lambda: \mu: \lambda+\mu)\}, \\
& \ell_{25}=\{(\lambda+\mu:-4 \mu:-6 \lambda+5 \mu: 6 \lambda)\}, \\
& \ell_{26}=\{(\mu: \lambda: \lambda: \mu)\}, \\
& \ell_{27}=\{(\mu: \lambda:-4 \mu: 3 \lambda)\} .
\end{aligned}
$$

where $(\lambda: \mu) \in P G(1,13)$. Furthermore, \mathscr{S} has 18 Eckardt points which are

$$
\begin{aligned}
& Q_{1}=(0: 1: 0: 0) \\
& Q_{2}=(0: 0: 1: 0), \\
& Q_{3}=(0: 1: 1: 3), \\
& Q_{4}=(0: 1: 0: 3), \\
& Q_{5}=(1: 0: 0: 3), \\
& Q_{6}=(1: 2: 0:-4),
\end{aligned}
$$

$$
\begin{aligned}
Q_{7} & =(1:-4:-4: 0), \\
Q_{8} & =(1: 0: 6: 3), \\
Q_{9} & =(1:-5: 6: 1), \\
Q_{10} & =(1: 6: 6: 1), \\
Q_{11} & =(1: 0: 0:-4), \\
Q_{12} & =(1: 0:-5:-4), \\
Q_{13} & =(1:-5:-5: 1), \\
Q_{14} & =(1: 0:-4: 0), \\
Q_{15} & =(1:-2: 0: 3), \\
Q_{16} & =(1: 6:-5: 1), \\
Q_{17} & =(1: 2:-5:-4), \\
Q_{18} & =(1:-2: 6: 3) .
\end{aligned}
$$

As another example: consider the plane quadrilaterals $\mathcal{Q}^{(6)}(19)$ and the configuration $\mathcal{Q}^{(10)}(19)$ in Section 3.4.

For the plane quadrilaterals $\mathcal{Q}^{(6)}(19)$, we are able to determine the equation of the correspond non-singular cubic surface, namely $\mathscr{S}^{(6)}(19)$. From Section 3.4, the lines c_{16}, c_{24}, c_{35} lie on the cubic surface $\mathscr{S}^{(6)}(19)$. The trihedral pairs containing the plane section consisting the c_{16}, c_{24}, and c_{35} are $T_{123,654}, T_{124,635}, T_{123,645}$ and $T_{124,653}$.

To determine the equation of $\mathscr{S}^{(6)}(19)$, we consider only one of the four trihedral pairs, namely

$$
\begin{array}{rlll}
T_{123,654}: & c_{16} & c_{25} & c_{34} \\
& c_{24} & c_{13} & c_{56} \\
& c_{35} & c_{46} & c_{12}
\end{array}
$$

Let the three faces of one triad, namely the row plane sections $c_{16} c_{25} c_{34}, c_{24} c_{13} c_{56}$ and $c_{35} c_{46} c_{12}$, be $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and \mathfrak{p}_{3} respectively. The three faces of the second triad (the
conjugate triad), namely the column planes sections $c_{16} c_{24} c_{35}, c_{25} c_{13} c_{46}$ and $c_{34} c_{56} c_{12}$, are denoted by $\mathfrak{p}_{1}^{\prime}, \mathfrak{p}_{2}^{\prime}$ and $\mathfrak{p}_{3}^{\prime}$ respectively. From Section 3.2, we know that the six plane sections of $T_{123,654}$ in $P G(3,19)$ corresponds to 6 cubic curves of the web W, through the 6 points in general position $P_{i} \in \mathcal{S}_{7}$, where \mathcal{S}_{7} is a 6 -arc not on a conic in $P G(2,19)$, namely

$$
\mathcal{S}_{7}=\{1,2,3,4,6,285\} .
$$

Let the planes $\mathfrak{p}_{1}=\mathbb{V}\left(L_{1}\right), \mathfrak{p}_{2}=\mathbb{V}\left(L_{2}\right), \mathfrak{p}_{2}^{\prime}=\mathbb{V}\left(L_{2}^{\prime}\right)$ and $\mathfrak{p}_{3}^{\prime}=\mathbb{V}\left(L_{3}^{\prime}\right)$ correspond to the cubic curves $\omega_{1}=\mathbb{V}\left(W_{1}\right), \omega_{2}=\mathbb{V}\left(W_{2}\right), \omega_{2}^{\prime}=\mathbb{V}\left(W_{2}^{\prime}\right)$ and $\omega_{3}^{\prime}=\mathbb{V}\left(W_{3}^{\prime}\right)$ respectively, where

$$
\begin{aligned}
\omega_{1} & =\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{5}}\right) \cup \mathbb{V}\left(\overline{P_{3} P_{4}}\right) \\
& =\mathbb{V}\left(x_{0}^{2} x_{1}-7 x_{0}^{2} x_{2}-x_{1}^{2} x_{0}+7 x_{1}^{2} x_{2}-8 x_{2}^{2} x_{0}+8 x_{2}^{2} x_{1}\right) ; \\
\omega_{2} & =\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{5}}\right) \cup \mathbb{V}\left(\overline{P_{3} P_{4}}\right) \\
& =\mathbb{V}\left(x_{0}^{2} x_{1}-2 x_{1}^{2} x_{0}+2 x_{1}^{2} x_{2}+x_{2}^{2} x_{1}-2 x_{0} x_{1} x_{2}\right) ; \\
\omega_{2}^{\prime} & =\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{5}}\right) \cup \mathbb{V}\left(\overline{P_{3} P_{4}}\right) \\
& =\mathbb{V}\left(x_{0}^{2} x_{1}+4 x_{1}^{2} x_{0}-9 x_{1}^{2} x_{2}-3 x_{2}^{2} x_{1}+7 x_{0} x_{1} x_{2}\right) ; \\
\omega_{3}^{\prime} & =\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{5}}\right) \cup \mathbb{V}\left(\overline{P_{3} P_{4}}\right) \\
& =\mathbb{V}\left(x_{0}^{2} x_{2}+2 x_{1}^{2} x_{2}-x_{2}^{2} x_{0}+x_{2}^{2} x_{1}-3 x_{0} x_{1} x_{2}\right) .
\end{aligned}
$$

From above argument, we have the following configuration

$$
\begin{array}{rlllll}
T_{123,654}: & c_{16} & c_{25} & c_{34} & \rightarrow \mathfrak{p}_{1}=\mathbb{V}\left(y_{0}\right) & \quad \rightsquigarrow \rightarrow \omega_{1}=\mathbb{V}\left(W_{1}\right) \\
& c_{24} & c_{13} & c_{56} & \rightarrow \mathfrak{p}_{2}=\mathbb{V}\left(y_{1}\right) & \leadsto \rightsquigarrow \omega_{2}=\mathbb{V}\left(W_{2}\right) \\
& c_{35} & c_{46} & c_{12} & \rightarrow \mathfrak{p}_{3}=\mathbb{V}\left(L_{3}\right) & \quad \rightsquigarrow \omega_{3}=\mathbb{V}\left(W_{3}\right) \\
& \downarrow & \downarrow & \downarrow & & \\
& \mathfrak{p}_{1}^{\prime} & \mathfrak{p}_{2}^{\prime} & \mathfrak{p}_{3}^{\prime} & &
\end{array}
$$

where

$$
\begin{aligned}
& \mathfrak{p}_{1}^{\prime}=\mathbb{V}\left(L_{1}^{\prime}\right) \leadsto \omega_{1}^{\prime}=\mathbb{V}\left(W_{1}^{\prime}\right), \\
& \mathfrak{p}_{2}^{\prime}=\mathbb{V}\left(y_{2}\right) \leadsto \omega_{2}^{\prime}=\mathbb{V}\left(W_{2}^{\prime}\right), \\
& \mathfrak{p}_{3}^{\prime}=\mathbb{V}\left(y_{3}\right) \longleftrightarrow \omega_{3}^{\prime}=\mathbb{V}\left(W_{3}^{\prime}\right),
\end{aligned}
$$

and L_{3}, L_{1}^{\prime} are homogeneous linear forms in $y_{0}, y_{1}, y_{2}, y_{3}$, and $W_{1}, W_{2}, W_{3}, W_{1}^{\prime}$, $W_{2}^{\prime}, W_{3}^{\prime}$ are homogeneous cubic forms in x_{0}, x_{1}, x_{2}. By some algebraic calculations, we get $W_{1}, W_{2}, W_{2}^{\prime}$ and W_{3}^{\prime}, are linearly independent. The plane cubics W_{3} and W_{1}^{\prime}, where

$$
\begin{aligned}
& \omega_{3}=\mathbb{V}\left(W_{3}\right)=\mathbb{V}\left(\overline{P_{3} P_{5}}\right) \cup \mathbb{V}\left(\overline{P_{4} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{1} P_{1}}\right), \\
& \omega_{1}^{\prime}=\mathbb{V}\left(W_{1}^{\prime}\right)=\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{4}}\right) \cup \mathbb{V}\left(\overline{P_{3} P_{5}}\right),
\end{aligned}
$$

can be written in terms of $W_{1}, W_{2}, W_{2}^{\prime}$ and W_{3}^{\prime} as

$$
\begin{aligned}
& W_{3}=-W_{1}+4 W_{2}+2 W_{2}^{\prime}-4 W_{3}^{\prime} \\
& W_{1}^{\prime}=W_{2}^{\prime}-7 W_{3}^{\prime}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& L_{3}=-y_{0}+4 y_{1}+2 y_{2}-4 y_{3} \\
& L_{1}^{\prime}=y_{2}-7 y_{3}
\end{aligned}
$$

Consequently, the the equation of the non-singular cubic surface $\mathscr{S}^{(6)}(19)$ with $\lambda=-1$ is of the form:

$$
\begin{aligned}
\mathscr{S}^{(6)}(19) & =\mathbb{V}\left(L_{1} L_{2} L_{3}-\lambda L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime}\right) \\
& =\mathbb{V}\left(y_{0} y_{1}\left(-y_{0}+4 y_{1}-3 y_{2}-6 y_{3}\right)-y_{2} y_{3}\left(y_{2}-7 y_{3}\right)\right. \\
& =\mathbb{V}\left(y_{0}^{2} y_{1}-4 y_{1}^{2} y_{0}+y_{2}^{2} y_{3}-7 y_{3}^{2} y_{2}+3 y_{0} y_{1} y_{2}+6 y_{0} y_{1} y_{3}\right) .
\end{aligned}
$$

Again from Section 3.4, the lines c_{16}, c_{23}, c_{45} lie on the cubic surface $\mathscr{S}^{(10)}(19)$. The trihedral pairs containing the plane section consisting the c_{16}, c_{23}, and c_{45} are $T_{12,36}, T_{13,26}, T_{34,52}$ and $T_{14,56}$.

To determine the equation of $\mathscr{S}^{(10)}(19)$, we consider only one of the four trihedral pairs, namely

$$
\begin{aligned}
& T_{12,36}: \quad a_{1} \quad b_{3} \quad c_{13} \quad \rightarrow \mathfrak{p}_{1}=\mathbb{V}\left(y_{0}\right) \quad \text { ぃ } \rightarrow \omega_{1}=\mathbb{V}\left(W_{1}\right) \\
& b_{6} \quad a_{2} \quad c_{26} \quad \rightarrow \mathfrak{p}_{2}=\mathbb{V}\left(y_{1}\right) \quad \leftrightarrow \rightarrow \omega_{2}=\mathbb{V}\left(W_{2}\right) \\
& c_{16} \quad c_{23} \quad c_{45} \quad \rightarrow \mathfrak{p}_{3}=\mathbb{V}\left(L_{3}\right) \quad \rightsquigarrow>\omega_{3}=\mathbb{V}\left(W_{3}\right) \\
& \downarrow \quad \downarrow \quad \downarrow \\
& \mathfrak{p}_{1}^{\prime} \quad \mathfrak{p}_{2}^{\prime} \quad \mathfrak{p}_{3}^{\prime} \\
& \text { \| \| \| } \\
& \mathbb{V}\left(L_{1}^{\prime}\right) \quad \mathbb{V}\left(y_{2}\right) \quad \mathbb{V}\left(y_{3}\right) \\
& \begin{array}{ccc}
\xi & \xi & \xi \\
\omega_{1}^{\prime} & \omega_{2}^{\prime} & \omega_{3}^{\prime}
\end{array} \\
& \text { ॥ ॥ ॥ } \\
& \mathbb{V}\left(W_{1}^{\prime}\right) \mathbb{V}\left(W_{2}^{\prime}\right) \quad \mathbb{V}\left(W_{3}^{\prime}\right)
\end{aligned}
$$

where L_{3}, L_{1}^{\prime} are homogeneous linear forms in $y_{0}, y_{1}, y_{2}, y_{3}$, and $W_{1}, W_{2}, W_{3}, W_{1}^{\prime}, W_{2}^{\prime}$, W_{3}^{\prime} are homogeneous cubic forms in x_{0}, x_{1}, x_{2}.

From Section 3.2, we know that the six plane sections of $T_{12,36}$ in $\operatorname{PG}(3,19)$ corresponds to 6 cubic curves of the web W, through the 6 points in general position $P_{i} \in \mathcal{S}_{3}$, where \mathcal{S}_{3} is a 6 -arc not on a conic in $P G(2,19)$, namely

$$
\mathcal{S}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{3 3}\} .
$$

Let the planes $\mathfrak{p}_{1}=\mathbb{V}\left(L_{1}\right)=\mathbb{V}\left(y_{0}\right), \mathfrak{p}_{2}=\mathbb{V}\left(L_{2}\right)=\mathbb{V}\left(y_{1}\right), \mathfrak{p}_{2}^{\prime}=\mathbb{V}\left(L_{2}^{\prime}\right)=\mathbb{V}\left(y_{2}\right)$ and $\mathfrak{p}_{3}^{\prime}=\mathbb{V}\left(L_{3}^{\prime}\right)=\mathbb{V}\left(y_{3}\right)$ correspond to the plane cubic curves $\omega_{1}=\mathbb{V}\left(W_{1}\right), \omega_{2}=$ $\mathbb{V}\left(W_{2}\right), \omega_{2}^{\prime}=\mathbb{V}\left(W_{2}^{\prime}\right)$ and $\omega_{3}^{\prime}=\mathbb{V}\left(W_{3}^{\prime}\right)$ respectively, where

$$
\begin{aligned}
\omega_{1} & =\mathbb{V}\left(\overline{P_{1} P_{3}}\right) \cup \mathbb{V}\left(\mathscr{C}_{3}\right) \\
& =\mathbb{V}\left(\overline{P_{1} P_{3}}\right) \cup \mathbb{V}\left(x_{2}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right) \\
& =\mathbb{V}\left(x_{1}^{2} x_{0}-2 x_{1}^{2} x_{2}-9 x_{2}^{2} x_{1}-9 x_{0} x_{1} x_{2}\right) ; \\
\omega_{2}= & \mathbb{V}\left(\overline{P_{2} P_{6}}\right) \cup \mathbb{V}\left(\mathscr{C}_{6}\right) \\
= & \mathbb{V}\left(\overline{P_{2} P_{6}}\right) \cup \mathbb{V}\left(x_{0} x_{1}+5 x_{0} x_{2}-6 x_{1} x_{2}\right) \\
= & \mathbb{V}\left(x_{0}^{2} x_{1}+5 x_{0}^{2} x_{2}-9 x_{2}^{2} x_{0}+7 x_{2}^{2} x_{1}-4 x_{0} x_{1} x_{2}\right) ; \\
\omega_{2}^{\prime}= & \mathbb{V}\left(\overline{P_{2} P_{3}}\right) \cup \mathbb{V}\left(\mathscr{C}_{3}\right) \\
= & \mathbb{V}\left(\overline{P_{2} P_{3}}\right) \cup \mathbb{V}\left(x_{2}^{2}+2 x_{0} x_{1}+x_{0} x_{2}-4 x_{1} x_{2}\right) \\
= & \mathbb{V}\left(x_{0}^{2} x_{1}-9 x_{0}^{2} x_{2}-9 x_{2}^{2} x_{0}-2 x_{0} x_{1} x_{2}\right) ; \\
\omega_{3}^{\prime}= & \mathbb{V}\left(\overline{P_{1} P_{3}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{4} P_{5}}\right) \\
= & \mathbb{V}\left(x_{0}^{2} x_{1}-3 x_{1}^{2} x_{0}-6 x_{1}^{2} x_{2}+4 x_{2}^{2} x_{1}+4 x_{0} x_{1} x_{2}\right) .
\end{aligned}
$$

These four plane cubics, namely $W_{1}, W_{2}, W_{2}^{\prime}$ and W_{3}^{\prime}, are linearly independent. Furthermore, the plane cubics W_{3} and W_{1}^{\prime} where

$$
\begin{aligned}
& \omega_{3}=\mathbb{V}\left(W_{3}\right)=\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\overline{P_{2} P_{3}}\right) \cup \mathbb{V}\left(\overline{P_{4} P_{5}}\right), \\
& \omega_{1}^{\prime}=\mathbb{V}\left(W_{1}^{\prime}\right)=\mathbb{V}\left(\overline{P_{1} P_{6}}\right) \cup \mathbb{V}\left(\mathscr{C}_{6}\right),
\end{aligned}
$$

can be written in terms of $W_{1}, W_{2}, W_{2}^{\prime}$ and W_{3}^{\prime} as

$$
\begin{aligned}
& W_{3}=8 W_{1}-9 W_{2}-9 W_{3}^{\prime} \\
& W_{1}^{\prime}=2 W_{1}-7 W_{2}-6 W_{2}^{\prime}-6 W_{3}^{\prime}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& L_{3}=8 y_{0}-9 y_{1}-9 y_{2}, \\
& L_{1}^{\prime}=2 y_{0}-7 y_{1}-6 y_{2}-6 y_{3} .
\end{aligned}
$$

Consequently, the the equation of the non-singular cubic surface $\mathscr{S}^{(6)}(19)$ with $\lambda=-1$ has the form:

$$
\begin{aligned}
\mathscr{S}^{(10)}(19) & =\mathbb{V}\left(L_{1} L_{2} L_{3}-\lambda L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime}\right) \\
& =\mathbb{V}\left(y_{0} y_{1}\left(8 y_{0}-9 y_{1}-9 y_{3}\right)-y_{2} y_{3}\left(2 y_{0}-7 y_{1}-6 y_{2}-6 y_{3}\right)\right. \\
& =\mathbb{V}\left(y_{0}^{2} y_{1}+6 y_{1}^{2} y_{0}-4 y_{2}^{2} y_{3}-4 y_{3}^{2} y_{2}+6 y_{0} y_{1} y_{3}-5 y_{0} y_{2} y_{3}+8 y_{1} y_{2} y_{3}\right) .
\end{aligned}
$$

Let $\left\{\left(a_{0} \lambda+b_{0} \mu: a_{1} \lambda+b_{1} \mu: a_{2} \lambda+b_{2} \mu: a_{3} \lambda+b_{3} \mu\right)\right\}_{\mathcal{H}}$ denote the hyperbolic line on cubic surface passing through the points $\left(a_{0}: a_{1}: a_{2}: a_{3}\right)$ and $\left(b_{0}: b_{1}: b_{2}: b_{3}\right)$, and let $\left\{\left(c_{0} \lambda+d_{0} \mu: c_{1} \lambda+d_{1} \mu: c_{2} \lambda+d_{2} \mu: c_{3} \lambda+d_{3} \mu\right)\right\}_{\mathcal{E}}$ denotes the elliptic line on cubic surface passing through the points $\left(c_{0}: c_{1}: c_{2}: c_{3}\right)$ and $\left(d_{0}: d_{1}: d_{2}: d_{3}\right)$. Then all distinct non-singular cubic surfaces (up to e-invariants) in $\operatorname{PG}(3, q)$ for $q=17,19,23,29,31$ with their 27 lines are shown in the tables: Table 3.8, Table 3.9, Table 3.10, Table 3.11, Table 3.12, Table 3.13, Table 3.14, Table 3.15, Table 3.16, Table 3.18, Table 3.19, Table 3.20, Table 3.21, Table 3.22, Table 3.23, Table 3.24, Table 3.25, Table 3.26, Table 3.27, Table 3.28, Table 3.29, Table 3.30, Table 3.31, Table 3.32, Table 3.33, Table 3.34, Table 3.35, Table 3.36, Table 3.37, Table 3.38, Table 3.39 and Table 3.40.

Theorem 3.6. For $q=17,19,23,29,31$, the possible number of elliptic lines on a non-singular cubic surface with 27 lines over $G F(q)$ are represented by the entries of Table 3.41.

Proof. All the detail are shown in the tables of Section 3.6.

Let l be a line on a non-singular cubic surface \mathscr{S} with 27 lines over $G F(q)$ where q is odd number, namely

$$
\mathscr{S}=\mathbb{V}(f)=\mathbb{V}\left(L_{1} L_{2} L_{3}+\lambda L_{1}^{\prime} L_{2}^{\prime} L_{3}^{\prime}\right),
$$

Table 3.8: The non-singular cubic surface $\mathscr{S}^{(1)}(17)$

$\mathscr{S}^{(1)}(17)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+4 y_{2}^{2} y_{3}-3 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+2 y_{1} y_{2} y_{3}\right)$		
$e_{3}=1, e_{2}=132, e_{1}=219, e_{0}=57$ and $\left\|\mathscr{S}^{(1)}(17)\right\|=409$		
27 Lines on	: $(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{17}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \mu: 8 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 2 \lambda:-3 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \lambda: 3 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-\lambda: 0:-\mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 6 \mu:-8 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 8 \lambda: 8 \lambda: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda: 3 \lambda+\mu)\}_{\mathcal{E}} \\ & \{(\lambda: 0: \mu: 6 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-4 \lambda: 6 \mu)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & \{(\lambda: 5 \lambda+\mu:-5 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-7 \lambda+3 \mu: 8 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-8 \mu:-5 \lambda: 7 \mu)\}_{\mathcal{H}} \\ & \{(0: \mu: \lambda+8 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda-8 \mu: 2 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 7 \lambda+\mu:-7 \mu:-8 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \lambda:-4 \lambda-2 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 6 \mu:-2 \lambda+3 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 4 \mu:-7 \lambda:-5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 3 \lambda+\mu:-4 \lambda:-4 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-8 \mu: 7 \mu:-4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 3 \lambda+4 \mu: 6 \mu)\}_{\mathcal{H}} \end{aligned}$	(0:1:6:3)
\# Elliptic lines=16 \#Hyperbolic lines=11		

Table 3.9: The non-singular cubic surface $\mathscr{S}^{(3)}(17)$

$\mathscr{S}^{(3)}(17)=\mathbb{V}\left(y_{0}^{2} y_{1}+4 y_{1}^{2} y_{0}+y_{2}^{2} y_{3}+2 y_{3}^{2} y_{2}-8 y_{0} y_{1} y_{2}-4 y_{0} y_{2} y_{3}-5 y_{1} y_{2} y_{3}\right)$		
$e_{3}=3, e_{2}=126, e_{1}=225, e_{0}=55$ and $\left\|\mathscr{S}^{(3)}(17)\right\|=409$		
27 Lines	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{17}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda: \mu)\}_{\mathcal{H}} \\ & \{(0: \tau: 5 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 3 \mu: 8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 6 \lambda: \lambda:-6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda: 4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 4 \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\tau: 4 \lambda: 5 \mu: 4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \mu:-4 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \tau: 7 \lambda:-7 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \mu: \lambda: 2 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-6 \lambda: 5 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 4 \lambda+\mu:-3 \mu:-4 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 2 \lambda: \lambda+2 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \lambda+4 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 4 \mu:-5 \lambda:-\mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 6 \mu: 6 \lambda+8 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: 0: \mu: 2 \lambda+8 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: 4 \lambda+\mu: 3 \mu: 8 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda:-8 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \mu:-2 \lambda: 3 \lambda-5 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \mu:-2 \lambda: 0)\}_{\mathcal{E}} \\ & \{(\tau: 5 \mu:-8 \mu:-8 \lambda)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 0: 0: 1) \\ & (0: 1: 3: 1) \\ & (0: 1: 3: 0) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=15		

and let \mathscr{S}_{λ} denote the residual plane section, namely

$$
\mathscr{S}_{\lambda}=\left.f\right|_{l}
$$

Then we have the following facts ([27], Pages 196,197):

1. The residual plane sections \mathscr{S}_{λ} define an involution on l.

Table 3.10: The non-singular cubic surface $\mathscr{S}^{(4)}(17)$

$\mathscr{S}^{(4)}(17)=\mathbb{V}\left(y_{0}^{2} y_{1}-y_{1}^{2} y_{0}+5 y_{2}^{2} y_{3}+y_{3}^{2} y_{2}+4 y_{0} y_{1} y_{2}-5 y_{0} y_{1} y_{3}-y_{0} y_{2} y_{3}-y_{1} y_{2} y_{3}\right)$		
$e_{3}=4, e_{2}=123, e_{1}=228, e_{0}=54$ and $\left\|\mathscr{S}^{(4)}(17)\right\|=409$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{17}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 3 \lambda:-8 \mu)\}_{\mathcal{E}} \\ & \{(\tau: \mu: 0: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 0: 7 \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\tau: \mu: 4 \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda:-4 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-6 \mu:-8 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 2 \lambda:-4 \lambda:-5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda: 2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-2 \mu:-5 \lambda)\}_{\mathcal{H}} \\ & \{(0: \tau: 7 \mu: \lambda)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu: 8 \lambda+\mu:-5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 4 \lambda+\mu: 5 \lambda: 6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 3 \lambda: 3 \lambda+5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \lambda+4 \mu:-4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda:-\lambda+3 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-2 \mu:-5 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-7 \mu:-3 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-7 \mu:-4 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-4 \lambda-7 \mu: 2 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 5 \lambda: 6 \mu: 6 \lambda+5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda:-8 \mu: 2 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 7 \lambda+\mu: 8 \mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-7 \mu:-\lambda: 5 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0:-8: 5:-4) \\ & (1: 6: 5:-5) \\ & (1: 0: 0:-5) \\ & (0: 1:-7: 2) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=15		

Table 3.11: The non-singular cubic surface $\mathscr{S}^{(6)}(17)$

$\mathscr{S}^{(6)}(17)=\mathbb{V}\left(y_{0}^{2} y_{1}-6 y_{1}^{2} y_{0}-8 y_{2}^{2} y_{3}+7 y_{3}^{2} y_{2}+5 y_{0} y_{1} y_{2}+6 y_{0} y_{1} y_{3}+5 y_{0} y_{2} y_{3}+5 y_{1} y_{2} y_{3}\right)$		
$e_{3}=6, e_{2}=117, e_{1}=234, e_{0}=52$ and $\left\|\mathscr{S}^{(6)}(17)\right\|=409$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{17}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda:-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 3 \mu:-7 \lambda: 0)\}_{\mathcal{H}} \\ & \{(\tau: 0: 7 \mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: \mu: \mu: 2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-4 \mu:-5 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-7 \mu:-6 \lambda: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda:-6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \lambda:-\mu)\}_{\mathcal{H}} \\ & \{(\tau:-8 \lambda: 4 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu: 5 \lambda-7 \mu: 5 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda: 5 \lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 4 \lambda+\mu: 0: \tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \lambda+6 \mu:-6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \mu: 5 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 2 \mu:-8 \mu:-4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \lambda+2 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda:-2 \lambda+\mu:-4 \mu:-5 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 8 \lambda+\mu: 6 \lambda: 5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda: 6 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \mu:-3 \lambda: 8 \lambda+4 \mu)\}_{\mathcal{H}} \\ & \{(0: \mu: \lambda+7 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-6 \lambda:-4 \lambda:-7 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 1:-4: 0) \\ & (1:-2: 0:-5) \\ & (1: 0: 6:-6) \\ & (1: 0: 5: 5) \\ & (1:-5: 8: 5) \\ & (1: 8: 8:-6) \end{aligned}$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

2. Since \mathscr{S}_{λ} is either a line pair or a conic, there are five possible configurations for $\left(l, \mathscr{S}_{\lambda}\right)$ as in Figure 3.4.
3. The line l contains 0,1 , or 2 Eckardt points and \mathscr{S} has at most 18 Eckardt points.
4. The number of the type I and type II of the configurations $\left(l, \mathscr{S}_{\lambda}\right)$ for the

Table 3.12: The non-singular cubic surface $\mathscr{S}^{(2)}(19)$

$\mathscr{S}^{(2)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+2 y_{2}^{2} y_{3}-4 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=2, e_{2}=129, e_{1}=276, e_{0}=88$ and $\left\|\mathscr{S}^{(2)}(19)\right\|=495$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$	Eckardt points
$\{(\lambda: 0: \mu: 0)\}_{\mathcal{E}}$	$\{(\lambda: \mu:-2 \lambda: 4 \lambda-4 \mu)\}_{\mathcal{H}}$	(1:-1:0:0)
$\{(\lambda: 0: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: 6 \lambda+\mu: 4 \mu:-7 \lambda)\}_{\mathcal{E}}$	$(1: 1:-2: 0)$
$\{(0: \lambda: \mu: 0)\}_{\mathcal{E}}$	$\{(\lambda: \mu:-2 \mu:-4 \lambda+4 \mu)\}_{\mathcal{H}}$	
$\{(0: \lambda: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-3 \lambda+8 \mu: 9 \mu)\}_{\mathcal{H}}$	
$\{(\tau: 5 \lambda: 9 \lambda:-3 \tau)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-6 \lambda: 2 \lambda-8 \mu)\}_{\mathcal{E}}$	
$\{(\tau: 0: 9 \lambda: 5 \mu)\}_{\mathcal{E}}$	$\{(\tau: 9 \mu: 9 \mu:-2 \lambda)\}_{\mathcal{H}}$	
$\{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-6 \mu:-8 \lambda+2 \mu)\}_{\mathcal{E}}$	
$\{(0: \lambda: \mu: 5 \lambda-9 \mu)\}_{\mathcal{E}}$	$\{(\lambda: 2 \lambda+\mu: 8 \mu:-3 \lambda)\}_{\mathcal{E}}$	
$\{(\tau: 8 \lambda: 2 \lambda+4 \mu: \lambda)\}_{\mathcal{E}}$	$\{(\lambda:-\lambda+\mu:-4 \mu: 3 \mu)\}_{\mathcal{H}}$	
$\{(\lambda: \mu:-6 \lambda: 9 \mu)\}_{\mathcal{E}}$	$\{(\tau:-9 \lambda: 8 \mu: 8 \lambda)\}_{\mathcal{E}}$	
$\{(\lambda: \mu:-2 \lambda:-3 \mu)\}_{\mathcal{H}}$	$\{(\lambda:-2 \lambda+\mu: \lambda:-2 \mu)\}_{\mathcal{H}}$	
$\{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}}$	$\{(\lambda: \mu: 8 \lambda-3 \mu: 9 \lambda)\}_{\mathcal{H}}$	
$\{(\lambda: \mu: \mu:-7 \lambda)\}_{\mathcal{H}}$	$\{(\tau: 5 \lambda: 8 \lambda: 9 \tau)\}_{\mathcal{E}}$	
$\{(\lambda: \mu: \lambda:-7 \mu)\}_{\mathcal{H}}$		
\# Elliptic lines=12 \#Hyperbolic lines=17		

Table 3.13: The non-singular cubic surface $\mathscr{S}^{(3)}(19)$

$\mathscr{S}^{(3)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+4 y_{2}^{2} y_{3}-7 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=3, e_{2}=126, e_{1}=279, e_{0}=87$ and $\left\|\mathscr{S}^{(3)}(19)\right\|=495$		
27 Lines on	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\tau:-\lambda:-\mu: 0)\}_{\mathcal{H}} \\ & \{(\tau: 9 \mu:-4 \lambda: 9 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \mu:-5 \mu: 5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-6 \lambda: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda: 7 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 8 \lambda:-5 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-\mu: \lambda:-2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \mu: 7 \lambda)\}_{\mathcal{E}} \\ & \hline \end{aligned}$	$\begin{aligned} & \{(0: \lambda: \mu:-8 \lambda+6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda: 3 \lambda-9 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 0: \mu:-8 \lambda+6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 5 \lambda+\mu:-6 \lambda: 5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-8 \lambda+\mu:-8 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda-9 \mu:-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 2 \mu:-3 \mu:-4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda:-2 \lambda+\mu:-4 \mu: \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 4 \lambda+\mu: 7 \mu:-5 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \mu:-5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 8 \lambda: 2 \lambda-4 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \mu:-8 \lambda:-8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \mu:-9 \lambda+3 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (1:-5:-6:-5) \\ & (1:-1: 0: 0) \\ & (1:-4: 5: 1) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

different involutions on l are given by Table 3.42.

Theorem 3.7. There are $4,7,5,7,9$ distinct non-singular cubic surfaces with 27 lines

Table 3.14: The non-singular cubic surface $\mathscr{S}^{(4)}(19)$

$\mathscr{S}^{(4)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+8 y_{2}^{2} y_{3}-9 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=4, e_{2}=123, e_{1}=282, e_{0}=86$ and $\left\|\mathscr{S}^{(4)}(19)\right\|=495$		
27 Lines on $\mathscr{S}^{(4)}(19):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$		Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda:-2 \mu:-8 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-5 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-9 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-9 \lambda: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \lambda:-3 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-4 \lambda: 3 \lambda: 2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 4 \mu: 5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 4 \lambda: 5 \mu)\}_{\mathcal{E}} \\ & \hline \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-5 \mu: 9 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda-\mu: 2 \lambda: 9 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 7 \lambda+\mu: 3 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 3 \lambda-2 \mu: 7 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda:-6 \lambda+\mu:-7 \mu: 5 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \lambda: 2 \lambda+9 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-7 \lambda-4 \mu: 5 \mu)\}_{\mathcal{H}} \\ & \{(0: \mu: \lambda: 3 \lambda-2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 4 \lambda:-9 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda+6 \mu:-3 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-9 \lambda: 9 \lambda+6 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 2 \mu: \mu: 6 \lambda+5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 6 \lambda-3 \mu:-3 \lambda)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (1: 1:-9: 7) \\ & (1: 9:-5: 7) \\ & (1:-2:-9: 5) \\ & (1:-1: 0: 0) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

Table 3.15: The non-singular cubic surface $\mathscr{S}^{(6)}(19)$

$\mathscr{S}^{(6)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}-4 y_{1}^{2} y_{0}+y_{2}^{2} y_{3}-7 y_{3}^{2} y_{2}+3 y_{0} y_{1} y_{2}+6 y_{0} y_{1} y_{3}\right)$		
$e_{3}=6, e_{2}=117, e_{1}=288, e_{0}=84$ and $\left\|\mathscr{S}^{(6)}(19)\right\|=495$		
27 Lines on $\mathscr{S}^{(6)}(19)$	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \tau:-9 \mu:-4 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-2 \lambda-8 \mu:-4 \lambda+\mu: \tau)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu: 0:-4 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 9 \lambda+7 \mu: 3 \tau: 9 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda-5 \mu: 3 \tau:-8 \lambda+4 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 0: 9 \mu: 4 \mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda+5 \mu: \lambda+5 \mu: \tau)\}_{\mathcal{H}} \\ & \{(\tau:-2 \lambda-8 \mu:-4 \tau: \lambda+4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-9 \lambda+\mu: 7 \lambda-2 \mu:-5 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda+6 \mu: 9 \lambda-5 \mu: 0)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda:-8 \lambda+\mu:-3 \lambda-9 \mu:-6 \lambda-4 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-6 \lambda+4 \mu:-6 \lambda+4 \mu:-\lambda-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 5 \lambda-8 \mu:-3 \lambda+\mu:-5 \lambda+\mu)\}_{\mathcal{H}} \\ & \{(\tau: 3 \lambda+2 \mu:-7 \lambda-\mu:-\lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 2 \lambda+\mu: 3 \lambda+6 \mu:-\lambda+9 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda-6 \mu:-5 \tau:-7 \lambda+4 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-5 \lambda+6 \mu:-3 \lambda-5 \mu:-5 \tau)\}_{\mathcal{H}} \\ & \{(\tau: \lambda-5 \mu: \lambda-3 \mu: \lambda-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 5 \lambda-6 \mu:-3 \lambda-4 \mu:-5 \tau)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda-6 \mu:-5 \lambda-\mu: 6 \lambda-7 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda+5 \mu:-5 \lambda+4 \mu:-7 \tau)\}_{\mathcal{H}} \\ & \{(\tau:-9 \lambda+9 \mu:-4 \tau: 5 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda-5 \mu:-5 \tau: 6 \lambda+\mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (1: 0: 0: 0) \\ & (0: 1: 0: 0) \\ & (1: 0: 3:-5) \\ & (1: 5: 0: 0) \\ & (0: 1: 7: 1) \\ & (1:-5: 3:-5) \end{aligned}$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

(up to e-invariants) in $P G(3, q)$ for $q=17,19,23,29,31$ respectively, namely,

$$
\begin{aligned}
& \mathscr{S}^{(m)}(17), m=1,3,4,6 . \\
& \mathscr{S}^{(m)}(19), m=2,3,4,6,9,10,18 . \\
& \mathscr{S}^{(m)}(23), m=1,2,3,4,6 . \\
& \mathscr{S}^{(m)}(29), m=0,1,2,3,4,6,10 . \\
& \mathscr{S}^{(m)}(31), m=0,1,2,3,4,6,9,10,18 .
\end{aligned}
$$

Table 3.16: The non-singular cubic surface $\mathscr{S}^{(9)}(19)$

$\mathscr{S}^{(9)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+3 y_{2}^{2} y_{3}-6 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=9, e_{2}=108, e_{1}=297, e_{0}=81$ and $\left\|\mathscr{S}^{(9)}(19)\right\|=495$		
27 Lines o	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \mu:-8 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda:-4 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-\mu:-\lambda: 0)\}_{\mathcal{H}} \\ & \{(\tau: 0: 6 \lambda:-3 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda:-7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \mu:-4 \lambda)\}_{\mathcal{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \{(0: \tau: 6 \lambda+\mu: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu:-5 \mu: 4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 6 \lambda+\mu:-5 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda:-2 \lambda-7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 4 \lambda+8 \mu: \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-2 \lambda+\mu: 4 \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \mu:-7 \lambda-2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda:-9 \lambda+6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda-2 \mu:-4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \mu:-2 \lambda+\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-2 \lambda+7 \mu:-4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda: \lambda-2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \lambda-8 \mu:-7 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (1: 8: 7: 1) \\ & (1: 0: 7: 0) \\ & (1: 0: 8: 1) \\ & (1: 0: 0:-7) \\ & (1:-1: 0: 0) \\ & (0: 1: 8: 1) \\ & (1:-7: 8:-7) \\ & (0: 1: 0:-7) \\ & (0: 1: 7: 0) \end{aligned}$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

Table 3.17: The non-singular cubic surface $\mathscr{S}^{(10)}(19)$

$\mathscr{S}^{(10)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}+6 y_{1}^{2} y_{0}-4 y_{2}^{2} y_{3}-4 y_{3}^{2} y_{2}+6 y_{0} y_{1} y_{3}-5 y_{0} y_{2} y_{3}+8 y_{1} y_{2} y_{3}\right)$		
$e_{3}=10, e_{2}=105, e_{1}=300, e_{0}=80$ and $\left\|\mathscr{S}^{(10)}(19)\right\|=495$		
27 Lines on $\mathscr{S}^{(10)}(1$	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\mu: 3 \mu: \lambda-7 \mu: 0)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda+3 \mu: 3 \lambda+4 \mu: 9 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda:-8 \lambda+\mu:-3 \lambda: 8 \lambda+\mu)\}_{\mathcal{E}} \\ & \{(\tau:-8 \lambda-\mu:-8 \lambda-\mu: 8 \tau)\}_{\mathcal{H}} \\ & \{(\tau: 4 \lambda-5 \mu: \tau:-4 \lambda-6 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 5 \lambda-6 \mu: 6 \lambda-7 \mu: 6 \tau)\}_{\mathcal{H}} \\ & \{(\tau:-7 \lambda-3 \mu:-7 \lambda+2 \mu: 9 \tau)\}_{\mathcal{E}} \\ & \{(\tau: 0: 9 \lambda-6 \mu: 4 \lambda)\}_{\mathcal{E}} \\ & \{(\mu: \lambda-5 \mu:-4 \mu: 7 \lambda+\mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda-8 \mu: 0:-4 \lambda-8 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\tau:-6 \lambda+5 \mu:-4 \tau:-\lambda+4 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \lambda+7 \mu: 5 \lambda+4 \mu:-4 \lambda+3 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \lambda+7 \mu: 9 \lambda+2 \mu:-8 \lambda+5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 8 \lambda+\mu:-9 \lambda+6 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(0: \tau:-7 \lambda+8 \mu: 9 \lambda-6 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \lambda-7 \mu: \tau:-8 \lambda-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-8 \lambda-7 \mu:-8 \lambda-7 \mu: 8 \lambda+9 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-8 \lambda+6 \mu:-3 \lambda-8 \mu: 8 \tau)\}_{\mathcal{H}} \\ & \{(\tau:-6 \lambda-5 \mu: 7 \lambda-\mu:-3 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda-3 \mu:-5 \lambda-4 \mu: 9 \tau)\}_{\mathcal{E}} \\ & \{(\tau: 7 \lambda+\mu:-7 \lambda-6 \mu:-4 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda-3 \mu: 3 \lambda+2 \mu:-3 \lambda+9 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-6 \lambda+6 \mu:-3 \tau:-3 \lambda+3 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 0: 1: 0) \\ & (1:-7:-4: 6) \\ & (1:-4: 1: 8) \\ & (1: 3: 0: 0) \\ & (1:-7:-3: 6) \\ & (1:-3: 0: 6) \\ & (1:-3: 1: 6) \\ & (1:-4:-4: 8) \\ & (1: 0:-3: 0) \\ & (0: 1: 1: 0) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=15		

Proof. By the argument introduced in previous section, and our computer programs, the distinct non-singular cubic surfaces with 27 lines (up to e-invariants) that corresponding to 6 -arcs not on a conic in $P G(2, q)$ for $q=17,19,23,29,31$ are shown in Section 3.6. More precisely, if $T_{i}^{(q)}$ represents the type of a non-singular cubic surface with 27 lines over $G F(q)$, and $e_{0, i}, e_{1, i}, e_{2, i}, e_{3, i}$ denote the e-invariants correspond to $T_{i}^{(q)}$, then we have the Table 3.43 which illustrates the distinct non-singular cubic

Table 3.18: The non-singular cubic surface $\mathscr{S}^{(18)}(19)$

$\mathscr{S}^{(18)}(19)=\mathbb{V}\left(y_{0}^{2} y_{1}+8 y_{1}^{2} y_{0}+9 y_{2}^{2} y_{3}-9 y_{3}^{2} y_{2}+3 y_{0} y_{1} y_{2}-5 y_{0} y_{1} y_{3}\right)$		
$e_{3}=18, e_{2}=81, e_{1}=324, e_{0}=72$ and $\left\|\mathscr{S}^{(18)}(19)\right\|=495$		
27 Lines on $\mathscr{S}^{(18)}(19)$	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{19}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \tau:-5 \mu:-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-5 \lambda:-5 \lambda: 2 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 8 \tau:-6 \lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda+4 \mu:-\lambda-7 \mu: \tau)\}_{\mathcal{H}} \\ & \{(\tau: 9 \mu:-7 \tau:-7 \lambda+3 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 6 \lambda+2 \mu: 9 \lambda+7 \mu: 0)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda-2 \mu: \tau:-4 \lambda-3 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 2 \lambda+9 \mu: 5 \lambda-7 \mu: 3 \tau)\}_{\mathcal{H}} \\ & \{(\lambda:-7 \lambda+\mu:-7 \lambda: 3 \lambda+5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 0:-7 \mu:-7 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\tau: 5 \lambda-4 \mu: 0:-7 \lambda+9 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 2 \lambda-6 \mu: 6 \lambda+\mu:-5 \lambda+9 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-8 \lambda-2 \mu:-3 \lambda+2 \mu:-3 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-3 \lambda-2 \mu:-9 \lambda-6 \mu: 8 \tau)\}_{\mathcal{H}} \\ & \{(\tau:-6 \lambda+2 \mu: 7 \lambda+6 \mu:-4 \lambda-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-7 \lambda+4 \mu:-7 \lambda+4 \mu: 3 \tau)\}_{\mathcal{H}} \\ & \{(\tau:-3 \lambda+3 \mu:-3 \lambda+8 \mu: 4 \lambda-4 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-3 \lambda-8 \mu:-9 \lambda+7 \mu: 8 \tau)\}_{\mathcal{H}} \\ & \{(\tau: 6 \lambda+7 \mu:-2 \tau: 4 \lambda-8 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-5 \lambda+8 \mu:-2 \lambda+7 \mu: \tau)\}_{\mathcal{H}} \\ & \{(\tau: 2 \lambda-3 \mu:-8 \lambda+9 \mu:-3 \lambda-5 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda+3 \mu: \tau:-\lambda+5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-5 \lambda+\mu:-2 \lambda: \lambda+7 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 1: 0: 0) \\ & (1: 0: 0: 0) \\ & (1: 0: 0: 8) \\ & (1:-6: 1: 8) \\ & (0: 1: 8: 8) \\ & (1: 7: 0: 0) \\ & (1:-8:-7: 1) \\ & (0: 1: 0: 7) \\ & (1: 0: 1: 1) \\ & (1:-5:-2: 3) \\ & (1: 0:-7: 0) \\ & (1:-7: 1: 1) \\ & (1:-7: 0: 8) \\ & (0: 1: 1: 0) \\ & (1: 4:-7: 1) \\ & (1:-2:-2: 3) \\ & (1: 1: 1: 8) \\ & (1:-7:-7: 0) \end{aligned}$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

Table 3.19: The non-singular cubic surface $\mathscr{S}^{(1)}(23)$

$\mathscr{S}^{(1)}(23)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+2 y_{2}^{2} y_{3}+8 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=1, e_{2}=132, e_{1}=381, e_{0}=177$ and $\left\|\mathscr{S}^{(1)}(23)\right\|=691$		
27 Lines on $\mathscr{}$	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{23}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda: 10 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 7 \lambda: \lambda+3 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 4 \mu:-11 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda+\mu: 0:-\mu)\}_{\mathcal{H}} \\ & \{(0: \tau: 11 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 0: 11 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 4 \lambda:-11 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-3 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 10 \mu: \mu: 10 \tau)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & \{(\lambda: 5 \lambda+\mu:-7 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 9 \mu:-10 \mu:-10 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 2 \lambda:-11 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 4 \lambda:-4 \lambda-10 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-11 \mu: 10 \mu: 4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda-11 \mu: 10 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 10 \lambda+\mu: 6 \mu:-11 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 7 \mu: 3 \lambda+\mu)\}_{\mathcal{H}} \\ & \{(\tau:-\lambda+5 \mu:-7 \mu: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda:-6 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-9 \mu:-7 \lambda: 8 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 7 \lambda: 6 \mu:-8 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 2 \lambda+\mu:-3 \lambda: 4 \mu)\}_{\mathcal{H}} \end{aligned}$	(1:-1:0:0)
\# Elliptic lines= $16 \quad$ \#Hyperbolic lines= 11		

surfaces with 27 lines (up to e-invariants) over $G F(q)$ for $q=17,19,23,29,31$:

Corollary 3.1. The maximal number of Eckardt points on a non-singular cubic surfaces with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$, are $6,18,6,10,18$ respec-

Table 3.20: The non-singular cubic surface $\mathscr{S}^{(2)}(23)$

$\mathscr{S}^{(2)}(23)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+3 y_{2}^{2} y_{3}-6 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=2, e_{2}=129, e_{1}=384, e_{0}=176$ and $\left\|\mathscr{S}^{(2)}(23)\right\|=691$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{23}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\tau: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-9 \mu:-9 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda: \mu:-\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 11 \lambda: 11 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-2 \lambda:-7 \mu: \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 11 \mu: 8 \lambda: 11 \tau)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 11 \mu: 11 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda:-6 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\tau: 3 \mu:-4 \mu: 8 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 8 \lambda+\mu: 8 \mu:-9 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-9 \lambda: 8 \lambda:-5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 2 \lambda-5 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 11 \mu:-7 \lambda+8 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 11 \lambda: 11 \tau: 8 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: 0: \mu:-4 \lambda-\mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu:-4 \lambda-\mu)\}_{\mathcal{H}} \\ & \{(\lambda: 8 \lambda+\mu:-9 \lambda: 8 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-9 \lambda:-9 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 3 \mu: 8 \lambda:-4 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-6 \lambda: 2 \lambda-5 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-9 \mu:-5 \lambda: 8 \mu)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & (1:-1: 0: 0) \\ & (0: 0: 1:-1) \end{aligned}$
\# Elliptic lines=16 \#Hyperbolic lines= 11		

Table 3.21: The non-singular cubic surface $\mathscr{S}^{(3)}(23)$

$\mathscr{S}^{(3)}(23)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+7 y_{2}^{2} y_{3}+8 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+3 y_{1} y_{2} y_{3}\right)$		
$e_{3}=3, e_{2}=126, e_{1}=387, e_{0}=175$ and $\left\|\mathscr{S}^{(3)}(23)\right\|=691$		
27 Lines	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{23}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\tau: \lambda: \lambda: \lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda:-10 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 10 \mu:-2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 4 \lambda:-5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\tau: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 3 \mu:-9 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \mu: 9 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 2 \lambda:-7 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-6 \lambda: 5 \lambda: 5 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu: 5 \lambda: 7 \lambda+5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-4 \lambda+\mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 8 \lambda+\mu: 9 \mu:-9 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 7 \lambda: \lambda: 9 \lambda+\mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 11 \lambda+2 \mu:-5 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-10 \lambda: 6 \mu: 9 \tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda: \lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-6 \lambda+\mu:-5 \mu: 5 \lambda+4 \mu)\}_{\mathcal{H}} \\ & \{(0: \mu: \lambda: 2 \lambda-9 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-5 \mu: 9 \lambda: 4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 11 \mu:-2 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 4 \lambda: 5 \lambda+\mu)\}_{\mathcal{E}} \\ & \{(\tau: 0: 2 \lambda: \lambda-3 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 1: 1:-7) \\ & (1:-9: 2:-2) \\ & (1:-6: 5: 0) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

tively. Moreover, the minimal number of Eckardt points on a non-singular cubic surfaces with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$, are $1,2,1,0,0$ respectively.

Proof. See Table 3.41.

Corollary 3.2. The number of elliptic lines on a non-singular cubic surfaces with 27 lines in $P G(3, q)$ for $q=17,19,23,29,31$ is either 0 or 12 or 16.

Table 3.22: The non-singular cubic surface $\mathscr{S}^{(4)}(23)$

$\mathscr{S}^{(4)}(23)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+9 y_{2}^{2} y_{3}+9 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$				
$e_{3}=4, e_{2}=123, e_{1}=390, e_{0}=174$ and $\left\|\mathscr{S}^{(4)}(23)\right\|=691$				
27 Lines on $\mathscr{S}^{(4)}(23):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{23}\right) ; \tau=\lambda+\mu$	Eckardt points			
$\{(\lambda: 0: \mu: 0)\}_{\mathcal{H}}$	$\{(\lambda: 10 \lambda+\mu:-11 \lambda: 3 \mu)\}_{\mathcal{E}}$	$(1:-1: 0: 0)$		
$\{(\lambda: 0: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-11 \mu:-11 \lambda)\}_{\mathcal{E}}$	$(0: 0: 1:-1)$		
$\{(0: \lambda: \mu: 0)\}_{\mathcal{H}}$	$\{(\tau:-7 \mu: 9 \lambda+8 \mu:-11 \mu)\}_{\mathcal{E}}$	$(1: 1:-2: 0)$		
$\{(0: \lambda: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-5 \mu: 9 \lambda+10 \mu)\}_{\mathcal{E}}$	$(1: 1: 0:-2)$		
$\{(0: \tau: 5 \lambda: 5 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-2 \lambda: 7 \lambda-7 \mu)\}_{\mathcal{H}}$			
$\{(\tau: \mu:-7 \lambda:-2 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-7 \lambda+3 \mu:-11 \lambda)\}_{\mathcal{E}}$			
$\{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-2 \mu:-7 \lambda+7 \mu)\}_{\mathcal{H}}$			
$\{(\lambda: \mu:-\tau: 0)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-2 \mu:-2 \lambda)\}_{\mathcal{H}}$			
$\{(\lambda:-\lambda: \mu:-\mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu: 3 \lambda-7 \mu:-11 \mu)\}_{\mathcal{E}}$			
$\{(\lambda: \mu:-2 \lambda:-2 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \tau:-7 \mu:-2 \lambda)\}_{\mathcal{H}}$			
$\{(\lambda: \mu:-11 \lambda:-11 \mu)\}_{\mathcal{E}}$	$\{(\tau: 7 \lambda:-8 \lambda: 3 \mu)\}_{\mathcal{E}}$			
$\{(\tau: 0: 5 \lambda: 5 \mu)\}_{\mathcal{H}}$	$\{(\lambda: 4 \lambda+\mu: 9 \mu:-5 \lambda)\}_{\mathcal{E}}$			
$\{(\lambda: \mu:-5 \lambda:-5 \mu)\}_{\mathcal{E}}$				
$\{(\lambda: \mu:-5 \mu:-5 \lambda)\}_{\mathcal{E}}$				
\# Elliptic lines=12				Hyperbolic lines=17

Table 3.23: The non-singular cubic surface $\mathscr{S}^{(6)}(23)$

$\mathscr{S}^{(6)}(23)=\mathbb{V}\left(y_{0}^{2} y_{1}-10 y_{1}^{2} y_{0}-10 y_{2}^{2} y_{3}+5 y_{3}^{2} y_{2}-3 y_{0} y_{1} y_{2}+4 y_{0} y_{1} y_{3}-10 y_{0} y_{2} y_{3}\right)$		
$e_{3}=6, e_{2}=117, e_{1}=396, e_{0}=172$ and $\left\|\mathscr{S}^{(6)}(23)\right\|=691$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{23}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 9 \lambda: \lambda:-2 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \mu: 8 \lambda: 0)\}_{\mathcal{H}} \\ & \{(\tau: 7 \mu: 0:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-8 \lambda: 6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 8 \lambda:-7 \mu:-9 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \lambda:-7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(0: \tau: 2 \mu: 4 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-8 \lambda: 9 \lambda+\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \lambda: 4 \lambda-3 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 11 \lambda+\mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 0: \mu: 2 \tau)\}_{\mathcal{H}} \\ & \{(\lambda: 6 \lambda+\mu: \lambda+2 \mu: 4 \tau)\}_{\mathcal{H}} \\ & \{(\tau: 3 \mu: \lambda+2 \mu: 2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu:-9 \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda-10 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \lambda+11 \mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \mu:-7 \lambda-11 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-8 \lambda+3 \mu: 6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda:-4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda:-10 \lambda-2 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 1: 0: 0) \\ & (1: 0:-8: 0) \\ & (1:-9:-8: 0) \\ & (0: 1: 1: 0) \\ & (1: 9: 1: 0) \\ & (1: 0: 1: 0) \end{aligned}$
\# Elliptic lines= 0 \#Hyperbolic lines= 27		

Proof. See Table 3.41.

Corollary 3.3. For q odd prime, the number of elliptic lines on a non-singular cubic surfaces $\mathscr{S}^{(3)}(q)$ with 27 lines in $P G(3, q)$ is 12 .

Proof. Let l_{1}, l_{2}, and l_{3} be any three lines on the non-singular cubic surface $\mathscr{S}^{(3)}(q)$.

Table 3.24: The non-singular cubic surface $\mathscr{S}^{(0)}(29)$

$\mathscr{S}^{(0)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+5 y_{2}^{2} y_{3}+6 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+3 y_{1} y_{2} y_{3}\right)$				
$e_{3}=0, e_{2}=135, e_{1}=540, e_{0}=370$ and $\left\|\mathscr{S}^{(0)}(29)\right\|=1045$				
27 Lines on $\mathscr{S}^{(0)}(29):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$	Eckardt points			
$\{(\lambda: 0: \mu: 0)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-11 \lambda+6 \mu: 9 \mu)\}_{\mathcal{E}}$			
$\{(\lambda: 0: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu: 10 \lambda-11 \mu: 6 \lambda)\}_{\mathcal{H}}$			
$\{(0: \lambda: \mu: 0)\}_{\mathcal{E}}$	$\{(\lambda: \mu: 14 \lambda:-7 \lambda-14 \mu)\}_{\mathcal{H}}$			
$\{(0: \lambda: 0: \mu)\}_{\mathcal{E}}$	$\{(\lambda: 8 \lambda+\mu:-3 \mu:-9 \lambda+2 \mu)\}_{\mathcal{H}}$			
$\{(\lambda: \mu:-5 \mu: 9 \lambda)\}_{\mathcal{E}}$	$\{(\lambda:-10 \lambda+\mu:-4 \mu: 9 \lambda)\}_{\mathcal{H}}$			
$\{(\lambda: \mu:-9 \lambda: 5 \mu)\}_{\mathcal{E}}$	$\{(\lambda: 8 \lambda+\mu:-9 \lambda:-13 \mu)\}_{\mathcal{H}}$			
$\{(\tau:-\mu: 0:-\lambda)\}_{\mathcal{E}}$	$\{(\tau: 3 \lambda:-3 \mu:-4 \lambda)\}_{\mathcal{E}}$			
$\{(\tau: 0:-6 \lambda:-5 \mu)\}_{\mathcal{H}}$	$\{(\tau:-4 \lambda: 3 \lambda:-14 \mu)\}_{\mathcal{E}}$			
$\{(\lambda: \mu: 14 \lambda: 9 \mu)\}_{\mathcal{E}}$	$\{(\lambda: \mu:-4 \lambda+5 \mu: 5 \lambda)\}_{\mathcal{E}}$			
$\{(\lambda: \mu:-\tau: 0)\}_{\mathcal{E}}$	$\{(\tau:-7 \lambda: 6 \lambda:-13 \mu)\}_{\mathcal{E}}$			
$\{(\lambda: \mu:-8 \mu: 6 \lambda)\}_{\mathcal{E}}$	$\{(\lambda: 7 \lambda+\mu:-3 \mu:-8 \lambda)\}_{\mathcal{H}}$			
$\{(0: \tau: 11 \lambda: 14 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-13 \lambda:-11 \mu)\}_{\mathcal{E}}$			
$\{(\tau: 5 \lambda:-6 \lambda: 12 \mu)\}_{\mathcal{E}}$	$\{(\lambda: \mu:-13 \lambda: \lambda+12 \mu)\}_{\mathcal{H}}$			
$\{(\lambda: \mu:-7 \mu:-8 \lambda)\}_{\mathcal{E}}$				
\# Elliptic lines=16 $\quad \#$ Hyperbolic lines=11				

Table 3.25: The non-singular cubic surface $\mathscr{S}^{(1)}(29)$

$\mathscr{S}^{(1)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+4 y_{2}^{2} y_{3}+6 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=1, e_{2}=132, e_{1}=543, e_{0}=369$ and $\left\|\mathscr{S}^{(1)}(29)\right\|=1045$		
27 Lines on	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\tau: 14 \mu: 14 \mu: 2 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \lambda: 4 \lambda+2 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: \mu:-12 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-7 \lambda: 12 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 0:-\tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \lambda:-12 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 8 \lambda: 3 \mu:-9 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \mu: \lambda+9 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 0: 7 \mu:-5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-\tau: 0)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-4 \lambda+3 \mu:-12 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-9 \lambda:-12 \mu: 8 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-13 \lambda-3 \mu:-3 \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu:-5 \lambda+9 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 8 \lambda: 9 \lambda+\mu)\}_{\mathcal{E}} \\ & \{(\lambda: 2 \lambda+\mu:-13 \mu:-3 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-11 \lambda-12 \mu: 12 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda:-3 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 8 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-\mu: 12 \lambda:-13 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-7 \mu: 12 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: 6 \lambda+\mu:-7 \lambda:-8 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 5 \lambda:-6 \lambda:-8 \mu)\}_{\mathcal{E}} \end{aligned}$	(1:-1:0:0)

Consider the following three configurations, namely

$$
\left(l_{1}, \mathscr{S}_{\lambda}^{(3)}(q)\right), \quad\left(l_{2}, \mathscr{S}_{\lambda}^{(3)}(q)\right), \text { and } \quad\left(l_{3}, \mathscr{S}_{\lambda}^{(3)}(q)\right) .
$$

Then according to the previous facts mentioned in Table 3.42, each configuration has 1 hyperbolic involutions of type I, and 4 hyperbolic involutions of type II. So the total number of hyperbolic involutions corresponding to each configuration is 5. This

Table 3.26: The non-singular cubic surface $\mathscr{S}^{(2)}(29)$

$\mathscr{S}^{(2)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}\right.$	$y_{2}^{2} y_{3}+4 y_{3}^{2} y_{2}+5 y_{0} y_{1} y_{2}+12 y_{0} y_{1}$	$\left.{ }_{2} y_{3}-12 y_{1} y_{2} y_{3}\right)$
$e_{3}=2, e_{2}=129, e_{1}=546, e_{0}=368$ and $\left\|\mathscr{S}^{(2)}(29)\right\|=1045$		
27 Lines on $\mathscr{S}^{(2)}(29):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$		Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \lambda: 11 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 3 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \tau: \lambda: \lambda-11 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 0: 6 \lambda:-3 \mu)\}_{\mathcal{E}} \\ & \{(0: \tau:-6 \mu: 3 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 2 \mu: 2 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-14 \lambda: 2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \mu: 4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau:-14 \mu: 4 \lambda)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & \{(\lambda: 5 \lambda+\mu: 10 \mu: \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 6 \mu: \mu: 4 \lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda: 3 \lambda-8 \mu:-6 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 4 \lambda: 6 \lambda+14 \mu: 8 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 6 \lambda: 5 \lambda-4 \mu: 8 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda-7 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-13 \lambda+5 \mu: 0: \mu)\}_{\mathcal{H}} \\ & \{(\tau: 4 \mu:-10 \lambda:-8 \lambda+9 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 2 \lambda+\mu: 2 \lambda+4 \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-14 \lambda:-10 \lambda-5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 4 \lambda+\mu:-13 \lambda: 4 \lambda+7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-13 \lambda:-6 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 3 \lambda: 9 \lambda: \lambda+2 \mu)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & (1: 0: 0: 4) \\ & (1: 3:-14: 4) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=15		

Table 3.27: The non-singular cubic surface $\mathscr{S}^{(2)^{*}}(29)$

means we have $15=5 \cdot 3$ hyperbolic involutions corresponding to the all configurations.
Hence the number of hyperbolic lines on a non-singular cubic surfaces is 15 (see Figure 3.5).

So
$\#($ Elliptic lines $)=27-15=12$.

Table 3.28: The non-singular cubic surface $\mathscr{S}^{(3)}(29)$

$\mathscr{S}^{(3)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+3 y_{2}^{2} y_{3}+5 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=3, e_{2}=126, e_{1}=549, e_{0}=367$ and $\left\|\mathscr{S}^{(3)}(29)\right\|=1045$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda+\mu: 5 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 0:-10 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-12 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-\mu: 0:-\lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\tau: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-12 \lambda: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 9 \mu: 14 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 8 \lambda:-9 \lambda: 2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 12 \lambda: 5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \mu: 5 \lambda)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & \{(\tau: 3 \lambda: 7 \lambda: 4 \lambda+3 \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-6 \lambda+\mu: 5 \mu: 5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda+\mu:-2 \mu: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 9 \lambda: 14 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 13 \lambda-12 \mu: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 9 \lambda: 6 \lambda-11 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \lambda: 10 \lambda+3 \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu:-6 \lambda+11 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-14 \lambda+\mu: 14 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-3 \lambda: 2 \lambda:-11 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-12 \lambda+13 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-2 \mu: \lambda: \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-12 \lambda: 7 \lambda+2 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 1:-12: 7) \\ & (1:-1: 0: 0) \\ & (1: 0:-12: 7) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

Table 3.29: The non-singular cubic surface $\mathscr{S}^{(4)}(29)$

$\mathscr{S}^{(4)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+4 y_{2}^{2} y_{3}+8 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+3 y_{0} y_{2} y_{3}+3 y_{1} y_{2} y_{3}\right)$		
$e_{3}=4, e_{2}=123, e_{1}=552, e_{0}=366 \text { and }\left\|\mathscr{S}^{(4)}(29)\right\|=1045$		
27 Lines on	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 3 \mu: 7)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\tau: 0)\}_{\mathcal{H}} \\ & \{(0: \tau:-8 \lambda:-4 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \mu:-14 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-\mu: 0:-\lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \mu: 6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 5 \lambda: 6 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \lambda:-14 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 7 \mu:-8 \mu:-5 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 3 \lambda: 7 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu: 5 \mu: 11 \lambda+8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 13 \lambda+\mu:-6 \mu:-14 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-7 \lambda+9 \mu: 6 \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-4 \lambda+\mu: 3 \lambda:-5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \lambda:-10 \lambda-3 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: 0:-8 \lambda+\mu: 14 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 5 \lambda: 8 \lambda+11 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda-9 \mu:-14 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-8 \lambda+\mu:-10 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-11 \lambda:-10 \mu: 10 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu: 6 \mu:-7 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-9 \mu: 8 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-7 \lambda: 9 \mu: 6 \tau)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & (1:-1: 0: 0) \\ & (1: 14: 12: 7) \\ & (1: 1: 12:-14) \\ & (1:-2: 5:-14) \end{aligned}$

Corollary 3.4. For q odd prime, the number of elliptic lines on a non-singular cubic surfaces $\mathscr{S}^{(4)}(q)$ with 27 lines in $P G(3, q)$ is 12 .

Proof. Let l_{1}, l_{2}, and l_{3} be any three lines on the non-singular cubic surface $\mathscr{S}^{(3)}(q)$.
Consider the following three configurations, namely

$$
\left(l_{1}, \mathscr{S}_{\lambda}^{(4)}(q)\right), \quad\left(l_{2}, \mathscr{S}_{\lambda}^{(4)}(q)\right), \text { and } \quad\left(l_{3}, \mathscr{S}_{\lambda}^{(4)}(q)\right) .
$$

Table 3.30: The non-singular cubic surface $\mathscr{S}^{(6)}(29)$

$\mathscr{S}^{(6)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}-y_{1}^{2} y_{0}-y_{2}^{2} y_{3}+12 y_{3}^{2} y_{2}+13 y_{0} y_{1} y_{3}-11 y_{1} y_{2} y_{3}\right)$		
$e_{3}=6, e_{2}=117, e_{1}=558, e_{0}=364$ and $\left\|\mathscr{S}^{(6)}(29)\right\|=1045$		
27 Lines on	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu: 12 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 0: 9 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-2 \lambda: 12 \mu: 2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 6 \lambda: 14 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \lambda: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau:-5 \lambda:-2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 0: \mu:-12 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: \tau: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \tau:-12 \lambda: \mu)\}_{\mathcal{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \{(\tau: 5 \lambda+\mu:-11 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-6 \mu:-6 \lambda:-5 \mu)\}_{\mathcal{H}} \\ & \{(0: \tau: \mu: 13 \lambda+\mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda: 12 \lambda:-14 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda+6 \mu:-2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 7 \lambda-5 \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-12 \lambda:-\mu)\}_{\mathcal{H}} \\ & \{(\tau:-10 \lambda: 5 \mu:-12 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: \lambda: 12 \lambda:-2 \tau)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \lambda:-4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\lambda-12 \mu: 12 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \mu: \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \mu: 2 \lambda-2 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (1: 0: 0: 0) \\ & (0: 0: 1: 0) \\ & (1:-1:-12: 1) \\ & (1: 2:-5:-2) \\ & (1:-1: 6: 1) \\ & (1: 2:-12:-2) \end{aligned}$
\# Elliptic lines= 0 \#Hyperbolic lines= 27		

Table 3.31: The non-singular cubic surface $\mathscr{S}^{(10)}(29)$

$\mathscr{S}^{(10)}(29)=\mathbb{V}\left(y_{0}^{2} y_{1}-y_{1}^{2} y_{0}+6 y_{2}^{2} y_{3}-5 y_{3}^{2} y_{2}-10 y_{0} y_{1} y_{3}\right)$		
$e_{3}=10, e_{2}=105, e_{1}=570, e_{0}=360$ and $\left\|\mathscr{S}^{(10)}(29)\right\|=1045$		
27 Lines on $\mathscr{S}^{(10)}(29):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{29}\right) ; \tau=\lambda+\mu$		Eckardt points
$\{(\lambda: 0: \mu: 0)\}_{\mathcal{H}}$	$\{(\lambda: 9 \lambda+\mu:-\mu: 5 \lambda)\}_{\mathcal{E}}$	(1:0:0:0)
$\{(\lambda: 0: 0: \mu)\}_{\mathcal{H}}$	$\{(\tau:-\mu:-5 \lambda: 6 \mu)\}_{\mathcal{H}}$	(0:1:0:0)
$\{(0: \lambda: \mu: 0)\}_{\mathcal{H}}$	$\{(\tau: 4 \mu: 4 \lambda+9 \mu: 6 \mu)\}_{\mathcal{E}}$	($0: 0: 1: 0)$
$\{(0: \lambda: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-4 \lambda:-13 \mu)\}_{\mathcal{E}}$	(1:0:5:6)
$\{(\tau: \lambda:-12 \mu: 3 \mu)\}_{\mathcal{H}}$	$\{(\tau: 3 \mu: \lambda+3 \mu: 14 \mu)\}_{\mathcal{E}}$	(1:-1:5:6)
$\{(\lambda: \mu: 4 \mu: 13 \lambda)\}_{\mathcal{E}}$	$\{(\lambda: \tau:-4 \lambda:-\mu)\}_{\mathcal{E}}$	(0:1:0:-6)
$\{(\lambda: \tau:-\lambda: 7 \mu)\}_{\mathcal{E}}$	$\{(\lambda: \mu:-5 \mu: 6 \lambda)\}_{\mathcal{H}}$	(1:1:0:0)
$\{(\tau: \mu: 0: 3 \lambda)\}_{\mathcal{H}}$	$\{(\tau: \mu: \mu:-7 \lambda)\}_{\mathcal{E}}$	(1:0:0:6)
$\{(\tau: \mu: 4 \mu: \lambda)\}_{\mathcal{E}}$	$\{(\lambda: \mu: 5 \lambda:-6 \mu)\}_{\mathcal{H}}$	(1:-1:0:6)
$\{(\lambda: \mu:-\lambda:-5 \mu)\}_{\mathcal{E}}$	$\{(\lambda:-13 \lambda+\mu:-4 \mu: 13 \lambda)\}_{\mathcal{E}}$	($0: 1:-5:-6)$
$\{(\lambda: \mu: 5 \tau: 6 \lambda)\}_{\mathcal{H}}$	$\{(\lambda: 0: \mu: 7 \mu)\}_{\mathcal{H}}$	
$\{(\lambda: \mu: \mu: 5 \lambda)\}_{\mathcal{E}}$	$\{(\lambda: \tau: 5 \lambda:-6 \mu)\}_{\mathcal{H}}$	
$\{(0: \lambda: \mu: 7 \mu)\}_{\mathcal{H}}$	$\{(\tau: \lambda:-5 \lambda: 6 \mu)\}_{\mathcal{H}}$	
$\{(\lambda: \lambda: \mu: 0)\}_{\mathcal{H}}$		
\# Elliptic lines=12 \#Hyperbolic lines= 15		

Each configuration has 1 hyperbolic involutions of type I and 4 hyperbolic involutions of type II via the previous facts mentioned in Table 3.42. It follows that the number of hyperbolic involutions corresponding to each configuration, is 5 . Consequently, we have $15=5 \cdot 3$ hyperbolic involutions corresponding to the all configurations. Hence the number of hyperbolic lines on a non-singular cubic surfaces is 15 (see Figure 3.6).

Table 3.32: The non-singular cubic surface $\mathscr{S}^{(0)}(31)$

$\mathscr{S}^{(0)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}+2 y_{1}^{2} y_{0}+6 y_{2}^{2} y_{3}+6 y_{3}^{2} y_{2}+2 y_{0} y_{1} y_{2}+5 y_{0} y_{1} y_{3}+5 y_{0} y_{2} y_{3}+5 y_{1} y_{2} y_{3}\right)$		
$e_{3}=0, e_{2}=135, e_{1}=594, e_{0}=450$ and $\left\|\mathscr{S}^{(0)}(31)\right\|=1179$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\tau: 15 \mu: 0: 6 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \tau:-7 \mu:-13 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 3 \lambda:-\mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 2 \lambda:-12 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 4 \mu: 9 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 5 \mu:-13 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 0:-6 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda: \mu)\}_{\mathcal{E}} \\ & \{(0: \tau:-6 \lambda:-6 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-8 \lambda:-14 \mu: 3 \lambda)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & \{(\lambda: 8 \lambda+\mu:-2 \mu: 9 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-10 \mu: 12 \lambda: 10 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 2 \lambda:-8 \lambda+3 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 12 \lambda+\mu: 3 \lambda:-7 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-13 \lambda:-3 \lambda: 12 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 4 \lambda+3 \mu:-10 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 2 \lambda+\mu: 13 \lambda+\mu:-7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-10 \mu:-10 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 8 \lambda: 5 \lambda-\mu: 8 \lambda)\}_{\mathcal{E}} \\ & \{(\tau: 3 \mu: 12 \mu:-\lambda)\}_{\mathcal{E}} \\ & \{(\tau: 15 \mu: 15 \lambda: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 10 \lambda+\mu: 5 \lambda:-2 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-12 \lambda:-4 \lambda:-14 \mu)\}_{\mathcal{E}} \end{aligned}$	
\# Elliptic lines=16 \#Hyperbolic lines=11		

Table 3.33: The non-singular cubic surface $\mathscr{S}^{(1)}(31)$

$\mathscr{S}^{(1)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+4 y_{2}^{2} y_{3}+6 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=1, e_{2}=132, e_{1}=597, e_{0}=449$ and $\left\|\mathscr{S}^{(1)}(31)\right\|=1179$		
27 Lines on \mathscr{S}	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \lambda: 13 \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{H}} \\ & \{(\tau:-12 \mu: 11 \mu:-5 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 0:-8 \mu: 5 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 12 \mu: 13 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-9 \lambda: 14 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-6 \mu: 7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-9 \mu: 14 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-\lambda: 0:-\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda: 7 \mu)\}_{\mathcal{H}} \end{aligned}$	$\{(\tau:-6 \lambda: 5 \lambda:-8 \mu)\}_{\mathcal{E}}$ $\{(\lambda: \mu: 12 \lambda:-3 \lambda-5 \mu)\}_{\mathcal{H}}$ $\{(\tau:-\lambda: 13 \mu:-14 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \mu: 2 \lambda-4 \mu: 14 \lambda)\}_{\mathcal{H}}$ $\{(\lambda: 8 \lambda+\mu:-9 \lambda:-13 \mu)\}_{\mathcal{H}}$ $\{(\tau:-4 \lambda:-12 \mu: 3 \lambda)\}_{\mathcal{E}}$ $\{(\lambda:-8 \lambda+\mu:-13 \mu: 7 \lambda)\}_{\mathcal{E}}$ $\{(\lambda: \mu: 8 \lambda-12 \mu: 13 \mu)\}_{\mathcal{H}}$ $\{(0: \lambda: \mu: 5 \lambda-11 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \mu:-4 \lambda+2 \mu: 14 \lambda)\}_{\mathcal{H}}$ $\{(\lambda: 5 \lambda+\mu:-6 \lambda:-8 \mu)\}_{\mathcal{E}}$ $\{(\lambda:-13 \lambda+\mu: 8 \tau: 13 \lambda)\}_{\mathcal{H}}$ $\{(\tau: 4 \lambda:-5 \lambda:-13 \mu)\}_{\mathcal{H}}$	(1:-1:0:0)
\# Elliptic lines=12 \#Hyperbolic lines=17		

Thus

$$
\#(\text { Elliptic lines })=27-15=12
$$

Corollary 3.5. For q odd prime, all the 27 lines on a non-singular cubic surfaces
$\mathscr{S}^{(18)}(q)$ with 27 lines in $P G(3, q) ; q=1(\bmod 3)$ are hyperbolic.

Table 3.34: The non-singular cubic surface $\mathscr{S}^{(2)}(31)$

$\mathscr{S}^{(2)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+6 y_{2}^{2} y_{3}+6 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=2, e_{2}=129, e_{1}=600, e_{0}=448$ and $\left\|\mathscr{S}^{(2)}(31)\right\|=1179$		
27 Lines on	: $\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda: \mu:-\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \mu:-3 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-\lambda: 0:-\mu)\}_{\mathcal{H}} \\ & \{(\tau:-2 \mu: 11 \lambda: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-7 \lambda:-7 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-3 \lambda:-3 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-2 \lambda: \lambda: 11 \mu)\}_{\mathcal{H}} \\ & \{(0: \tau: 5 \lambda: 5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 15 \lambda: 15 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 0: 5 \lambda: 5 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-10 \lambda+11 \mu: 15 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 2 \lambda+\mu:-4 \mu:-3 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 15 \mu: 15 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-5 \mu:-2 \lambda: 4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 6 \lambda+\mu:-2 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 6 \lambda+\mu:-7 \lambda:-2 \mu)\}_{\mathcal{H}} \\ & \left\{(\tau:-15 \lambda:-4 \mu: 14 \lambda) \mathcal{E}_{\mathcal{E}}\right. \\ & \{(\lambda: \mu: 15 \lambda:-10 \lambda+11 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-7 \mu:-7 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-5 \mu: 4 \mu:-2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda: 8 \lambda-4 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-3 \mu:-4 \lambda+8 \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (1:-1: 0: 0) \\ & (0: 0: 1:-1) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

Table 3.35: The non-singular cubic surface $\mathscr{S}^{(3)}(31)$

$\mathscr{S}^{(3)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+2 y_{2}^{2} y_{3}+3 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+y_{0} y_{1} y_{3}+y_{0} y_{2} y_{3}+y_{1} y_{2} y_{3}\right)$		
$e_{3}=3, e_{2}=126, e_{1}=603, e_{0}=447$ and $\left\|\mathscr{S}^{(3)}(31)\right\|=1179$		
27 Lines on	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda+\mu:-\mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda: 7 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-9 \lambda:-8 \mu: 8 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \lambda-8 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 10 \mu: 6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \mu: 7 \lambda)\}_{\mathcal{E}} \\ & \{(0: \tau: 15 \mu: 10 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-\lambda: 0:-\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 12 \lambda:-8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 10 \lambda: 6 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\tau: 6 \lambda: 10 \lambda: 5 \lambda-7 \mu)\}_{\mathcal{E}} \\ & \{(\tau: 4 \lambda: 9 \lambda: 8 \lambda+5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 8 \lambda: 15 \lambda+12 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu:-2 \mu: \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-8 \lambda+\mu:-13 \mu: 7 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \lambda: 2 \lambda-7 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 15 \lambda+\mu:-11 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: 7 \lambda+\mu: 5 \mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: \mu: 5 \lambda+\mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-7 \mu: 6 \mu: 12 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 10 \lambda:-7 \lambda+5 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 12 \mu:-8 \lambda)\}_{\mathcal{H}} \\ & \{(\tau:-4 \lambda:-13 \mu: 3 \lambda)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & (1:-1: 0: 0) \\ & (1: 9: 10:-8) \\ & (1: 7: 8: 6) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

Proof. Let $\mathscr{S}^{(18)}(q)=\mathbb{V}(F)$ be a non-singular cubic surfaces with 18 Eckardt points then, in a suitable coordinate system, the cubic surfaces can be written in the form

$$
\mathscr{S}^{(18)}(q)=\mathbb{V}\left(y_{0}^{3}+y_{1}^{3}+y_{2}^{3}+y_{3}^{3}\right) .
$$

In fact, such cubic surface exists in $P G(3, q)$ if and only if $q=1(\bmod 3)$.

Table 3.36: The non-singular cubic surface $\mathscr{S}^{(4)}(31)$

$\mathscr{S}^{(4)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}+y_{1}^{2} y_{0}+5 y_{2}^{2} y_{3}+5 y_{3}^{2} y_{2}+3 y_{0} y_{1} y_{2}+3 y_{0} y_{1} y_{3}+3 y_{0} y_{2} y_{3}+3 y_{1} y_{2} y_{3}\right)$		
$e_{3}=4, e_{2}=123, e_{1}=606, e_{0}=446$ and $\left\|\mathscr{S}^{(4)}(31)\right\|=1179$		
27 Lines on \mathscr{S}	$(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{E}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{E}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{E}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{E}} \\ & \{(\tau: 0:-13 \lambda:-13 \mu)\}_{\mathcal{H}} \\ & \{(0: \tau:-13 \lambda:-13 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 13 \lambda: 13 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-15 \mu:-15 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-15 \lambda:-15 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 13 \mu: 13 \lambda)\}_{\mathcal{E}} \\ & \{(\lambda:-\lambda: \mu:-\mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 2 \mu:-11 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau:-11 \lambda: 2 \mu)\}_{\mathcal{H}} \\ & \{(\tau: \lambda: 2 \mu:-11 \lambda)\}_{\mathcal{H}} \\ & \hline \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu: 13 \mu: 4 \lambda+5 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-11 \lambda: 2 \lambda-2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 13 \lambda+\mu: 7 \mu:-15 \lambda)\}_{\mathcal{E}} \\ & \{(\tau:-\lambda+3 \mu: 0: 9 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda+4 \mu: 13 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-11 \lambda:-11 \mu)\}_{\mathcal{E}} \\ & \{(\lambda:-9 \lambda+\mu: 13 \lambda: 4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 7 \lambda+2 \mu:-15 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu: 10 \tau: 0)\}_{\mathcal{H}} \\ & \{(\tau: 14 \lambda: 7 \lambda: 4 \lambda+7 \mu)\}_{\mathcal{E}} \\ & \{(\tau:-7 \lambda: 4 \mu: 2 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-15 \lambda: 2 \lambda+7 \mu)\}_{\mathcal{E}} \\ & \{(\lambda: \mu:-11 \mu:-11 \lambda)\}_{\mathcal{E}} \end{aligned}$	$\begin{aligned} & (1: 1:-11: 0) \\ & (1:-1: 0: 0) \\ & (0: 0: 1:-1) \\ & (1: 1: 0:-11) \end{aligned}$
\# Elliptic lines=12 \#Hyperbolic lines=17		

Table 3.37: The non-singular cubic surface $\mathscr{S}^{(6)}(31)$

$\mathscr{S}^{(6)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}-13 y_{1}^{2} y_{0}-8 y_{2}^{2} y_{3}+11 y_{3}^{2} y_{2}-10 y_{0} y_{1} y_{2}-12 y_{0} y_{2} y_{3}\right)$		
$e_{3}=6, e_{2}=117, e_{1}=612, e_{0}=444$ and $\left\|\mathscr{S}^{(6)}(31)\right\|=1179$		
27 Lines on \mathscr{S}	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu: \lambda)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 12 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \lambda: 4 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: 12 \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 2 \lambda+5 \mu: 11 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: \lambda: \lambda+2 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-15 \lambda: 15 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 10 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \mu: 11 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \lambda:-2 \mu)\}_{\mathcal{H}} \end{aligned}$	$\{(\lambda: \mu: 10 \mu:-6 \lambda-4 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \mu:-15 \lambda:-7 \lambda-15 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \mu: 4 \lambda-10 \mu: 4 \mu)\}_{\mathcal{H}}$ $\{(\tau: \lambda: \lambda:-2 \lambda-14 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \mu:-3 \lambda+8 \mu: 0)\}_{\mathcal{H}}$ $\{(\lambda: \mu:-15 \lambda+9 \mu:-7 \lambda)\}_{\mathcal{H}}$ $\{(\lambda: \mu:-15 \lambda+9 \mu: 15 \mu)\}_{\mathcal{H}}$ $\{(\tau:-11 \mu: 2 \mu: 7 \lambda)\}_{\mathcal{H}}$ $\{(\lambda: \mu: 2 \lambda+5 \mu:-2 \mu)\}_{\mathcal{H}}$ $\{(\tau: 0: 14 \lambda:-13 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \mu:-4 \lambda-10 \mu: \lambda)\}_{\mathcal{H}}$ $\{(\lambda: \mu: 8 \lambda:-10 \lambda-4 \mu)\}_{\mathcal{H}}$ $\{(\lambda: \tau: 5 \lambda+8 \mu:-15 \lambda+3 \mu)\}_{\mathcal{H}}$	$(0: 1: 0: 0)$ $(0: 0: 0: 1)$ $(1: 14:-15: 0)$ $(1: 0:-15: 0)$ $(1: 14:-15:-7)$ $(1: 0:-15:-7)$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

Assume that l is any line on $\mathscr{S}^{(18)}(q)$ and

$$
l=\left\{\left(a_{0} \lambda+b_{0} \mu: a_{1} \lambda+b_{1} \mu: a_{2} \lambda+b_{2} \mu: a_{3} \lambda+b_{3} \mu\right):(\lambda: \mu) \in P G(1, q)\right\}
$$

Let $\beta_{2}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right), \beta_{3}=\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$. Pick $\beta_{0}, \beta_{1} \in G F(q)^{\oplus 4}$ so that

Table 3.38: The non-singular cubic surface $\mathscr{S}^{(9)}(31)$

$\mathscr{S}^{(9)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}+2 y_{1}^{2} y_{0}+5 y_{2}^{2} y_{3}+5 y_{3}^{2} y_{2}+2 y_{0} y_{1} y_{2}+2 y_{0} y_{1} y_{3}+2 y_{0} y_{2} y_{3}+3 y_{1} y_{2} y_{3}\right)$		
$e_{3}=9, e_{2}=108, e_{1}=621, e_{0}=441$ and $\left.\mid \mathscr{S}^{(9)}(31)\right) \mid=1179$		
27 Lines on \mathscr{S}	$:(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$	Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\tau: 14 \mu: \mu:-3 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 8 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-11 \lambda:-3 \lambda)\}_{\mathcal{H}} \\ & \{(0: \tau:-13 \lambda:-13 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 13 \lambda:-9 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 15 \mu: 0: 15 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 2 \lambda: 8 \mu: 13 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: 15 \mu: 15 \lambda: 0)\}_{\mathcal{H}} \\ & \{(\tau: 12 \lambda: 3 \lambda: 4 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 2 \lambda: 13 \lambda: 8 \mu)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-3 \lambda: 15 \lambda-6 \mu)\}_{\mathcal{H}} \\ & \{(\tau:-8 \tau:-8 \lambda:-8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-13 \lambda+\mu:-6 \mu:-3 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\lambda-15 \mu: 13 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 2 \lambda+\mu: 13 \lambda:-15 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 14 \mu:-3 \lambda: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-3 \lambda:-11 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-9 \mu: 13 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 4 \lambda+10 \mu: 8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-6 \lambda: 8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-10 \lambda+\mu:-6 \lambda: 8 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 0: 12 \mu: 12 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-13 \lambda+8 \mu:-6 \lambda)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 0: 1:-1) \\ & (1: 2: 0: 13) \\ & (0: 1: 0: 8) \\ & (1: 0:-3: 0) \\ & (1: 2: 13: 0) \\ & (1:-10: 13:-3) \\ & (1:-10:-3: 13) \\ & (1: 0: 0:-3) \\ & (0: 1: 8: 0) \end{aligned}$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

Table 3.39: The non-singular cubic surface $\mathscr{S}^{(10)}(31)$

$\mathscr{S}^{(10)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}-y_{1}^{2} y_{0}-11 y_{2}^{2} y_{3}-14 y_{3}^{2} y_{2}+0 y_{0} y_{1} y_{2}+0 y_{0} y_{1} y_{3}+0 y_{0} y_{2} y_{3}-2 y_{1} y_{2} y_{3}\right)$		
$e_{3}=10, e_{2}=105, e_{1}=624, e_{0}=440$ and $\left\|\mathscr{S}^{(10)}(31)\right\|=1179$		
27 Lines on $\mathscr{S}^{(10)}(31):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$		Eckardt points
$\{(\lambda: 0: \mu: 0)\}_{\mathcal{H}}$	$\{(\lambda: \mu: 10 \mu: 8 \lambda-8 \mu)\}_{\mathcal{H}}$	(1:0:0:0)
$\{(\lambda: 0: 0: \mu)\}_{\mathcal{H}}$	$\{(\lambda: \tau:-4 \lambda:-12 \mu)\}_{\mathcal{H}}$	($0: 0: 1: 0)$
$\{(0: \lambda: \mu: 0)\}_{\mathcal{H}}$	$\{(\lambda: \tau:-4 \mu:-12 \lambda)\}_{\mathcal{H}}$	(0:0:0:1)
$\{(0: \lambda: 0: \mu)\}_{\mathcal{H}}$	$\{(\tau: \mu: 14 \mu:-11 \lambda)\}_{\mathcal{H}}$	(1:1:14:11)
$\{(\lambda: \lambda: \mu: 0)\}_{\mathcal{H}}$	$\{(0: \lambda:-3 \lambda+\mu:-3 \mu)\}_{\mathcal{H}}$	$(1: 1: 14: 0)$
$\{(\lambda: 0: \mu:-3 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \tau:-13 \mu:-8 \lambda)\}_{\mathcal{H}}$	(0:1:14:11)
$\{(\lambda: \mu:-13 \lambda:-\mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu: 10 \mu:-8 \lambda)\}_{\mathcal{H}}$	(0: 1:0:11)
$\{(\tau: \mu: 13 \lambda:-\mu)\}_{\mathcal{H}}$	$\{(\lambda: \tau:-13 \lambda:-8 \mu)\}_{\mathcal{H}}$	(1:1:0:11)
$\{(\lambda: \lambda: 0: \mu)\}_{\mathcal{H}}$	$\{(\tau: \lambda:-14 \mu: 11 \lambda)\}_{\mathcal{H}}$	$(0: 0: 1:-3)$
$\{(\lambda: \mu: 14 \lambda: 11 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu: \mu:-12 \lambda)\}_{\mathcal{H}}$	($0: 1: 14: 0)$
$\{(\tau: \lambda: \lambda: 12 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \lambda:-3 \lambda+\mu:-3 \mu)\}_{\mathcal{H}}$	
$\{(\tau: \lambda: 4 \mu: 3 \lambda)\}_{\mathcal{H}}$	$\{(\lambda: \mu:-4 \lambda: 3 \mu)\}_{\mathcal{H}}$	
$\{(\lambda: \tau: 14 \lambda: 11 \mu)\}_{\mathcal{H}}$	$\{(\lambda: \mu: 14 \mu: 11 \lambda)\}_{\mathcal{H}}$	
$\{(\lambda: \tau: 14 \mu: 11 \lambda)\}_{\mathcal{H}}$		
\# Elliptic lines= 0 \#Hyperbolic lines= 27		

$\beta_{0}, \beta_{1}, \beta_{2}$ and β_{3} form a basis of $G F(q)^{\oplus 4}$. Note that

$$
\begin{aligned}
\mathfrak{q}(\lambda, \mu) & =\left.\frac{\partial F}{\partial \beta_{0}}\right|_{l}=\left.3 y_{0}^{2}\right|_{l}=3 a_{0}^{2} \lambda^{2}+6 a_{0} b_{0} \lambda \mu+3 b_{0}^{2} \mu^{2} \\
& =\alpha_{2} \lambda^{2}+\alpha_{1} \lambda+\alpha_{0}
\end{aligned}
$$

Table 3.40: The non-singular cubic surface $\mathscr{S}^{(18)}(31)$

$\mathscr{S}^{(18)}(31)=\mathbb{V}\left(y_{0}^{2} y_{1}-y_{1}^{2} y_{0}+14 y_{2}^{2} y_{3}+y_{3}^{2} y_{2}+0 y_{0} y_{1} y_{2}-13 y_{0} y_{1} y_{3}+15 y_{0} y_{2} y_{3}-15 y_{1} y_{2} y_{3}\right)$		
$e_{3}=18, e_{2}=81, e_{1}=648, e_{0}=432$ and $\left\|\mathscr{S}^{(18)}(31)\right\|=1179$		
27 Lines on $\mathscr{S}^{(18)}(31):(\lambda: \mu) \in \mathbb{P}\left(\mathbb{F}_{31}\right) ; \tau=\lambda+\mu$		Eckardt points
$\begin{aligned} & \{(\lambda: 0: \mu: 0)\}_{\mathcal{H}} \\ & \{(\lambda: 0: 0: \mu)\}_{\mathcal{H}} \\ & \{(0: \lambda: \mu: 0)\}_{\mathcal{H}} \\ & \{(0: \lambda: 0: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 0:-12 \mu)\}_{\mathcal{H}} \\ & \{(\tau: 11 \lambda: 4 \mu: 4 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \tau: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 6 \lambda: 6 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 6 \lambda: 6 \tau)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: \tau: \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-5 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \tau: 5 \lambda:-8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 5 \lambda: 7 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \lambda: \mu: 0)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & \{(\lambda: \mu:-6 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(0: \tau:-10 \mu:-16 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: \lambda:-5 \lambda: 8 \mu)\}_{\mathcal{H}} \\ & \{(\lambda:-\lambda+\mu:-5 \mu:-7 \lambda)\}_{\mathcal{H}} \\ & \{(\tau: \mu:-6 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: 6 \lambda-4 \mu:-6 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\lambda-11 \mu:-\lambda)\}_{\mathcal{H}} \\ & \{(\lambda: 0: \mu:-15 \lambda-14 \mu)\}_{\mathcal{H}} \\ & \{(\lambda: \tau:-\lambda: \mu)\}_{\mathcal{H}} \\ & \{(\tau:-11 \lambda: 11 \mu:-11 \lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu: \mu:-\lambda)\}_{\mathcal{H}} \\ & \{(\lambda: \mu:-\lambda: \mu)\}_{\mathcal{H}} \\ & \{(\tau: \mu:-13 \lambda: 12 \lambda)\}_{\mathcal{H}} \end{aligned}$	$\begin{aligned} & (0: 0: 1: 0) \\ & (1: 0: 0: 25) \\ & (0: 1: 1: 1) \\ & (1:-6: 5:-6) \\ & (0: 1: 0: 1) \\ & (1: 0: 0:-1) \\ & (1:-1: 5:-7) \\ & (1:-1: 0:-7) \\ & (1: 0: 6:-6) \\ & (1:-6:-1:-6) \\ & (0: 1:-5: 0) \\ & (1: 5: 6:-1) \\ & (1: 5: 5:-1) \\ & (0: 1:-6: 6) \\ & (1: 0: 5: 0) \\ & (1: 0:-1:-1) \\ & (0: 1: 0: 6) \\ & (1: 1: 0: 0) \end{aligned}$
\# Elliptic lines=0 \#Hyperbolic lines= 27		

Table 3.41: Number of elliptic lines

q / e_{3}	0	1	2	3	4	5	6	7	8	9	10	11	17	18
17		16		12	12		0							
19			12	12	12		0			0	12			0
23		16	16	12	12		0							
29	16	16	$16 / 12$	12	12		0				12			
31	16	12	12	12	12		0			0	0			0

Table 3.42: Type of involutions

Type of involution	I	II
Elliptic	0	5
Hyperbolic	2	3
Hyperbolic	1	4
Hyperbolic	0	5

$$
\begin{aligned}
\mathfrak{q}^{\prime}(\lambda, \mu) & =\left.\frac{\partial F}{\partial \beta_{1}}\right|_{l}=\left.3 y_{1}^{2}\right|_{l}=3 a_{1}^{2} \lambda^{2}+6 a_{1} b_{1} \lambda \mu+3 b_{1}^{2} \mu^{2} \\
& =\gamma_{2} \lambda^{2}+\gamma_{1} \lambda+\gamma_{0},
\end{aligned}
$$

where $\alpha_{2}=3 a_{0}^{2}, \alpha_{1}=6 a_{0} b_{0} \mu, \alpha_{0}=3 b_{0}^{2} \mu^{2}, \gamma_{2}=3 a_{1}^{2}, \gamma_{1}=6 a_{1} b_{1} \mu$ and $\gamma_{0}=$

Figure 3.4: Configurations of $\left(l, \mathscr{S}_{\lambda}\right)$.

Figure 3.5: The configuration $\left(l, \mathscr{S}_{\lambda}^{(3)}(q)\right)$.
$3 b_{1}^{2} \mu^{2}$. Assume that ξ_{1}, ξ_{1} roots of \mathfrak{q} in some extension field of $G F(q)$. Then by using properties or resultant which was introduced in Section 3.5, we have

Table 3.43: The distinct non-singular cubic surfaces with 27 lines (up to e-invariants) over $G F(q)$ for $q=17,19,23,29,31$

Over $G F(17)$				
$T_{i}^{(17)}$	$e_{0, i}$	$e_{1, i}$	$e_{2, i}$	$e_{3, i}$
$i=1$	57	219	132	1
$i=2$	55	255	126	3
$i=3$	54	228	123	4
$i=4$	52	234	117	6
Over $G F(19)$				
$T_{i}^{(19)}$	$e_{0, i}$	$e_{1, i}$	$e_{2, i}$	$e_{3, i}$
$i=1$	88	276	129	2
$i=2$	87	279	126	3
$i=3$	86	282	123	4
$i=4$	84	288	117	6
$i=5$	81	297	108	9
$i=6$	80	300	105	10
$i=7$	72	324	81	18
Over				
$=7 F(23)$				
$T_{i}^{(23)}$	$e_{0, i}$	$e_{1, i}$	$e_{2, i}$	$e_{3, i}$
$i=1$	177	381	132	1
$i=2$	176	384	129	2
$i=3$	175	387	126	3
$i=4$	174	390	123	4
$i=5$	172	396	117	6

Over $G F(29)$				
$T_{i}^{(29)}$	$e_{0, i}$	$e_{1, i}$	$e_{2, i}$	$e_{3, i}$
$i=1$	370	540	135	0
$i=2$	369	543	132	1
$i=3$	368	546	129	2
$i=4$	367	549	126	3
$i=5$	366	552	123	4
$i=6$	364	558	117	6
$i=7$	360	570	105	10
Over $G F(31)$				
$T_{i}^{(31)}$	$e_{0, i}$	$e_{1, i}$	$e_{2, i}$	$e_{3, i}$
$i=1$	450	594	135	0
$i=2$	449	597	132	1
$i=3$	448	600	129	2
$i=4$	447	603	126	3
$i=5$	446	606	123	4
$i=6$	444	612	117	6
$i=7$	441	621	108	9
$i=8$	440	624	105	10
$i=9$	432	648	81	18

Figure 3.6: The configuration $\left(l, \mathscr{S}_{\lambda}^{(4)}(q)\right)$.

$$
\begin{aligned}
R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right) & =\alpha_{2}^{2}\left(\gamma_{2} \xi_{1}^{2}+\gamma_{1} \xi_{1}+\gamma_{0}\right)\left(\gamma_{2} \xi_{2}^{2}+\gamma_{1} \xi_{2}+\gamma_{0}\right) \\
& =\alpha_{2}^{2} \gamma_{2}^{2}\left(\xi_{1}^{2}+2 c \xi_{1} \mu+c^{2} \mu^{2}\right)\left(\xi_{2}^{2}+2 c \xi_{2} \mu+c^{2} \mu^{2}\right) ; c=b_{1} / a_{1} \\
& =\alpha_{2}^{2} \gamma_{2}^{2}\left(\xi_{1}+c \mu\right)^{2}\left(\xi_{2}+c \mu\right)^{2}
\end{aligned}
$$

If $a_{1}=0$, then $\mathfrak{q}^{\prime}(\lambda, \mu)=3 b_{1}^{2} \mu^{2}$ and

$$
R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right)=\left(9 a_{0}^{2} b_{1}^{2} \mu\right)^{2} .
$$

So l is hyperbolic line. Since l is an arbitrary line on the cubic surface $\mathscr{S}^{(18)}(q)$, all the 27 lines on $\mathscr{S}^{(18)}(q)$ are hyperbolic.

Corollary 3.6. For q odd prime, the number of elliptic lines on a non-singular cubic surfaces with 27 lines, $\mathscr{S}^{(0)}(q)$ in $P G(3, q)$, is 16 .

Proof. Let l be any line on the non-singular cubic surface $\mathscr{S}^{(0)}(q)$. Then we have the configuration, namely $\left(l, \mathscr{S}_{\lambda}^{(0)}(q)\right)$.

The later configuration has 0 hyperbolic involutions of type I, and 5 hyperbolic involutions of type II depending on the previous facts (see Table 3.42). It follows that the number of hyperbolic involutions corresponding to this configuration, is $5 \cdot 2+1=11$ hyperbolic involutions corresponding to the configuration $\left(l, \mathscr{S}_{\lambda}^{(0)}(q)\right)$. Hence the number of hyperbolic lines on a non-singular cubic surfaces $\mathscr{S}^{(0)}(q)$ is 11 .

Thus

$$
\#(\text { Elliptic lines })=27-11=16
$$

Chapter 4

Classification of classes of smooth cubic SURFACES IN $P G(19, k)$

In this chapter of the thesis, we classify classes of smooth cubic surfaces with 27 lines in $P G(19, k)$ (or equivalently \mathbb{P}_{k}^{19}) up to Eckardt points where $k=\mathbb{C}$ or $k=G F(q) ; q>7$ and q prime. By considering the configurations of 6 points in general position in the projective plane $P G(2, k)$ (or equivalently \mathbb{P}_{k}^{2}), we can describe subsets of projective space \mathbb{P}_{k}^{19} that correspond to non-singular cubic surfaces with m Eckardt points. Recall that a non-singular cubic surface, namely X, can be viewed as the blow up of \mathbb{P}_{k}^{2} at 6 points in general position. Furthermore, there are 45 tritangent planes on X. Henceforth, we will denote the set of all triples of lines, which correspond to the 45 tritangent planes on X, by \mathbb{T}. The classification of such cubic surfaces with m Eckardt points has been studied by Segre in 1946. However, we give another way to classify cubic surfaces and give the possibilities for the number of Eckardt points on them. Moreover, we will discuss the irreducibility of classes of smooth cubic surfaces in $\mathbb{P}_{\mathbb{C}}^{19}$, and we will give the codimension of each class as a subvariety of $\mathbb{P}_{\mathbb{C}}^{19}$.

First of all, we give some notations and terminologies that we will be used later in this chapter. Recall the equation of a cubic surface \mathscr{S} in \mathbb{P}_{k}^{3} is $\mathscr{S}:=\mathbb{V}(g)=\{g=0\}$ where

$$
\begin{aligned}
g & =c_{1} y_{0}^{3}+c_{2} y_{1}^{3}+c_{3} y_{2}^{3}+c_{4} y_{3}^{3}+c_{5} y_{0}^{2} y_{1}+c_{6} y_{0}^{2} y_{2}+c_{7} y_{0}^{2} y_{3} \\
& +c_{8} y_{1}^{2} y_{0}+c_{9} y_{1}^{2} y_{2}+c_{10} y_{1}^{2} y_{3}
\end{aligned}
$$

$$
\begin{align*}
& +c_{11} y_{2}^{2} y_{0}+c_{12} y_{2}^{2} y_{1}+c_{13} y_{2}^{2} y_{3}+c_{14} y_{3}^{2} y_{0}+c_{15} y_{3}^{2} y_{1}+c_{16} y_{3}^{2} y_{2} \tag{4.0.1}\\
& +c_{17} y_{0} y_{1} y_{2}+c_{18} y_{0} y_{1} y_{3}+c_{19} y_{0} y_{2} y_{3}+c_{20} y_{1} y_{2} y_{3}=0 .
\end{align*}
$$

The equation of a conic \mathscr{C} in \mathbb{P}_{k}^{2} is $\mathscr{C}:=\mathbb{V}(h)=\{h=0\}$ where

$$
\begin{equation*}
h=c_{1} y_{0}^{2}+c_{2} y_{1}^{2}+c_{3} y_{2}^{2}+c_{4} y_{0} y_{1}+c_{5} y_{0} y_{2}+c_{6} y_{1} y_{2} \tag{4.0.2}
\end{equation*}
$$

Definition 4.1. Let \mathscr{S} be a cubic surface in \mathbb{P}_{k}^{3}. Then $\mathscr{S}:=\mathbb{V}(g)=\{g=0\}$ where g is defined by Equation (4.0.1) above. Let \mathscr{C} be a conic in \mathbb{P}_{k}^{2}. Then $\mathscr{C}:=\mathbb{V}(h)=$ $\{h=0\}$ where h is defined by Equation (4.0.2) above. We define:

$$
\begin{aligned}
c(\mathscr{S}) & :=\left(c_{1}: \ldots: c_{20}\right) \in \mathbb{P}_{k}^{19} \\
& =\text { class of coefficients of } g \text { as a point in } \mathbb{P}_{k}^{19} \\
& =\left\{\lambda\left(c_{1}, \ldots, c_{20}\right): \lambda \in k^{*}\right\}, \\
c(\mathscr{C}) & :=\left(c_{1}: \ldots: c_{6}\right) \in \mathbb{P}_{k}^{5} \\
& :=\text { class of coefficients of } h \text { as a point in } \mathbb{P}_{k}^{5} \\
& =\left\{\lambda\left(c_{1}, \ldots, c_{6}\right): \lambda \in k^{*}\right\}, \\
\mathbb{S}_{s m} & :=\left\{c(\mathscr{S}) \in \mathbb{P}_{k}^{19}: \mathscr{S} \text { is a smooth cubic surface in } \mathbb{P}_{k}^{3}\right\}, \\
\mathbb{S}_{s n} & :=\left\{c(\mathscr{S}) \in \mathbb{P}_{k}^{19}: \mathscr{S} \text { is a singular cubic surface in } \mathbb{P}_{k}^{3}\right\}, \\
\mathbb{C}_{s m} & :=\left\{c(\mathscr{C}) \in \mathbb{P}_{k}^{5}: \mathscr{C} \text { is a smooth conic in } \mathbb{P}_{k}^{2}\right\}, \\
\mathbb{C}_{s n} & :=\left\{c(\mathscr{C}) \in \mathbb{P}_{k}^{5}: \mathscr{C} \text { is a singular conic in } \mathbb{P}_{k}^{2}\right\}, \\
\mathbb{T}^{(3)} & :=\{t \in \mathbb{T}: \text { lines of } t \text { form an Eckardt point }\}, \\
\mathbb{S}^{(m)} & :=\left\{c(\mathscr{S}) \in \mathbb{S}_{s m}: \mathscr{S} \text { has at least } m \text { Eckardt points }\right\}, \\
\mathbb{E}^{(m, k)} & :=\left\{c(\mathscr{S}) \in \mathbb{S}^{(k)}: \mathscr{S} \text { has } m \text { Eckardt points }\right\} .
\end{aligned}
$$

Recall from ([22], Pages 5,6) that if V is a vector space of dimension $n \geq 2$ over the field k and d is any integer such that $1 \leq d \leq n$, then the Grassmannian $\mathbb{G}(d, n)$ or $\mathbb{G}_{d, n}$ is the set of all d-dimensional subspaces of V, i.e.

$$
\mathbb{G}(d, n)=\{W: W \text { subspace of } V \text { of dimension } d\} .
$$

Alternately, it is the set of all $(d-1)$-dimensional linear subspaces of the projective space \mathbb{P}_{k}^{n-1}. If we think of the Grassmannian this way, we denote it by $\mathbb{G}^{\mathbb{P}}(d-1, n-1)$. The simplest example of the Grassmannian could be $\mathbb{G}(1, n)$ which is the set of all 1-dimensional subspaces of the vector space V which is nothing but the projective space on V.

The Grassmannian $\mathbb{G}(d, n)$, as an algebraic variety, is a projective algebraic variety defined by quadratic polynomials called Plücker relations. The Grassmannian $\mathbb{G}(d, n)$ can be covered by open sets isomorphic to the affine space $\mathbb{A}^{d(n-d)}$ (see [22] and [1]), and so we have

$$
\operatorname{dim}(\mathbb{G}(d, n))=d(n-d)
$$

The simplest Grassmannian that is not a projective space is $\mathbb{G}(2,4)$, which may be parameterized via Plücker coordinates. Furthermore, $\operatorname{dim} \mathbb{G}(2,4)=2(4-2)=4$.

Assume that $\kappa_{i_{1} \ldots i_{m}}:=\left(P_{i_{1}}, \ldots, P_{i_{m}}\right)$ represents an order of m points in $\left(\mathbb{P}_{k}^{2}\right)^{m}$ such that no three collinear. We will write $\widehat{\kappa_{i_{1} \ldots i_{m}}}$ to denote to the set $\left\{P_{i_{1}}, \ldots, P_{i_{m}}\right\}$. In this case, we say $\widehat{k_{i_{1} \ldots i_{m}}}$ forms an m-arc in \mathbb{P}_{k}^{2}. Moreover, we define

$$
\mathbb{S}_{6}:=\left\{s=\kappa_{i_{1} \ldots i_{6}} \in\left(\mathbb{P}_{k}^{2}\right)^{6}: P_{i_{1}}, \ldots, P_{i_{6}} \text { form a } 6-\operatorname{arc} \text { not on a conic }\right\}
$$

$\mathbb{W}_{s}:=$ the space of all plane cubic passing through the six points of $s \in \mathbb{S}_{6}$,
$\operatorname{blw}_{s} \mathbb{P}_{k}^{2}:=$ blow-up \mathbb{P}_{k}^{2} at the six points of $s=\kappa_{i_{1} \ldots i_{6}} \in \mathbb{S}_{6}$.
Let $l_{i_{1}}, \ldots, l_{i_{m}}$ be distinct lines in $\mathbb{P}_{k}^{2}\left(\right.$ or in $\left.\mathbb{P}_{k}^{3}\right)$ and $w_{i_{1}}, \ldots, w_{i_{m}} \in \mathbb{W}_{s}$. We define

$$
\begin{aligned}
\lambda_{i_{1} \ldots i_{m}} & :=\left(l_{i_{1}}, \ldots, l_{i_{m}}\right), \\
\widehat{\lambda_{i_{1} \ldots i_{m}}} & :=\left\{l_{i_{1}}, \ldots, l_{i_{m}}\right\}, \\
\omega_{i_{1} \ldots i_{m}} & :=\left(w_{i_{1}}, \ldots, w_{i_{m}}\right) \in \mathbb{W}_{s}^{m}, \\
\widehat{\omega_{i_{1} \ldots i_{m}}} & :=\left\{w_{i_{1}}, \ldots, w_{i_{m}}\right\} \subset \mathbb{W}_{s}, \\
\wedge\left(\lambda_{i_{1} \ldots i_{m}}\right) & :=\wedge\left(i_{1}, \ldots, i_{m}\right):=l_{i_{1}} \cap \ldots \cap l_{i_{m}} .
\end{aligned}
$$

Definition 4.2. A non-singular cubic surface with 27 lines, and e-invariants e_{0}, e_{1}, e_{2}, e_{3} is called a cubic surface of type $\left[e_{0}, e_{1}, e_{2}, e_{3}\right]$.

As an example, the cubic surface $\mathscr{S}^{(4)}(17)$ is of type $[54,228,123,4]$ (see Section 3.6). More precisely, the points on $\mathscr{S}^{(4)}(17)$ that do not lie on a line of the cubic surface are shown in Table 4.1.

Table 4.1: Points belong to $\mathscr{S}^{(4)}(17) \backslash\left\{\right.$ lines of $\left.\mathscr{S}^{(4)}(17)\right\}$

$(1: 8: 11: 14)$	$(1: 8: 11: 7)$	$(1: 10: 12: 10)$	$(1: 12: 6: 1)$	$(1: 8: 15: 6)$	$(1: 2: 9: 16)$	$(1: 13: 13: 3)$	$(1: 10: 2: 15)$
$(1: 4: 8: 11)$	$(1: 2: 6: 2)$	$(1: 2: 11: 11)$	$(1: 1: 4: 15)$	$(1: 7: 1: 1)$	$(1: 3: 7: 2)$	$(1: 4: 12: 14)$	$(1: 7: 4: 11)$
$(1: 10: 1: 10)$	$(1: 8: 6: 14)$	$(1: 2: 16: 11)$	$(1: 4: 2: 14)$	$(1: 10: 12: 16)$	$(1: 2: 10: 10)$	$(1: 4: 11: 6)$	$(1: 3: 7: 8)$
$(1: 15: 13: 4)$	$(1: 13: 13: 2)$	$(1: 8: 15: 10)$	$(1: 3: 1: 4)$	$(1: 12: 4: 5)$	$(1: 12: 15: 14)$	$(1: 3: 2: 1)$	$(1: 5: 12: 16)$
$(1: 2: 7: 16)$	$(1: 1: 9: 6)$	$(1: 13: 16: 1)$	$(1: 4: 11: 3)$	$(1: 7: 4: 7)$	$(1: 11: 10: 8)$	$(1: 15: 8: 15)$	$(1: 3: 12: 4)$
$(1: 15: 14: 10)$	$(1: 12: 12: 5)$	$(1: 9: 2: 14)$	$(1: 14: 13: 8)$	$(1: 15: 9: 3)$	$(1: 5: 8: 7)$	$(1: 11: 10: 2)$	$(1: 0: 6: 0)$
$(1: 13: 16: 4)$	$(1: 15: 10: 3)$	$(1: 14: 9: 3)$	$(1: 12: 5: 14)$	$(1: 14: 16: 1)$	$(1: 7: 10: 4)$		

The points on $\mathscr{S}^{(4)}(17)$ that lie on exactly one line of the cubic surface are shown in Table 4.2.

Table 4.2: Points lie on exactly one line of $\mathscr{S}^{(4)}(17)$

$(1: 0: 8: 0)$	$(0: 1: 0: 8)$	$(1: 6: 3: 16)$	$(1: 6: 0: 16)$	$(0: 1: 12: 0)$	$(1: 13: 3: 15)$	$(1: 15: 13: 9)$	$(1: 10: 3: 2)$
$(1: 1: 6: 2)$	$(1: 12: 12: 4)$	$(0: 1: 3: 3)$	$(1: 0: 0: 3)$	$(1: 11: 5: 8)$	$(1: 0: 1: 0)$	$(1: 15: 12: 9)$	$(1: 3: 1: 10)$
$(1: 0: 10: 0)$	$(1: 0: 0: 8)$	$(1: 10: 5: 2)$	$(1: 5: 7: 12)$	$(1: 11: 14: 15)$	$(1: 12: 1: 13)$	$(1: 4: 6: 13)$	$(0: 1: 16: 0)$
$(1: 13: 8: 12)$	$(1: 4: 3: 6)$	$(1: 16: 6: 14)$	$(1: 13: 4: 12)$	$(1: 7: 1: 3)$	$(1: 11: 8: 2)$	$(1: 7: 14: 3)$	$(1: 4: 5: 1)$
$(1: 8: 10: 10)$	$(1: 5: 16: 7)$	$(1: 4: 13: 2)$	$(1: 7: 9: 7)$	$(1: 3: 14: 8)$	$(1: 12: 0: 8)$	$(0: 1: 3: 0)$	$(0: 1: 6: 0)$
$(1: 0: 0: 15)$	$(1: 10: 7: 13)$	$(1: 14: 13: 1)$	$(1: 12: 10: 12)$	$(1: 8: 14: 6)$	$(1: 13: 0: 1)$	$(1: 2: 14: 4)$	$(1: 11: 4: 5)$
$(1: 0: 2: 8)$	$(1: 0: 12: 0)$	$(0: 1: 0: 12)$	$(1: 3: 16: 2)$	$(1: 0: 11: 14)$	$(1: 12: 6: 9)$	$(1: 13: 11: 6)$	$(1: 16: 8: 0)$
$(1: 11: 14: 5)$	$(1: 8: 16: 13)$	$(1: 0: 15: 11)$	$(1: 3: 11: 11)$	$(1: 14: 1: 9)$	$(1: 2: 7: 2)$	$(1: 3: 5: 11)$	$(1: 0: 11: 0)$
$(1: 16: 7: 13)$	$(1: 12: 4: 3)$	$(0: 1: 13: 4)$	$(1: 13: 4: 11)$	$(1: 16: 8: 4)$	$(1: 11: 8: 13)$	$(1: 7: 15: 14)$	$(1: 10: 8: 15)$
$(1: 5: 13: 12)$	$(1: 15: 5: 15)$	$(1: 10: 15: 13)$	$(1: 13: 2: 15)$	$(1: 10: 8: 9)$	$(1: 4: 14: 8)$	$(1: 10: 1: 12)$	$(1: 3: 9: 0)$
$(1: 15: 6: 12)$	$(1: 10: 11: 7)$	$(1: 4: 10: 16)$	$(1: 15: 0: 4)$	$(1: 7: 16: 6)$	$(0: 1: 2: 8)$	$(1: 9: 0: 12)$	$(1: 7: 10: 0)$
$(1: 7: 5: 1)$	$(1: 1: 11: 8)$	$(1: 2: 0: 10)$	$(1: 15: 3: 16)$	$(1: 0: 0: 10)$	$(1: 8: 14: 16)$	$(1: 7: 2: 11)$	$(1: 5: 16: 13)$
$(1: 15: 4: 7)$	$(0: 1: 5: 10)$	$(1: 11: 11: 0)$	$(1: 3: 14: 6)$	$(1: 0: 0: 2)$	$(1: 15: 9: 16)$	$(1: 12: 7: 6)$	$(1: 7: 2: 13)$
$(1: 12: 5: 14)$	$(1: 0: 6: 0)$	$(1: 8: 6: 0)$	$(1: 5: 1: 9)$	$(1: 0: 10: 2)$	$(0: 1: 2: 0)$	$(0: 1: 16: 6)$	$(1: 12: 14: 1)$
$(1: 2: 9: 13)$	$(1: 0: 0: 6)$	$(0: 1: 15: 0)$	$(1: 3: 9: 6)$	$(1: 14: 4: 8)$	$(1: 4: 6: 5)$	$(1: 8: 10: 4)$	$(1: 5: 14: 10)$
$(1: 4: 14: 11)$	$(1: 16: 4: 8)$	$(1: 3: 3: 1)$	$(1: 12: 10: 8)$	$(1: 0: 0: 5)$	$(1: 9: 1: 1)$	$(1: 4: 9: 5)$	$(0: 1: 0: 4)$
$(0: 1: 0: 7)$	$(1: 0: 0: 4)$	$(1: 2: 10: 12)$	$(1: 0: 13: 4)$	$(0: 1: 6: 5)$	$(1: 8: 5: 2)$	$(1: 4: 8: 16)$	$(1: 11: 2: 9)$
$(1: 6: 8: 13)$	$(0: 1: 14: 0)$	$(1: 0: 0: 16)$	$(1: 0: 16: 6)$	$(1: 8: 8: 16)$	$(1: 15: 7: 8)$	$(1: 4: 2: 8)$	$(1: 0: 2: 0)$
$(1: 11: 0: 15)$	$(1: 8: 1: 12)$	$(1: 12: 15: 13)$	$(1: 13: 7: 6)$	$(1: 3: 5: 5)$	$(0: 1: 8: 12)$	$(1: 0: 4: 15)$	$(1: 4: 3: 2)$
$(1: 4: 9: 12)$	$(1: 0: 1: 13)$	$(1: 14: 16: 0)$	$(0: 1: 14: 16)$	$(1: 0: 15: 0)$	$(0: 1: 0: 15)$	$(1: 9: 3: 14)$	$(1: 1: 3: 8)$
$(1: 10: 2: 11)$	$(1: 12: 1: 4)$	$(1: 16: 6: 9)$	$(1: 13: 2: 13)$	$(1: 12: 5: 3)$	$(1: 13: 11: 13)$	$(1: 5: 8: 11)$	$(1: 2: 13: 12)$
$(1: 9: 16: 12)$	$(1: 1: 5: 16)$	$(1: 1: 10: 16)$	$(1: 16: 0: 14)$	$(1: 3: 12: 5)$	$(1: 13: 14: 4)$	$(1: 10: 11: 3)$	$(1: 7: 5: 6)$
$(0: 1: 9: 0)$	$(1: 15: 4: 12)$	$(1: 6: 15: 9)$	$(1: 8: 5: 7)$	$(1: 0: 9: 7)$	$(0: 1: 0: 14)$	$(1: 16: 2: 1)$	$(1: 7: 12: 13)$
$(1: 2: 6: 1)$	$(1: 14: 14: 11)$	$(1: 13: 8: 2)$	$(1: 5: 12: 10)$	$(1: 2: 16: 4)$	$(1: 16: 4: 9)$	$(1: 11: 11: 13)$	$(1: 2: 14: 5)$
$(1: 11: 12: 12)$	$(1: 12: 7: 0)$	$(1: 5: 1: 0)$	$(1: 8: 8: 9)$	$(1: 4: 13: 1)$	$(0: 1: 0: 11)$	$(1: 7: 9: 9)$	$(1: 3: 13: 3)$
$(1: 10: 3: 5)$	$(1: 3: 3: 10)$	$(1: 14: 1: 3)$	$(1: 4: 12: 12)$	$(1: 5: 5: 6)$	$(1: 14: 3: 5)$	$(1: 1: 9: 12)$	$(1: 16: 3: 8)$
$(1: 11: 15: 9)$	$(0: 1: 4: 15)$	$(1: 1: 15: 6)$	$(1: 3: 2: 9)$	$(1: 16: 2: 12)$	$(1: 7: 14: 14)$	$(1: 10: 5: 11)$	$(1: 9: 1: 15)$
$(1: 8: 16: 12)$	$(1: 5: 5: 14)$	$(1: 5: 7: 16)$	$(0: 1: 5: 0)$	$(1: 14: 3: 7)$	$(1: 14: 4: 13)$	$(1: 3: 0: 3)$	$(1: 8: 1: 15)$
$(1: 13: 5: 3)$	$(1: 11: 5: 7)$	$(1: 10: 7: 9)$	$(0: 1: 0: 16)$				

The points on $\mathscr{S}^{(4)}(17)$ that lie on exactly two lines of the cubic surface are shown in Table 4.3.

Table 4.3: Points lie on exactly two lines of $\mathscr{S}^{(4)}(17)$

$(1: 0: 0: 0)$	$(0: 1: 0: 0)$	$(0: 0: 1: 0)$	$(0: 0: 0: 1)$	$(1: 16: 14: 13)$	$(1: 0: 0: 9)$	$(1: 11: 2: 12)$	$(0: 0: 1: 12)$
$(1: 5: 0: 6)$	$(1: 0: 16: 0)$	$(1: 2: 11: 9)$	$(1: 7: 15: 12)$	$(1: 2: 3: 13)$	$(1: 2: 5: 9)$	$(1: 12: 13: 9)$	$(0: 1: 0: 1)$
$(0: 1: 0: 10)$	$(1: 5: 4: 13)$	$(1: 1: 3: 9)$	$(1: 6: 5: 10)$	$(1: 0: 0: 13)$	$(1: 1: 11: 9)$	$(1: 14: 0: 11)$	$(1: 4: 10: 9)$
$(1: 10: 14: 12)$	$(1: 0: 0: 1)$	$(1: 1: 10: 13)$	$(1: 0: 3: 0)$	$(0: 1: 0: 3)$	$(1: 5: 3: 11)$	$(0: 1: 12: 9)$	$(1: 6: 3: 3)$
$(1: 7: 0: 9)$	$(1: 14: 5: 12)$	$(1: 3: 16: 9)$	$(1: 15: 14: 13)$	$(1: 10: 0: 5)$	$(1: 0: 13: 0)$	$(0: 1: 0: 13)$	$(1: 1: 14: 2)$
$(1: 4: 0: 13)$	$(1: 13: 7: 9)$	$(1: 8: 3: 9)$	$(0: 1: 9: 7)$	$(1: 9: 14: 9)$	$(1: 8: 0: 2)$	$(1: 16: 3: 15)$	$(1: 8: 3: 4)$
$(1: 0: 14: 16)$	$(1: 6: 15: 10)$	$(1: 10: 15: 0)$	$(1: 14: 5: 9)$	$(1: 7: 3: 12)$	$(1: 16: 14: 15)$	$(0: 1: 7: 0)$	$(1: 13: 5: 16)$
$(1: 8: 12: 13)$	$(1: 6: 14: 12)$	$(1: 5: 14: 14)$	$(1: 14: 6: 13)$	$(0: 1: 11: 0)$	$(1: 14: 14: 7)$	$(1: 6: 14: 0)$	$(1: 00: 0: 11)$
$(1: 15: 3: 10)$	$(1: 0: 12: 9)$	$(0: 1: 15: 11)$	$(1: 1: 15: 12)$	$(1: 0: 4: 0)$	$(0: 1: 11: 14)$	$(1: 0: 7: 0)$	$(1: 6: 9: 13)$
$(1: 16: 5: 4)$	$(1: 7: 3: 4)$	$(1: 11: 3: 14)$	$(1: 6: 9: 9)$	$(0: 1: 0: 2)$	$(1: 9: 3: 13)$	$(1: 9: 16: 9)$	$(1: 15: 12: 0)$
$(1: 2: 5: 5)$	$(1: 12: 14: 7)$	$(1: 0: 8: 12)$	$(1: 0: 9: 0)$	$(0: 1: 0: 9)$	$(1: 15: 14: 10)$	$(1: 1: 0: 0)$	$(0: 1: 1: 0)$
$(1: 9: 2: 0)$	$(1: 0: 0: 14)$	$(0: 1: 1: 13)$	$(1: 0: 5: 0)$	$(0: 1: 0: 5)$	$(1: 13: 3: 0)$	$(1: 10: 14: 3)$	$(1: 1: 5: 13)$
$(1: 3: 13: 13)$	$(1: 0: 14: 0)$	$(0: 1: 4: 0)$	$(1: 9: 14: 1)$	$(1: 13: 14: 9)$	$(0: 1: 13: 0)$	$(1: 3: 11: 12)$	$(1: 0: 3: 3)$
$(1: 2: 13: 0)$	$(0: 1: 10: 0)$	$(1: 0: 0: 7)$	$(1: 11: 3: 7)$	$(1: 0: 5: 10)$	$(1: 11: 12: 14)$	$(1: 14: 6: 12)$	$(0: 1: 0: 6)$
$(1: 9: 5: 15)$	$(1: 5: 4: 9)$	$(1: 12: 3: 6)$	$(0: 1: 8: 0)$	$(1: 0: 6: 5)$	$(1: 2: 3: 1)$	$(1: 15: 5: 8)$	$(1: 4: 5: 0)$
$(1: 15: 10: 13)$	$(1: 12: 3: 12)$	$(1: 16: 7: 12)$					

The points on $\mathscr{S}^{(4)}(17)$ that lie on exactly three lines of the cubic surface are shown in Table 4.4.

Table 4.4: Points lie on exactly three lines of $\mathscr{S}^{(4)}(17)$

$(1: 9: 5: 13)$	$(1: 6: 5: 12)$	$(1: 0: 0: 12)$	$(0: 1: 10: 2)$

For other examples, see the proof of Theorem 3.7.

Theorem 4.1. For $q>7$ and q prime, any non-singular cubic surface with 27 lines $\mathscr{S}^{(0)}(q)$ is of type $\left[(q-10)^{2}+9,27(q-9), 135,0\right]$.

Proof. Recall that $\mathscr{S}^{(0)}(q)$ denotes a non-singular cubic surface with 27 lines that has no Eckardt point over the Galois field $G F(q)$. If n_{q} be the total number of points on the lines of $\mathscr{S}^{(0)}(q)$, then

$$
n_{q}=e_{3}+e_{2}+e_{1} .
$$

Let $l_{i}, i=1, \ldots, 27$, be the 27 lines on $\mathscr{S}^{(0)}(q)$. Let $e_{r}^{(i)}$ be the number of points of l_{i} lying on exactly r lines of $\mathscr{S}^{(0)}(q)$. Then

$$
\begin{aligned}
& \sum_{i=1}^{27} e_{3}^{(i)}=3 e_{3} \\
& \sum_{i=1}^{27} e_{2}^{(i)}=2 e_{2} \\
& \sum_{i=1}^{27} e_{1}^{(i)}=e_{1}
\end{aligned}
$$

Also we know that each line meets ten others. So we have

$$
2 e_{3}^{(i)}+e_{2}^{(i)}=10
$$

Moreover, every line in \mathbb{P}_{q}^{2} has exactly $q+1$ points. It follows that

$$
e_{3}^{(i)}+e_{2}^{(i)}+e_{1}^{(i)}=q+1
$$

Taking the sum for both previous equations and over all $i=1, \ldots, 27$ will give

$$
\begin{aligned}
6 e_{3}+2 e_{2} & =270, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1) .
\end{aligned}
$$

More precisely, we obtain

$$
\begin{aligned}
e_{2}+e_{1} & =27(q-4), \\
n_{q} & =27(q-4)+e_{3} .
\end{aligned}
$$

From Section 3.1, we have $\#\left(\mathscr{S}^{(0)}(q)\right)=q^{2}+7 q+1$. Hence

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

or

$$
e_{3}+e_{0}=q^{2}+7 q+1-27(q-4)=(q-10)^{2}+9
$$

Thus

$$
\#\left(\mathscr{S}^{(0)}(q)\right)=n_{q}+e_{0} .
$$

and hence

$$
\begin{aligned}
& e_{3}=0 \\
& e_{2}=270 / 2=135 \\
& e_{1}=27(q-4)-135=27(q-9), \\
& e_{0}=(q-10)^{2}+9
\end{aligned}
$$

Theorem 4.2. For $q>7$ and q prime, any non-singular cubic surface with 27 lines $\mathscr{S}^{(1)}(q)$ is of type $\left[(q-10)^{2}+8,27(q-9)+3,132,1\right]$.

Proof. Recall that $\mathscr{S}^{(1)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly one Eckardt point over the Galois field $G F(q)$. By the same argument used in the proof of Theorem 4.1, we have

$$
n_{q}=e_{3}+e_{2}+e_{1},
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{27} e_{3}^{(i)}=3 e_{3} \\
& \sum_{i=1}^{27} e_{2}^{(i)}=2 e_{2} \\
& \sum_{i=1}^{27} e_{1}^{(i)}=e_{1}
\end{aligned}
$$

We know that

$$
\begin{gathered}
2 e_{3}^{(i)}+e_{2}^{(i)}=10, \\
e_{3}^{(i)}+e_{2}^{(i)}+e_{1}^{(i)}=q+1 .
\end{gathered}
$$

So

$$
\begin{aligned}
6 e_{3}+2 e_{2} & =270, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1) .
\end{aligned}
$$

Consequently, we get

$$
\begin{aligned}
e_{2}+e_{1} & =27(q-4), \\
n_{q} & =27(q-4)+e_{3} .
\end{aligned}
$$

From Section 3.1, we have $\#\left(\mathscr{S}^{(1)}(q)\right)=q^{2}+7 q+1$. Hence

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

It follows that

$$
\begin{aligned}
& e_{3}=1 \\
& e_{2}=135-3=132, \\
& e_{1}=27(q-4)-132=27(q-9)+3, \\
& e_{0}=(q-10)^{2}+8
\end{aligned}
$$

Theorem 4.3. For $q \geq 7$ and q prime, the only non-singular cubic surfaces with 27 lines and all points lying on those lines, i.e, surfaces of type $\left[0, e_{1}, e_{2}, e_{3}\right]$, are $\mathscr{S}^{(18)}(7), \mathscr{S}^{(10)}(11)$ and $\mathscr{S}^{(18)}(13)$.

Proof. Recall that $\mathscr{S}^{(m)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly m Eckardt points over the Galois field $G F(q)$. It is clear that for the case $q=7$, a non-singular cubic surface with 27 lines exists. In fact, $\mathscr{S}^{(18)}(7)$ is such a surface because $7=1 \bmod 3$, and $x^{2}+x+1$ has two roots, namely $x=2$ and $x=4$ (see Section 3.4). In fact, the cubic surface $\mathscr{S}^{(18)}(7)$ is of type $[0,0,81,18]$.

For the case $q=11$, if

$$
\mathscr{S}^{(10)}(11):=\mathbb{V}\left(x_{0}^{3}+x_{1}^{3}+x_{2}^{3}+x_{3}^{3}-\left(x_{0}+x_{1}+x_{2}+x_{3}\right)^{3}\right),
$$

then $\mathscr{S}^{(10)}(11)$ is a non-singular cubic surface with 27 lines, and it has exactly 10 Eckardt points (see Table 4.5).

Table 4.5: Eckardt points of $\mathscr{S}^{(10)}(11)$

$(1: 0: 0: 0)$	$(0: 1: 0: 0)$	$(0: 0: 1: 0)$	$(0: 0: 0: 1)$	$(1:-1: 0: 0)$
$(0: 1:-1: 0)$	$(0: 0: 1:-1)$	$(1: 0:-1: 0)$	$(0: 1: 0:-1)$	$(1: 0: 0:-1)$

Moreover, $\mathscr{S}^{(10)}(11)$ is of type $[0,64,105,10]$.
For the case $q=13$, if

$$
\mathscr{S}^{(18)}(13):=\mathbb{V}\left(y_{0}^{2} y_{1}+4 y_{1}^{2} y_{0}+6 y_{2}^{2} y_{3}+3 y_{3}^{2} y_{2}+y_{0} y_{1} y_{2}+5 y_{0} y_{1} y_{3}\right),
$$

then $\mathscr{S}^{(18)}(13)$ a non-singular cubic surface with 27 lines, and it has exactly 18 Eckardt points (see Table 4.6)

Table 4.6: Eckardt points of $\mathscr{S}^{(18)}(13)$

$(1: 0: 0: 0)$	$(0: 1: 0: 0)$	$(1: 0: 0:-3)$	$(1: 3: 0: 0)$	$(1:-3: 0:-3)$	$(1: 6: 6:-3)$
$(1: 0:-2: 0)$	$(1:-5:-3: 8)$	$(1:-3:-2: 0)$	$(1: 0: 6: 1)$	$(1:-4: 6:-3)$	$(1:-3: 6: 1)$
$(0: 1: 0: 1)$	$(1: 1:-2: 1)$	$(0: 1:-2: 4)$	$(1: 2:-3:-5)$	$(1:-2:-2: 1)$	$(0: 1: 5: 0)$

In fact, the cubic surface $\mathscr{S}^{(18)}(13)$ is of type $[0,162,81,18]$. It remain to show that, if $q>13$, then there is no non-singular cubic surface with 27 lines such that all its points belong to the 27 lines, that is, every non-singular cubic surface with 27 lines, namely $\mathscr{S}^{(m)}(q), q>13$ is of type $\left[e_{0}, e_{1}, e_{2}, e_{3}\right]$ such that $e_{0} \neq 0$. By the way of contradiction, let us assume that there is such non-singular cubic surface, then from Section 3.3, we have

$$
n_{q}=e_{3}+e_{2}+e_{1}
$$

where n_{q} is the total number of points on the lines of $\mathscr{S}^{(m)}(q)$ and

$$
\begin{aligned}
e_{2}+e_{1} & =27(q-4), \\
n_{q} & =27(q-4)+e_{3} .
\end{aligned}
$$

Moreover, from Section 3.1, we have $\#\left(\mathscr{S}^{(m)}(q)\right)=q^{2}+7 q+1$. Hence

$$
e_{3}+e_{0}=e_{3}=q^{2}+7 q+1-27(q-4)=(q-10)^{2}+9
$$

Thus for $q>13$ and q is prime, we get $(q-10)^{2}>9$ and hence $e_{3}>18$ which is impossible.

4.1 Quadratic transformations

Recall a smooth cubic surface with 27 lines, namely X, is the blow-up of \mathbb{P}_{k}^{2} at six points in general position, namely $s=\kappa_{123456} \in \mathbb{S}_{6}$. In this case, we write $X=\mathrm{blw}_{s} \mathbb{P}_{k}^{2}$, and we have

1. the exceptional curve $\widetilde{P}_{i}:=a_{i}$ is defined to be the total transform of P_{i} in s,
2. the curve $\widetilde{l_{i j}}:=c_{i j}$ is the strict transform of $l_{i j}=\overline{P_{i} P_{j}}$,
3. the curve $\widetilde{\mathscr{C}}_{j}:=b_{j}$ is the strict transform of the conic \mathscr{C}_{j} passing through all points of s except P_{j}.

Consider the rational map $\varphi_{123}: \mathbb{P}_{k}^{2} \longrightarrow \mathbb{P}_{k}^{2}$ defined by:

$$
\varphi_{123}\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)
$$

which is called the quadratic elementary transformation. The points

$$
P_{1}=(1: 0: 0), P_{2}=(0: 1: 0), P_{3}=(0: 0: 1)
$$

are called the fundamental points of φ_{123}, while the lines:

$$
\begin{aligned}
& l_{23}=\overline{P_{2} P_{3}}=\left\{x_{0}=0\right\}, \\
& l_{13}=\overline{P_{1} P_{3}}=\left\{x_{1}=0\right\}, \\
& l_{12}=\overline{P_{1} P_{2}}=\left\{x_{2}=0\right\},
\end{aligned}
$$

are called the fundamental lines of φ_{123}. From the definition of φ_{123} it follows that φ_{123} is a morphism on $\mathbb{P}_{k}^{2} \backslash\left\{P_{1}, P_{2}, P_{3}\right\}$ and an isomorphism on $\mathbb{P}_{k}^{2} \backslash l_{12} \cup l_{l 3} \cup l_{23}$, on which φ_{123} can be written:

$$
\begin{equation*}
\varphi_{123}\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(\frac{1}{x_{0}}: \frac{1}{x_{1}}: \frac{1}{x_{2}}\right) . \tag{4.1.1}
\end{equation*}
$$

Note that $\varphi_{123}\left(P_{1}\right)=\varphi_{123}\left(P_{2}\right)=\varphi_{123}\left(P_{3}\right)=(0: 0: 0) \notin \mathbb{P}_{k}^{2}$. In this case, φ_{123} is birational and $\varphi_{123}^{2}=i d$. Moreover, on

$$
\mathbb{P}_{k}^{2} \backslash l_{12} \cup l_{l 3} \cup l_{23}=\mathbb{P}_{k}^{2} \backslash \mathbb{V}\left(x_{0}\right) \cup \mathbb{V}\left(x_{1}\right) \cup \mathbb{V}\left(x_{2}\right)=\mathbb{P}_{k}^{2} \backslash \mathbb{V}\left(x_{0} x_{1} x_{2}\right)
$$

we have $x_{0} x_{1} x_{2} \neq 0$ and hence

$$
\varphi_{123}\left(x_{0}: x_{1}: x_{2}\right) \mapsto\left(x_{1} x_{2}: x_{0} x_{2}: x_{0} x_{1}\right)=x_{0} x_{1} x_{2}\left(\frac{1}{x_{0}}: \frac{1}{x_{1}}: \frac{1}{x_{2}}\right)=\left(\frac{1}{x_{0}}: \frac{1}{x_{1}}: \frac{1}{x_{2}}\right) .
$$

The image under φ_{123} of a line not passing through the fundamental points is a conic passing through P_{1}, P_{2} and P_{3}. More precisely, the net of lines of the domain plane is transformed into the net of conics (on the codomain, i.e $\left.\mathbb{P}_{k}^{2} \backslash \mathbb{V}\left(x_{0} x_{1} x_{2}\right)\right)$ passing through the P_{1}, P_{2} and P_{3} and vice versa. This explains why the term "quadratic" is used to indicate this Cremona transformation (see [10]). For example: Consider the irreducible conic

$$
\mathscr{C}=\left\{x_{1} x_{2}+x_{0} x_{2}+x_{0} x_{1}=0\right\}=\mathbb{V}\left(x_{1} x_{2}+x_{0} x_{2}+x_{0} x_{1}\right)
$$

which passes through the fundamental points P_{1}, P_{2} and P_{3}. It follows that

$$
\varphi_{123}(\mathscr{C})=\frac{1}{x_{1}} \frac{1}{x_{2}}+\frac{1}{x_{0}} \frac{1}{x_{2}}+\frac{1}{x_{0}} \frac{1}{x_{1}}=x_{0} x_{1} x_{2}\left(\frac{1}{x_{1}} \frac{1}{x_{2}}+\frac{1}{x_{0}} \frac{1}{x_{2}}+\frac{1}{x_{0}} \frac{1}{x_{1}}\right)=x_{0}+x_{1}+x_{2}
$$

which is a line not passing through the fundamental points P_{1}, P_{2} and P_{3}. Conversely, consider the line

$$
l=\mathbb{V}\left(x_{0}+x_{1}+x_{2}\right)=\left\{x_{0}+x_{1}+x_{2}=0\right\}
$$

which is a line not passing through the fundamental points P_{1}, P_{2} and P_{3}. Consequently, we have

$$
\varphi_{123}(l)=\frac{1}{x_{0}}+\frac{1}{x_{1}}+\frac{1}{x_{2}}=x_{0} x_{1} x_{2}\left(\frac{1}{x_{0}}+\frac{1}{x_{1}}+\frac{1}{x_{2}}\right)=x_{1} x_{2}+x_{0} x_{2}+x_{0} x_{1}
$$

which is an irreducible conic passing through the fundamental points P_{1}, P_{2} and P_{3}. Now consider the line

$$
l=\mathbb{V}\left(x_{0}+x_{1}\right)=\left\{x_{0}+x_{1}=0\right\}
$$

which passes through only one point of the fundamental points P_{1}, P_{2} and P_{3}, namely P_{3}. Then

$$
\varphi_{123}(l)=\frac{1}{x_{0}}+\frac{1}{x_{1}}=x_{0} x_{1}\left(\frac{1}{x_{0}}+\frac{1}{x_{1}}\right)=x_{1}+x_{0}
$$

which is again a line passing through only the fundamental point P_{3}.
Consider the irreducible conic

$$
\mathscr{C}=\left\{x_{0}^{2}+x_{1} x_{2}=0\right\}=\mathbb{V}\left(x_{0}^{2}+x_{1} x_{2}\right)
$$

which passes through the 2 fundamental points of $\left\{P_{1}, P_{2}, P_{3}\right\}$, namely P_{2} and P_{3}. Note that

$$
\varphi_{123}(\mathscr{C})=\frac{1}{x_{0}^{2}}+\frac{1}{x_{1}} \frac{1}{x_{2}}=x_{0}^{2} x_{1} x_{2}\left(\frac{1}{x_{0}^{2}}+\frac{1}{x_{1}} \frac{1}{x_{2}}\right)=x_{1} x_{2}+x_{0}^{2}
$$

which is again an irreducible conic passing through 2 of the fundamental points of $\left\{P_{1}, P_{2}, P_{3}\right\}$, namely P_{2} and P_{3}.

The birational map φ_{123} associated with $S(P)=\left\{P_{1}, P_{2}, P_{3}\right\}$ is called the elementary quadratic transformation with the fundamental points P_{1}, P_{2} and P_{3}, and we write $\varphi_{123}=c\left(P_{1}, P_{2}, P_{3}\right)$ where c means "Cremonian".

We observe that each elementary quadratic transformation $c\left(P_{1}, P_{2}, P_{3}\right)$ is of the form (4.1.1), up to an automorphism of the plane. In fact, if $\varphi: \mathbb{P}_{k}^{2} \rightarrow \mathbb{P}_{k}^{2}$ is a projectivity such that:

$$
\varphi\left(P_{1}\right)=(1: 0: 0), \varphi\left(P_{2}\right)=(0: 1: 0), \varphi\left(P_{3}\right)=(0: 0: 1)
$$

then it immediately occurs that:

$$
c\left(P_{1}, P_{2}, P_{3}\right)=\varphi^{-1} \circ \varphi_{123} \circ \varphi
$$

Let $\varphi_{123}=c\left(P_{1}, P_{2}, P_{3}\right)$ be an elementary quadratic transformation. Now we see how to interpret φ_{123} with blowing up. We consider the blowing up $\sigma: S \rightarrow \mathbb{P}_{k}^{2}$ of the points P_{1}, P_{2} and P_{3}, and let $\sigma^{\prime}: S^{\prime} \rightarrow \mathbb{P}^{2}$ be a copy of $\sigma: S \rightarrow \mathbb{P}^{2}$. Then there exists an isomorphism ψ such that the diagram in Figure 4.1 commutes as we will explain. In particular, indicate by $\widetilde{l_{i j}}=c_{i j}$ the strict transforms of the line $l_{i j}$ in S, and let $\widetilde{P}_{i}=a_{i}$. Then we have

$$
\psi\left(a_{i}\right)=c_{j k}^{\prime}, \psi\left(c_{j k}\right)=a_{i}^{\prime}, i=1,2,3 ; j, k \in\{1,2,3\} \backslash\{i\},
$$

where a_{i}^{\prime} and $c_{j k}^{\prime}$ are the copies in S^{\prime} respectively of a_{i} and $c_{j k}$ (see Figure 4.2).
In other words, $\varphi_{123}=c\left(P_{1}, P_{2}, P_{3}\right)$ is the blowing up of P_{1}, P_{2} and P_{3} and the contraction $\tau=\sigma^{\prime} \circ \psi$ of c_{12}, c_{13} and c_{23} ([29], Page 260).

Figure 4.1: Elementary quadratic transformation φ_{123}.

Figure 4.2: Elementary quadratic transformation

More precisely, if

$$
P_{1}=(1: 0: 0)=Q_{1}, P_{2}=(0: 1: 0)=Q_{2}, P_{3}=(0: 0: 1)=Q_{3},
$$

and

$$
\begin{aligned}
& \pi_{S(P)} \text { represents the blowing up of } \mathbb{P}_{X}^{2} \text { at } S(P):=\left\{P_{1}, P_{2}, P_{3}\right\}, \\
& \pi_{S(Q)} \text { represents the blowing up of } \mathbb{P}_{Y}^{2} \text { at } S(Q):=\left\{Q_{1}, Q_{2}, Q_{3}\right\}, \\
& \quad \mathcal{V}
\end{aligned}
$$

then we have the following commutative diagram (see Figure 4.3).
Furthermore, we have the following correspondence via φ_{123} :
irreducible conic containing $P_{1}, P_{2}, P_{3} \leftrightarrow$ line not containing any Q_{1}, Q_{2}, Q_{3}, irreducible conic containing only \leftrightarrow irreducible conic containing only
the two points P_{i}, P_{j},

$$
i, j \in\{1,2,3\}
$$

line containing only one point

$$
P_{i}, i \in\{1,2,3\}
$$

the two points Q_{i}, Q_{j},

$$
i, j \in\{1,2,3\}
$$

$\leftrightarrow \quad$ line containing only one point.
$Q_{i}, i \in\{1,2,3\}$.

Figure 4.3: $\varphi_{123}=\pi_{S(Q)} \circ \pi_{S(P)}^{-1}$.

Remark 4.1. According to the above argument, if $s, s^{\prime} \in \mathbb{S}_{6}$ are such that s^{\prime} can be obtained from s by a quadratic transformation, then

$$
\mathrm{blw}_{s^{\prime}} \mathbb{P}^{2}=\mathrm{blw}_{s} \mathbb{P}^{2} \text { (see Proposition 4.12). }
$$

4.2 Operation on triples of lines on a smooth cubic surface

Recall from ([10], Page 477) that a tritangent trio (trihedron) is a set of three exceptional lines which span a tritangent plane. A pair of tritangent planes intersecting along a line not in the surface is classically known as a Cremona pair. A triad of tritangent trios is a set of three tritangent trios such that no two share a common exceptional line. Given a pair of tritangent trios with no common exceptional lines, there is a unique third tritangent trio forming a triad with the first two. Every triad of tritangent trios has a unique conjugate triad which contains the same 9 exceptional lines. We call these a conjugate pair of triads of tritangent trios. A trihedral pair is a triad with its conjugate triad. A representative example is the following set of 9
exceptional lines:

$$
\begin{array}{ccccc}
T_{123,456}: & c_{14} & c_{25} & c_{36} & \rightsquigarrow t_{1}^{\prime} \\
& c_{26} & c_{34} & c_{15} & \rightsquigarrow t_{2}^{\prime} \\
& c_{35} & c_{16} & c_{24} & \rightsquigarrow t_{3}^{\prime} \\
& \vdots & \vdots & \vdots & \\
& t_{1} & t_{2} & t_{3} &
\end{array}
$$

where each row and column forms a tritangent trio, and the rows form one triad with the columns its conjugate triad.

Lemma 4.2.1. ([9], Page 43) Let X be a smooth cubic surface. Consider a trihedral pair $T=\left\{t_{1}, t_{2}, t_{3}\right\}, T^{\prime}=\left\{t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}\right\}$, where t_{i}, t_{i}^{\prime} are tritangent trios (or trihedrons). The following are equivalent:

1. $t_{1} \cap t_{2} \cap t_{3}$ is a line,
2. $t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}$ corresponds to Eckardt points on a line, and
3. two of $t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}$ correspond to Eckardt points.

Proof. It suffices to assume the 9 exceptional lines are those from $T_{123,456}$ above. Assume (1). If $t_{1} \cap t_{2} \cap t_{3}$ contain a line then $t_{1} \cap t_{2}=t_{1} \cap t_{3}$. Thus

$$
c_{14} \cap c_{25}=t_{1} \cap t_{2} \cap t_{1}^{\prime}=t_{1} \cap t_{3} \cap t_{1}^{\prime}=c_{14} \cap c_{36} .
$$

This means that $c_{14} \cap c_{25} \cap c_{36}$ is nonempty and so t_{1}^{\prime} has an Eckardt point contained in $t_{1} \cap t_{2} \cap t_{3}$. Similar arguments apply to t_{2}^{\prime} and t_{3}^{\prime} so (2) follows. Clearly, (2) implies (3). So it remains to show (3) implies (1). Suppose $t_{1}^{\prime}, t_{2}^{\prime}$ correspond to Eckardt points $E_{1} ; E_{2}$. Then

$$
\begin{aligned}
& E_{1}=c_{14} \cap c_{25} \cap c_{36}, \\
& E_{2}=c_{26} \cap c_{34} \cap c_{15} .
\end{aligned}
$$

Now $t_{1} \cap t_{2}$ contains both E_{1} and E_{2} and the same is true of $t_{1} \cap t_{3}$. Thus $t_{1} \cap t_{2} \cap t_{3}$ contains both points and thus contains a line.

Corollary 4.1. ([9], Page 44) Let X be a smooth cubic surface. If X contains two Eckardt points lying on a line ℓ not contained in X then there is a unique third Eckardt point such that ℓ is a trihedral line.

Recall a point P on a smooth cubic surface with 27 lines, namely X, is called an Eckardt point (sometimes called E-point) if it is an intersection of 3 lines among the 27 lines on X. Also recall that the set of all triples of lines on X is denoted by \mathbb{T}.

If $t_{1}, t_{2}, t_{3} \in \mathbb{T}$, then the ordered triple $T=\left(t_{1}, t_{2}, t_{3}\right)$ is called a triad if t_{1}, t_{2} have no line in common and every line of t_{1} intersects exactly one line of t_{2}, and for every line $l_{3} \in t_{3}$, we get $\left(l_{1} l_{2} l_{3}\right) \in \mathbb{T}$ for some $l_{1} \in \widehat{t_{1}}$ and $l_{2} \in \widehat{t_{2}}$ where \hat{t} denotes the set of lines that form t. In this case, we write $t_{3}=t_{1,2}$.

Remark 4.2. Since the lines of $t \in \mathbb{T}^{(3)}$ form an Eckardt point, it follows that every $t \in \mathbb{T}^{(3)}$ is either of the form $\left(a_{i} b_{j} c_{i j}\right)$ or $\left(c_{i j} c_{m n} c_{k h}\right)$ where $i, j, m, n, k, h \in\{1, \ldots, 6\}$.

Let \mathscr{S} be the blowing up \mathbb{P}_{k}^{2} at six points, namely $s=\kappa_{123456} \in \mathbb{S}_{6}$, that is

$$
\mathscr{S}=\mathrm{blw}_{s} \mathbb{P}_{k}^{2}
$$

then any triad of \mathscr{S} has one of the following forms

$$
\begin{align*}
T_{i j k}: & \left\{\left(a_{i} b_{j} c_{i j}\right),\left(a_{j} b_{k} c_{j k}\right),\left(a_{k} b_{i} c_{i k}\right)\right\}, \tag{1}\\
T_{i j, k m}: & \left\{\left(a_{i} b_{m} c_{i m}\right),\left(a_{j} b_{k} c_{j k}\right),\left(c_{i k} c_{j m} c_{n h}\right)\right\}, \tag{2}\\
T_{i j k, m n h}: & \left\{\left(c_{i m} c_{j n} c_{k h}\right),\left(c_{j h} c_{k m} c_{i n}\right),\left(c_{k n} c_{i h} c_{j m}\right) .\right. \tag{3}
\end{align*}
$$

In fact, there are 20,90 and 10 trihedral pairs of type $T_{i j k}, T_{i j, k m}$ and $T_{i j k, m n h}$ respectively ([14], Pages 28,29). Furthermore, the 9 lines of a triad can form a triad in exactly two ways as follow: Any triad, say $\left\{\left(l l^{\prime} l^{\prime \prime}\right),\left(m m^{\prime} m^{\prime \prime}\right),\left(n n^{\prime} n^{\prime \prime}\right)\right\}$ can be reordered and written in a 3×3-array so that the 3 rows of the array form a triad, and the 3 columns of the array form another triad too. Such configurations are called trihedral pairs.

Clearly $c_{i j}=c_{j i}=\overline{P_{i} P_{j}}$. Thus we have the following forms for trihedral pairs:

$$
\begin{array}{cccccc}
T_{i j k}: & c_{j k} & a_{k} & b_{j} & \rightsquigarrow t_{1} \\
& b_{k} & c_{i k} & a_{i} & \rightsquigarrow t_{2} \\
& a_{j} & b_{i} & c_{i j} & \rightsquigarrow t_{3} \\
& \vdots & \vdots & \vdots & \\
& t_{1}^{\prime} & t_{2}^{\prime} & t_{3}^{\prime} & \\
T_{i j, k m}: & a_{i} & b_{m} & c_{i m} & \rightsquigarrow t_{1} \\
& b_{k} & a_{j} & c_{j k} & \rightsquigarrow t_{2} \\
& c_{i k} & c_{j m} & c_{n h} & \rightsquigarrow t_{3} \\
& \vdots & \vdots & \vdots & \\
& t_{1}^{\prime} & t_{2}^{\prime} & t_{3}^{\prime} & \\
T_{i j k, m n h}: & c_{i m} & c_{j n} & c_{k h} & \rightsquigarrow t_{1} \\
& c_{j h} & c_{k m} & c_{i n} & \rightsquigarrow t_{2} \\
& c_{k n} & c_{i h} & c_{j m} & \rightsquigarrow t_{3} \\
& \xi & \xi & & & \\
& t_{1}^{\prime} & t_{2}^{\prime} & t_{3}^{\prime} &
\end{array}
$$

Remark 4.3. Recall that if $t_{1}, t_{2} \in \mathbb{T}^{(3)}$ have no line in common, then they determine a third one, namely t_{3}, so that for any line l in t_{3}, we get $\left(l l_{1} l_{2}\right) \in \mathbb{T}^{(3)}$ for some $l_{1} \in t_{1}$ and $l_{2} \in t_{2}$. Note that $t_{1,2}=t_{2,1}$. Moreover, if $t_{1}, t_{2}, t_{3} \in \mathbb{T}^{(3)}$ form a triad, then $t_{3}=t_{1,2}, t_{1,3}=t_{2}$ and $t_{2,3}=t_{1}$. Consequently, if we assume that

$$
\overline{\mathbb{T}^{(3)}}:=\mathbb{T}^{(3)} \cup\{\emptyset\}
$$

we can define an operation on $\overline{\mathbb{T}^{(3)}}$ as follow:

Definition 4.3. Let $t_{1}, t_{2} \in \overline{\mathbb{T}^{(3)}}$. We define an operation on $\overline{\mathbb{T}^{(3)}}$ as follows:

$$
\overline{\mathbb{T}^{(3)}} \times \overline{\mathbb{T}^{(3)}} \rightarrow \overline{\mathbb{T}^{(3)}}:\left(t_{i}, t_{j}\right) \mapsto t_{i} t_{j}
$$

where

$$
t_{i} t_{j}:= \begin{cases}\emptyset & \text { if } t_{i}, t_{j} \text { have at least one common line, } \\ t_{i} & \text { if } t_{j}=\emptyset \\ t_{j} & \text { if } t_{i}=\emptyset \\ t_{i, j} & \text { otherwise }\end{cases}
$$

For example: suppose that \mathscr{S} is a non-singular cubic surface with 4 Eckardt points, and three of its Eckardt points correspond to the following 3 triples in $\mathbb{T}^{(3)}$:

$$
\begin{aligned}
& t_{1}:=\left(c_{13} c_{24} c_{56}\right), \\
& t_{2}:=\left(a_{3} b_{4} c_{34}\right), \\
& t_{3}:=\left(a_{2} b_{1} c_{12}\right) .
\end{aligned}
$$

Note that the above 3 triples form a triad, namely $T=\left\{t_{1}, t_{2}, t_{3}\right\}$. Since \mathscr{S} has 4 Eckardt points, there must be another triple $t \in \mathbb{T}^{(3)}$. Let t have 3 lines in common with the triad T. Then, up to permutations, $t \in \mathbb{T}^{(3)}$ has one of the following forms:

$$
\begin{aligned}
& t:=t_{4}=\left(a_{3} b_{1} c_{13}\right) \\
& t:=t_{5}=\left(c_{12} c_{34} c_{56}\right)
\end{aligned}
$$

If $t=t_{4}$, then we have the symmetric Table 4.7).
Table 4.7: The symmetric table 1

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	\emptyset
t_{4}	t_{4}	\emptyset	\emptyset	\emptyset	\emptyset

Similarly, if $t=t_{5}$, then we have the symmetric Table 4.8).

Lemma 4.2.2. Let $T=\left\{t_{1}, t_{2}, t_{3}\right\}, T^{\prime}=\left\{t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}\right\}$ be two triads constructed by some lines on \mathscr{S} where $c(\mathscr{S}) \in \mathbb{S}_{s m}$. Then T can transformed to T^{\prime} via some permutations and quadratic transformations.

Table 4.8: The symmetric table 2

	\emptyset	t_{1}	t_{2}	t_{3}	t_{5}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{5}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	\emptyset
t_{5}	t_{5}	\emptyset	\emptyset	\emptyset	\emptyset

Proof. Let $\varphi_{i j k}$ denote the quadratic transformation with respect to the fundamental points P_{i}, P_{j}, P_{k}. Then, up to a permutation of the 9 lines of triad, we can assume

$$
T=\left\{\left(a_{i} b_{m} c_{i m}\right),\left(a_{j} b_{k} c_{j k}\right),\left(c_{i k} c_{j m} c_{n h}\right)\right\}, \text { where } i, j, k, m, n, h \in\{1,2,3,4,5,6\}
$$

More precisely, we consider the following trihedral pair:

$$
\begin{array}{ccccc}
T=T_{i j, k m}: & a_{i} & b_{m} & c_{i m} & \rightsquigarrow t_{1} \\
& b_{k} & a_{j} & c_{j k} & \rightsquigarrow t_{2} \\
& c_{i k} & c_{j m} & c_{n h} & \rightsquigarrow t_{3}
\end{array}
$$

Now via the quadratic transformation $\varphi_{i m k}$, the trihedral pair T is transformed to

$$
\left\{\left(a_{k} b_{m} c_{m k}\right),\left(a_{j} b_{k} c_{j k}\right),\left(a_{m} b_{j} c_{m j}\right)\right\}
$$

It follows that we have the trihedral pair:

$$
\begin{array}{rccc}
T_{j m k}: & c_{m k} & a_{k} & b_{m} \\
& b_{k} & c_{j k} & a_{j} \\
& a_{m} & b_{j} & c_{m j}
\end{array}
$$

On the other hand and up to the quadratic transformation $\varphi_{i j h}$, where $h \notin$ $\{i, j, k, m\}$, the trihedral pair T can be transformed to

$$
\left\{\left(c_{j h} c_{k n} c_{i m}\right),\left(c_{m n} c_{i h} c_{j k}\right),\left(c_{i k} c_{j m} c_{n h}\right)\right\}
$$

More precisely, we have the following trihedral pair:

$$
\begin{array}{rccc}
T_{j k i, h n m}: & c_{j h} & c_{k n} & c_{i m} \\
& c_{m n} & c_{i h} & c_{j k} \\
& c_{i k} & c_{j m} & c_{n h}
\end{array}
$$

where $n \notin\{i, j, k, m, h\}$. So we can transform from one triad to another via some sequence of permutations and quadratic transformations, namely

$$
T_{j k i, h n m} \stackrel{\text { via } \varphi_{i j h}}{\longleftrightarrow} T=T_{i j, k m} \stackrel{\text { via } \varphi_{i m k}}{\longleftrightarrow} T_{j m k}
$$

Definition 4.4. Let A, B are two subsets of triples in \mathbb{T}. Then A, B are said to be equivalent and we write $A \sim B$ if A can be obtained from B via some sequence of permutations and quadratic transformations.

Henceforth, for $A, B, T \subseteq \mathbb{T}$ and $t \in T$, we write $A \vee B$ to represent the union of A and B. In particular, $T \vee t$ represents $T \cup\{t\}$.

Proposition 4.1. Let $t_{1}=\left(l_{1} l_{2} l_{3}\right), t_{2}=\left(l_{1}^{\prime} l_{2}^{\prime} l_{3}^{\prime}\right)$ and $t_{3}=\left(l_{1}^{\prime \prime} l_{2}^{\prime \prime} l_{3}^{\prime \prime}\right)$ be three triples in \mathbb{T}. Then

1. if $t_{1} \cap t_{2}=l, t_{1} \cap t_{3}=l^{\prime}$ and $t_{2} \cap t_{3}=l^{\prime \prime}$. Then $l, l^{\prime}, l^{\prime \prime}$ have common point. Furthermore, if $\left(l_{1} l_{1}^{\prime} l_{1}^{\prime \prime}\right)$ forms an Eckardt point, namely E, then $E \in l \cap l^{\prime} \cap l^{\prime \prime}$.
2. if t_{1} and t_{2} form 2 Eckardt points, namely E_{1}, E_{2} respectively, then t_{3} forms another Eckardt points, namely E_{3} so that E_{1}, E_{2}, E_{3} are collinear.

Proof. (1) Suppose that \mathcal{P}_{1} is the tritangent plane formed by t_{1}, then $l, l^{\prime} \subset \mathcal{P}_{1}$. So l, l^{\prime} must intersect at some point. Similarly, if we assume that \mathcal{P}_{2} is the tritangent plane formed by t_{2}, and \mathcal{P}_{3} is the tritangent plane formed by t_{3}, then $l, l^{\prime \prime} \subset \mathcal{P}_{2}$ and $l^{\prime}, l^{\prime \prime} \subset \mathcal{P}_{3}$ and hence they must intersect. Now if $l=l^{\prime}$ then either $l=l^{\prime \prime}$ and we are done. Otherwise, $l^{\prime \prime} \nsubseteq \mathcal{P}_{1}$ and $l, l^{\prime} \subset \mathcal{P}_{1}$, that is, $l, l^{\prime}, l^{\prime \prime}$ must have common point.

Let $\left(l_{1} l_{1}^{\prime} l_{1}^{\prime \prime}\right)$ form an Eckardt point, namely E, i.e $l_{1} \cap l_{1}^{\prime} \cap l_{1}^{\prime \prime}=\{E\}$. We can assume $l=l_{1}, l^{\prime}=l_{1}^{\prime}$ and $l^{\prime \prime}=l_{1}^{\prime \prime}$. But according to previous argument, $l, l^{\prime}, l^{\prime \prime}$ have common point, that is $l \cap l^{\prime} \cap l^{\prime \prime} \neq \emptyset$. Thus $E \in l_{1} \cap l_{1}^{\prime} \cap l_{1}^{\prime \prime}=l \cap l^{\prime} \cap l^{\prime \prime}$.
(2) Replace t_{i} with t_{i}^{\prime} and apply Lemma 4.2.1.

Remark 4.4. Let $c(\mathscr{S}) \in \mathbb{S}^{(k)}$. Then from now on, \mathscr{S} represents a non-singular cubic surface that is the blow up of \mathbb{P}^{2} at six point in general position, and we write

$$
\mathscr{S}:=\mathrm{blw}_{s} \mathbb{P}^{2} \text { for some } s=\kappa_{123456} \in \mathbb{S}_{6} .
$$

It is clear that $\mathbb{S}^{(2)} \subseteq \mathbb{S}^{(1)}$. Let $c(\mathscr{S}) \in \mathbb{S}^{(2)}$. Then $c(\mathscr{S}) \in \mathbb{S}^{(1)}$. So the corresponding non-singular cubic surface \mathscr{S} has at least one Eckardt point. Recall that any Eckardt point on \mathscr{S} is either of the form $\left(a_{i} b_{j} c_{i k}\right)$ or the form $\left(c_{i j} c_{k h} c_{m n}\right)$. However, $c(\mathscr{S}) \in$ $\mathbb{S}^{(2)}$ implies that there is at least one other Eckardt point on \mathscr{S}. So assume that \mathscr{S} has 2 Eckardt points corresponding to the two triples $t=\left(l_{1} l_{2} l_{3}\right)$ and $t^{\prime}=\left(l_{1}^{\prime} l_{2}^{\prime} l_{3}^{\prime}\right)$ in $\mathbb{T}^{(3)}$. Then either t, t^{\prime} have one line in common, or t, t^{\prime} have no line in common since otherwise they coincide. Consequently, we have the following definition.

Definition 4.5. Let \mathscr{S} be any non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{S}^{(2)}$. We define

$$
\begin{aligned}
& \mathbb{E}^{(2)}:=\left\{c(\mathscr{S}) \in \mathbb{E}^{(2,2)}: \mathscr{S} \text { has } t_{1}, t_{2} \in \mathbb{T}^{(3)} \text { with one common line }\right\}, \\
& \mathbb{E}^{(3)}:=\left\{c(\mathscr{S}) \in \mathbb{E}^{(2,2)}: \mathscr{S} \text { has } t_{1}, t_{2} \in \mathbb{T}^{(3)} \text { with no common line }\right\} .
\end{aligned}
$$

Proposition 4.2. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(2)}$. Then

1. If $c(\mathscr{S}) \in \mathbb{E}^{(2)}$ then \mathscr{S} has two Eckardt points of one of the following kinds:
(a) $\left(a_{\alpha} b_{\beta} c_{\alpha \beta}\right),\left(a_{\alpha^{*}} b_{\beta} c_{\alpha^{*} \beta}\right)$,
(b) $\left(a_{r} b_{s} c_{r s}\right),\left(a_{r} b_{s^{*}} c_{r s^{*}}\right)$,
(c) $\left(a_{i} b_{j} c_{i j}\right),\left(c_{k h} c_{m n} c_{i j}\right)$,
(d) $\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{x y} c_{w q} c_{p z}\right)$,
where $\alpha, \beta, \alpha^{*}, \beta^{*}, r, s, r^{*}, s^{*}, i, j, m, n, k, h, x, y, z, w, p, q \in\{1, \ldots, 6\}$. Furthermore, $\{(a)\} \sim\{(b)\} \sim\{(c)\} \sim\{(d)\}$.
2. If $c(\mathscr{S}) \in \mathbb{E}^{(3)}$ then \mathscr{S} has two Eckardt points of one of the following kinds:
(a) $\left(c_{i k} c_{j m} c_{n h}\right),\left(a_{i} b_{j} c_{i j}\right)$,
(b) $\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{w p} c_{y q} c_{x z}\right)$,
where $i, j, m, n, k, h, x, y, z, w, p, q \in\{1, \ldots, 6\}$. Furthermore, $\{(a)\} \sim\{(b)\}$.
Proof. Recall there are two kinds of Eckardt points on a non-singular cubic surface. Up to permutations (see Lemma 4.2.2), there is no ambiguity in assuming that \mathscr{S} has two Eckardt points of one of the following kinds:
(a) $\left(a_{\alpha} b_{\beta} c_{\alpha \beta}\right),\left(a_{\alpha^{*}} b_{\beta} c_{\alpha^{*} \beta}\right)$,
(b) $\left(a_{r} b_{s} c_{r s}\right),\left(a_{r} b_{s^{*}} c_{r s^{*}}\right)$,
(c) $\left(a_{i} b_{j} c_{i j}\right),\left(c_{k h} c_{m n} c_{i j}\right)$,
(d) $\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{x y} c_{w q} c_{p z}\right)$.

Consider the first kind (a):

$$
\left(a_{\alpha} b_{\beta} c_{\alpha \beta}\right),\left(a_{\alpha^{*}} b_{\beta} c_{\alpha^{*} \beta}\right) .
$$

By renaming, say $a:=b$, we have

$$
\left(b_{\alpha} a_{\beta} c_{\alpha \beta}\right),\left(b_{\alpha^{*}} a_{\beta} c_{\alpha^{*} \beta}\right)
$$

Now via the permutation, namely $\tau:=(\beta r)(\alpha s)\left(\alpha^{*} s^{*}\right)$, we get the kind (b), that is

$$
\left(a_{r} b_{s} c_{r s}\right),\left(a_{r} b_{s^{*}} c_{r s^{*}}\right)
$$

Consequently, via the quadratic transformation $\varphi_{r s^{*} t}$, we have

$$
\left(c_{t s^{*}} c_{u v} c_{r s}\right),\left(c_{t s^{*}} b_{s^{*}} a_{t}\right)
$$

Now, by using the permutation, namely $\sigma:=(t i)\left(s^{*} j\right)(u k)(v h)(r m)(s n)$, we get the kind (c), that is

$$
\left(a_{i} b_{j} c_{i j}\right),\left(c_{k h} c_{m n} c_{i j}\right)
$$

Again via the quadratic transformation $\varphi_{i k m}$, we have

$$
\left(c_{i j} c_{k h} c_{m n}\right),\left(c_{k m} c_{n h} c_{i j}\right)
$$

Applying the permutation, namely $\mu:=(i x)(j y)(m z)(n w)(k p)(h q)$, gives us the kind (d), that is

$$
\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{x y} c_{w q} c_{p z}\right)
$$

Thus we can transform from one kind to another. The diagram in Figure 4.4 illustrates the transformations between the kinds $(a),(b),(c)$ and (d) :

Figure 4.4: Types of Eckardt points for $\mathbb{E}^{(2)}$.
(2) Let $c(\mathscr{S}) \in \mathbb{E}^{(3)}$. Similarly, as in the previous argument used in (1), and up to permutations, we can assume \mathscr{S} has two Eckardt points of one of the following kinds (see Lemma 4.2.2):
(a) $\left(c_{i k} c_{j m} c_{n h}\right),\left(a_{i} b_{j} c_{i j}\right)$,
(b) $\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{w p} c_{y q} c_{x z}\right)$.

Consider the first kind (a):

$$
\left(c_{i k} c_{j m} c_{n h}\right),\left(a_{i} b_{j} c_{i j}\right)
$$

Then the quadratic transformation $\varphi_{i m n}$ transforms the two triples above into

$$
\left(c_{i k} c_{j m} c_{n h}\right),\left(c_{m n} c_{k h} c_{i j}\right)
$$

because $j \notin\{m, n\}$. Again via the permutation $\sigma:=(i x)(k y)(j z)(m w)(n p)(h q)$, we get the kind (b), namely

$$
\left(c_{x y} c_{z w} c_{p q}\right),\left(c_{w p} c_{y q} c_{x z}\right)
$$

The following diagram in Figure 4.5 illustrates the transformations between the kinds (a) and (b):
(a)

Figure 4.5: Types of Eckardt points for $\mathbb{E}^{(3)}$.

Remark 4.5. In $\mathbb{S}^{(2)}$, every non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(2)}$ has exactly 2 Eckardt points, and every non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(3)}$ has exactly 3 Eckardt points. All the results will be shown in the proof of the next proposition.

Proposition 4.3.

1. Any non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(3)}$ has exactly 3 Eckardt points.
2. Any non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(2)}$ has exactly 2 Eckardt points.

Proof. (1) Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(3)}$. Then according to Proposition 4.2 and the definition of $\mathbb{E}^{(3)}$, we can assume that $t_{1}=\left(c_{12} c_{34} c_{56}\right)$ and $t_{2}=\left(c_{13} c_{26} c_{45}\right)$ are two triples on \mathscr{S}. Applying our operation on t_{1}, t_{2} implies

$$
t_{3}=t_{1} t_{2}=\left(c_{15} c_{24} c_{36}\right)
$$

Let us construct the symmetric table for t_{1}, t_{2} and t_{3} (see Table 4.9).
Table 4.9: The symmetric table 3

	\emptyset	t_{1}	t_{2}	t_{3}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset

We see from the table above that there are no new possible triples in the table which give us new Eckardt points. Therefore, for any element $c(\mathscr{S}) \in \mathbb{E}^{(3)}$, the corresponding non-singular cubic surface \mathscr{S} has exactly 3 Eckardt points which are associated to the triples t_{1}, t_{2} and t_{3}.
(2) By arguing as in part (1), one can show that if \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(2)}$ then according to Proposition 4.2 and the definition of $\mathbb{E}^{(2)}$, we can assume that t_{1} and t_{2} are two triples on \mathscr{S} with one common line. So by applying our operation on t_{1} and t_{2}, we get $t_{3}=t_{1} t_{2}=\emptyset$, and no new possible triples can give us new Eckardt points. Hence for any element $c(\mathscr{S}) \in \mathbb{E}^{(2)}$, the corresponding cubic surface \mathscr{S} has exactly 2 Eckardt points which are associated to the triples t_{1}, t_{2}.

Corollary 4.2. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(2)}(q)$ that corresponds to $c\left(\mathscr{S}^{(2)}\right) \in \mathbb{E}^{(2)}$ is of type $\left[(q-10)^{2}+7,27(q-9)+6,129,2\right]$.

Proof. Recall that $\mathscr{S}^{(2)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly two Eckardt points over the Galois field $G F(q)$. By the same argument used in the proof of Theorem 4.1, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=2, \\
& e_{2}=135-6=129, \\
& e_{1}=27(q-4)-129=27(q-9)+6, \\
& e_{0}=(q-10)^{2}+7
\end{aligned}
$$

Corollary 4.3. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(3)}(q)$ that corresponds to $c\left(\mathscr{S}^{(3)}\right) \in \mathbb{E}^{(3)}$ is of type $\left[(q-10)^{2}+6,27(q-9)+9,126,3\right]$.

Proof. Recall that $\mathscr{S}^{(3)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly three Eckardt points over the Galois field $G F(q)$. By the same argument used in the proof of Corollary 4.2, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=3 \\
& e_{2}=135-9=126 \\
& e_{1}=27(q-4)-126=27(q-9)+9 \\
& e_{0}=(q-10)^{2}+6
\end{aligned}
$$

Let us assume that $c(\mathscr{S}) \in \mathbb{S}^{(4)}$. By the definition of $\mathbb{S}^{(4)}$, the corresponding non-singular cubic surface \mathscr{S} has at least 4 trihedrons such that three of them form a triad, namely

$$
T=\left\{t_{1}, t_{2}, t_{3}\right\} \subset \mathbb{T}^{(3)} .
$$

The other triple, namely $t:=t_{4}$ in $\mathbb{T}^{(3)}$ has the following possibilities:

1. t has all lines in common with T,
2. t has two lines in common with T,
3. t has one line in common with T,
4. t has zero line in common with T.

However, if t has 2 lines in common with T, then it has all lines in common with T (see the proof of Proposition 4.1). Therefore, t has either zero, or one, or three lines in common with T, and we can introduce the following definition.

Definition 4.6. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{S}^{(4)}$. We define

$$
\begin{aligned}
& \mathbb{E}^{(4)}:=\left\{\begin{array}{c}
c(\mathscr{S}) \in \mathbb{E}^{(4,4)}: \mathscr{S} \text { has } T \vee t \subset \mathbb{T}^{(3)} \text { such that } \\
t \text { has three common line with } T
\end{array}\right\}, \\
& \mathbb{E}^{(6)}:=\left\{\begin{array}{c}
c(\mathscr{S}) \in \mathbb{E}^{(6,4)}: \mathscr{S} \text { has } T \vee t \subset \mathbb{T}^{(3)} \text { such that } \\
t \text { has one common line with } T
\end{array}\right\}, \\
& \mathbb{E}^{(9)}:=\left\{\begin{array}{c}
c(\mathscr{S}) \in \mathbb{E}^{(9,4)}: \mathscr{S} \text { has } T \vee t \subset \mathbb{T}^{(3)} \text { such that } \\
t \text { has no common line with } T
\end{array}\right\} .
\end{aligned}
$$

In fact, in $\mathbb{S}^{(4)}$, every non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(4)}$ has exactly 4 Eckardt points. Every non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(6)}$ has exactly 6 Eckardt points, and every non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(9)}$ has exactly 9 Eckardt points. All the detail will be shown later.

Proposition 4.4. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(4)}$. There are two possible kinds for the set $T \vee t$ (as in the Definition 4.6).

Proof. Suppose that \mathscr{S} is a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(4)}$. Then according to Lemma 4.2.2, we can assume $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ where

$$
\begin{aligned}
& t_{1}=\left(a_{i} b_{m} c_{i m}\right) \\
& t_{2}=\left(a_{j} b_{k} c_{j k}\right) \\
& t_{3}=t_{1,2}=\left(c_{i k} c_{j m} c_{n h}\right)
\end{aligned}
$$

and $i, j, m, n, k, h \in\{1, \ldots, 6\}$. Up to permutations and quadratic transformations, we have the following two possibilities for triples $t \in \mathbb{T}^{(3)}$:
(a) $t:=\left(a_{j} b_{m} c_{j m}\right)$,
(b) $t:=t^{\prime}=\left(c_{i m} c_{j k} c_{n h}\right)$.

Now via the permutation ($(i j)$ and the quadratic transformation $\varphi_{i j k}$, we can transform between the two kinds, namely $(A): T \vee t$ and $(B): T \vee t^{\prime}$. The diagram in Figure 4.6 illustrates the transformations between the two kinds.

Figure 4.6: Types of Eckardt points for \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(4)}$.

Corollary 4.4. Any non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(4)}$ has exactly 4 Eckardt points and one triad.

Proof. Assume that \mathscr{S} is a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(4)}$. Then according to the definition of $\mathbb{E}^{(4)}$, the non-singular cubic surface \mathscr{S} has at least 4 Eckardt points. Furthermore, up to permutations and quadratic transformations, we can assume that \mathscr{S} has $T \vee t$ where $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ and

$$
\begin{aligned}
& t_{1}=\left(a_{2} b_{1} c_{12}\right), \\
& t_{2}=\left(a_{3} b_{4} c_{34}\right), \\
& t_{3}=\left(c_{13} c_{24} c_{56}\right), \\
& t_{4}:=t=\left(a_{3} b_{1} c_{13}\right) .
\end{aligned}
$$

Consequently, we have the following symmetric table for t_{1}, t_{2}, t_{3} and t_{4} (see Table 4.10).

From the Table 4.10, it is obvious that there are no new possible triples which give us new Eckardt points. Hence for any element $c(\mathscr{S}) \in \mathbb{E}^{(4)}$, the corresponding cubic surface \mathscr{S} has exactly 4 Eckardt points which are associated to the triad $T=$ $\left\{t_{1}, t_{2}, t_{3}\right\}$ and the triple t_{4}.

Table 4.10: The symmetric table 4

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	\emptyset
t_{4}	t_{4}	\emptyset	\emptyset	\emptyset	\emptyset

Corollary 4.5. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(4)}(q)$ that corresponds to $c\left(\mathscr{S}^{(4)}\right) \in \mathbb{E}^{(4)}$ is of type $\left[(q-10)^{2}+5,27(q-9)+12,123,4\right]$.

Proof. Recall that $\mathscr{S}^{(4)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly 4 Eckardt points over the Galois field $G F(q)$. By the same argument used in the proof of Corollary 4.2, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=4 \\
& e_{2}=135-12=123, \\
& e_{1}=27(q-4)-123=27(q-9)+12, \\
& e_{0}=(q-10)^{2}+5
\end{aligned}
$$

Proposition 4.5. Let \mathscr{S} be the non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(6)}$. There are 3 possible kinds for the set $T \vee t$ (as in the Definition 4.6).

Proof. Assume that \mathscr{S} is a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(6)}$. Then \mathscr{S} has 4 Eckardt points which correspond to the 4 triples in $T \vee t$, where the triple t has one common line with $T=\left\{t_{1}, t_{2}, t_{3}\right\}$. Then up to permutations and quadratic transformations, we can assume

$$
\begin{aligned}
t_{1} & =\left(a_{2} b_{1} c_{12}\right), \\
t & =\left(a_{3} b_{1} c_{13}\right) .
\end{aligned}
$$

In this case, we have the following possibilities for t_{2} and hence for t_{3} :
(a) $t_{2}=\left(a_{4} b_{3} c_{34}\right)$ and hence $t_{3}=\left(c_{14} c_{23} c_{56}\right)$,
(b) $t_{2}:=t_{2}^{\prime}=\left(a_{1} b_{4} c_{14}\right)$ and hence $t_{3}:=t_{3}^{\prime}=\left(a_{4} b_{2} c_{24}\right)$,
(c) $t_{2}:=t_{2}^{\prime \prime}=\left(a_{4} b_{5} c_{45}\right)$ and hence $t_{3}:=t_{3}^{\prime \prime}=\left(c_{14} c_{25} c_{36}\right)$.

First of all, assume t_{2} have the form $\left(a_{4} b_{2} c_{24}\right)$ or $\left(c_{i j} c_{k m} c_{n h}\right)$. Then up to permutations and quadratic transformations, t_{3} has the form (b) or (c).

More precisely, we have the following three possibilities for the kinds of $T \vee t$:
(A) $T:=\left\{t_{1}, t_{2}, t_{3}\right\}$ and $t_{4}:=t$,
(B) $T:=T^{\prime}=\left\{t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}\right\}, t_{1}^{\prime}:=t_{1}$ and $t_{4}^{\prime}:=t$,
(C) $T:=T^{\prime \prime}=\left\{t_{1}^{\prime \prime}, t_{2}^{\prime \prime}, t_{3}^{\prime \prime}\right\}, t_{1}^{\prime \prime}:=t_{1} \quad$ and $t_{4}^{\prime \prime}:=t$.

Let us consider the case where the kind is (B). Applying our operation on $T^{\prime} \vee t_{4}^{\prime}$ gives us the symmetric Table 4.11.

So $T^{\prime} \vee t_{4}^{\prime}$ is equivalent to $T \vee t_{4}$, where

$$
T=\left\{t_{1}, t_{2}^{\prime} t_{4}, t_{3}^{\prime} t_{4}\right\}=\left\{t_{1}, t_{2}, t_{3}\right\}
$$

Table 4.11: The symmetric table 5

	\emptyset	t_{1}	t_{2}^{\prime}	t_{3}^{\prime}	t_{4}
\emptyset	\emptyset	t_{1}	t_{2}^{\prime}	t_{3}^{\prime}	t_{4}
t_{1}	t_{1}	\emptyset	t_{3}^{\prime}	t_{2}^{\prime}	\emptyset
t_{2}^{\prime}	t_{2}^{\prime}	t_{3}^{\prime}	\emptyset	t_{1}	t_{2}
t_{3}^{\prime}	t_{3}^{\prime}	t_{2}^{\prime}	t_{1}	\emptyset	t_{3}
t_{4}	t_{4}	\emptyset	t_{2}	t_{3}	\emptyset

which forms one of kind (A).
On the other hand, let us consider the case where the kind is (C). Applying our operation on $T^{\prime \prime} \vee t_{4}^{\prime \prime}$ gives the symmetric Table 4.12.

Table 4.12: The symmetric table 6

	\emptyset	t_{1}	$t_{2}^{\prime \prime}$	$t_{3}^{\prime \prime}$	t_{4}
\emptyset	\emptyset	t_{1}	$t_{2}^{\prime \prime}$	$t_{3}^{\prime \prime}$	t_{4}
t_{1}	t_{1}	\emptyset	$t_{3}^{\prime \prime}$	$t_{2}^{\prime \prime}$	\emptyset
$t_{2}^{\prime \prime}$	$t_{2}^{\prime \prime}$	$t_{3}^{\prime \prime}$	\emptyset	t_{1}	t_{5}
$t_{3}^{\prime \prime}$	$t_{3}^{\prime \prime}$	$t_{2}^{\prime \prime}$	t_{1}	\emptyset	t_{6}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset

where

$$
\begin{aligned}
t_{5} & :=\left(c_{14} c_{35} c_{26}\right), \\
t_{6} & :=\left(a_{4} b_{6} c_{46}\right)
\end{aligned}
$$

Now via the quadratic transformation φ_{356}, we have

$$
\begin{aligned}
& t_{1} \longmapsto t_{5}^{\prime \prime \prime}:=t_{1}, \\
& t_{2}^{\prime \prime} \longmapsto t_{2}^{\prime \prime \prime}:=t_{2}^{\prime \prime}, \\
& t_{3}^{\prime \prime} \longmapsto t_{4}^{\prime \prime \prime}:=\left(a_{5} b_{2} c_{25}\right), \\
& t_{4} \longmapsto t_{3}^{\prime \prime \prime}:=\left(c_{13} c_{24} c_{56}\right), \\
& t_{5} \longmapsto t_{1}^{\prime \prime \prime}:=\left(a_{6} b_{2} c_{26}\right) .
\end{aligned}
$$

Thus applying the quadratic transformation φ_{356} gives us the new kind $T^{\prime \prime \prime} \vee t_{4}^{\prime \prime \prime}$ where $T^{\prime \prime \prime}:=\left\{t_{1}^{\prime \prime \prime}, t_{2}^{\prime \prime \prime}, t_{3}^{\prime \prime \prime}\right\}$. Now via the permutation $\sigma:=(62)(12)(53)$, the kind $T^{\prime \prime \prime} \vee t_{4}^{\prime \prime \prime}$ is transformed to one kind of (A).

Moreover, if the triples of kind (A) have the form $\widetilde{T} \vee \tilde{t}$ where

$$
\widetilde{T}:=\left\{\tilde{t_{1}}, \tilde{t_{2}}, \tilde{t_{3}}\right\}=\left\{\left(a_{j} b_{i} c_{i j}\right),\left(a_{k} b_{h} c_{k h}\right),\left(c_{i k} c_{j h} c_{m n}\right\} \text { and } \tilde{t}:=\left(a_{h} b_{i} c_{i h}\right) .\right.
$$

Then the permutation $\sigma=(i 1)(j 2)(h 3)(k 4)(m 5)(n 6)$ transforms $\widetilde{T} \vee \tilde{t}$ to the triples of kind (A). In summary, we have the diagram (see Figure 4.7).

Figure 4.7: Types of Eckardt points for \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(6)}$.

Corollary 4.6. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(6)}$. Then \mathscr{S} has exactly 6 Eckardt points and 4 triads which contain 15 lines among the 27 lines on cubic surface.

Proof. We know that \mathscr{S} has a 4 triples of the form $T \vee t$ as we shown in Proposition 4.5. Up to permutations and quadratic transformations, we can assume that $T=$ $\left\{t_{1}, t_{2}, t_{3}\right\}$, where

$$
\begin{aligned}
& t_{1}:=\left(a_{2} b_{1} c_{12}\right), \\
& t_{2}:=\left(a_{4} b_{3} c_{34}\right), \\
& t_{3}:=\left(c_{14} c_{23} c_{56}\right), \\
& t_{4}:=t=\left(a_{3} b_{1} c_{13}\right) .
\end{aligned}
$$

Let us construct the symmetric table determined by t_{1}, t_{2}, t_{3}, and t_{4} (see Table 4.13).

Table 4.13: The symmetric table 7

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset

where

$$
\begin{aligned}
t_{5} & :=\left(a_{1} b_{4} c_{14}\right), \\
t_{6} & :=\left(a_{4} b_{2} c_{24}\right) .
\end{aligned}
$$

Thus we have at least 6 Eckardt points generated by $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$, and t_{6}. Furthermore, we get the following 4 triads:

$$
\begin{aligned}
& T_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}, \\
& T_{2}=\left\{t_{2}, t_{4}, t_{5}\right\}, \\
& T_{3}=\left\{t_{3}, t_{4}, t_{6}\right\}, \\
& T_{4}=\left\{t_{1}, t_{5}, t_{6}\right\},
\end{aligned}
$$

which contain 15 lines among the 27 lines on cubic surface, namely

$$
a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}, c_{12}, c_{13}, c_{14}, c_{23}, c_{24}, c_{34} \text { and } c_{56} .
$$

Again, applying our operation on the triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$ and t_{6} will give us the symmetric Table 4.14.

It follows that there are no new possible triples in the table which give us new Eckardt points. Therefore, \mathscr{S} has exactly 6 Eckardt points which correspond to the triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$ and t_{6}.

Corollary 4.7. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(6)}(q)$ that corresponds to $c\left(\mathscr{S}^{(6)}\right) \in \mathbb{E}^{(6)}$ is of type $\left[(q-10)^{2}+3,27(q-9)+18,117,6\right]$.

Table 4.14: The symmetric table 8

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset

Proof. Recall that $\mathscr{S}^{(6)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly 6 Eckardt points over the Galois field $G F(q)$. By the same argument used in the proof of Corollary 4.2, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=6 \\
& e_{2}=135-18=117 \\
& e_{1}=27(q-4)-117=27(q-9)+18 \\
& e_{0}=(q-10)^{2}+3
\end{aligned}
$$

Proposition 4.6. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(9)}$. There is one possible kind for the set $T \vee t$ (as in Definition 4.6).

Proof. Let us assume that \mathscr{S} is a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(9)}$. Then \mathscr{S} has 4 Eckardt points which correspond to the 4 triples in $T \vee t$ where the triple t has no common line with $\operatorname{triad} T=\left\{t_{1}, t_{2}, t_{3}\right\}$. Then up to permutations and quadratic transformations, we can assume

$$
\begin{aligned}
& t_{1}=\left(c_{12} c_{34} c_{56}\right), \\
& t_{2}=\left(c_{15} c_{24} c_{36}\right), \\
& t_{3}=t_{1} t_{2}=\left(c_{13} c_{26} c_{45}\right) .
\end{aligned}
$$

Now if $t \in \mathbb{T}^{(3)} \backslash T$ has no common line with T, then t must be of the form $\left(a_{i} b_{j} c_{i j}\right)$ where

$$
(i, j) \in\{(1,4),(1,6),(2,3),(2,5),(3,2),(3,5),(4,1),(4,6),(5,2),(5,3),(6,1),(6,4)\}
$$

Again up to permutations and quadratic transformations, we have

$$
\begin{aligned}
& \text { as }(i, j)=(1,4): t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(1,6): t=\left(a_{1} b_{6} c_{16}\right) \xrightarrow{\varphi_{146}} t=\left(a_{4} b_{6} c_{46}\right) \xrightarrow{(46)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(2,3): t=\left(a_{2} b_{3} c_{23}\right) \xrightarrow{(12)(34)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(2,5): t=\left(a_{2} b_{5} c_{25}\right) \xrightarrow{(12)(45)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(3,2): t=\left(a_{3} b_{2} c_{23}\right) \xrightarrow{(13)(24)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(3,5): t=\left(a_{3} b_{5} c_{35}\right) \xrightarrow{(13)(45)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(4,1): t=\left(a_{4} b_{1} c_{14}\right) \xrightarrow{(14)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(4,6): t=\left(a_{4} b_{6} c_{46}\right) \xrightarrow{\varphi_{146}} t=\left(a_{1} b_{6} c_{16}\right) \xrightarrow{(46)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(5,2): t=\left(a_{5} b_{2} c_{25}\right) \xrightarrow{(15)(24)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(5,3): t=\left(a_{5} b_{3} c_{35}\right) \xrightarrow{(15)(34)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(6,1): t=\left(a_{6} b_{1} c_{16}\right) \xrightarrow{\varphi_{146}} t=\left(a_{4} b_{1} c_{14}\right) \xrightarrow{(14)} t=\left(a_{1} b_{4} c_{14}\right), \\
& \text { as }(i, j)=(6,4): t=\left(a_{6} b_{4} c_{46}\right) \xrightarrow{\varphi_{146}} t=\left(a_{1} b_{4} c_{14}\right) .
\end{aligned}
$$

Thus we can assume that $t=\left(a_{4} b_{1} c_{14}\right)$ by applying the permutation (14). Therefore, up to equivalence of triples $T \vee t=\left\{\left(c_{12} c_{34} c_{56}\right),\left(c_{15} c_{24} c_{36}\right),\left(c_{13} c_{26} c_{45}\right),\left(a_{4} b_{1} c_{14}\right)\right\}$.

Corollary 4.8. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(9)}$. Then \mathscr{S} has exactly nine Eckardt points and 12 triads.

Proof. Assume that \mathscr{S} is a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in$ $\mathbb{E}^{(9)}$. Then we can assume \mathscr{S} has the triples in $T \vee t$, where the triad $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ and $t:=t_{4}$ are as mentioned in Proposition 3.6, that is

$$
\begin{aligned}
& t_{1}=\left(c_{12} c_{34} c_{56}\right), \\
& t_{2}=\left(c_{15} c_{24} c_{36}\right), \\
& t_{3}=t_{1} t_{2}=\left(c_{13} c_{26} c_{45}\right), \\
& t_{4}=\left(a_{4} b_{1} c_{14}\right) .
\end{aligned}
$$

By applying our operation on the triples t_{1}, t_{2}, t_{3} and t_{4}, we have the symmetric Table 4.15.

Table 4.15: The symmetric table 9

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	t_{5}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{6}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{7}
t_{4}	t_{4}	t_{5}	t_{6}	t_{7}	\emptyset

where

$$
\begin{aligned}
& t_{5}:=\left(a_{2} b_{3} c_{23}\right), \\
& t_{6}:=\left(a_{5} b_{2} c_{25}\right), \\
& t_{7}:=\left(a_{3} b_{5} c_{35}\right) .
\end{aligned}
$$

Again we can construct the following symmetric Table 4.16.

Table 4.16: The symmetric table 10

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	t_{5}	t_{4}	t_{8}	t_{9}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{6}	t_{9}	t_{4}	t_{8}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{7}	t_{8}	t_{9}	t_{4}
t_{4}	t_{4}	t_{5}	t_{6}	t_{7}	\emptyset	t_{1}	t_{2}	t_{3}
t_{5}	t_{5}	t_{4}	t_{9}	t_{8}	t_{1}	\emptyset	t_{7}	t_{6}
t_{6}	t_{6}	t_{8}	t_{4}	t_{9}	t_{2}	t_{7}	\emptyset	t_{5}
t_{7}	t_{7}	t_{9}	t_{8}	t_{4}	t_{3}	t_{6}	t_{5}	\emptyset

where

$$
\begin{aligned}
t_{8} & :=\left(a_{1} b_{6} c_{16}\right), \\
t_{9} & :=\left(a_{6} b_{4} c_{46}\right) .
\end{aligned}
$$

Therefore, there are at least nine Eckardt points on \mathscr{S} which correspond to the nine triples, namely

$$
t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, \text { and } t_{9}
$$

Moreover, we get the following 12 triads:

$$
\begin{aligned}
& T_{1}=\left\{t_{1}, t_{4}, t_{5}\right\}, \\
& T_{2}=\left\{t_{2}, t_{4}, t_{6}\right\}, \\
& T_{3}=\left\{t_{3}, t_{4}, t_{7}\right\}, \\
& T_{4}=\left\{t_{4}, t_{8}, t_{9}\right\}, \\
& T_{5}=\left\{t_{1}, t_{2}, t_{3}\right\}, \\
& T_{6}=\left\{t_{1}, t_{6}, t_{8}\right\}, \\
& T_{7}=\left\{t_{1}, t_{7}, t_{9}\right\}, \\
& T_{8}=\left\{t_{2}, t_{7}, t_{8}\right\}, \\
& T_{9}=\left\{t_{2}, t_{5}, t_{9}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& T_{10}=\left\{t_{3}, t_{5}, t_{8}\right\}, \\
& T_{11}=\left\{t_{3}, t_{6}, t_{9}\right\}, \\
& T_{12}=\left\{t_{5}, t_{6}, t_{7}\right\} .
\end{aligned}
$$

Now by applying our operation on $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}$ and t_{9}, we have the symmetric Table 4.17.

Table 4.17: The symmetric table 11

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	t_{5}	t_{4}	t_{8}	t_{9}	t_{6}	t_{7}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{6}	t_{9}	t_{4}	t_{8}	t_{7}	t_{5}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{7}	t_{8}	t_{9}	t_{4}	t_{5}	t_{6}
t_{4}	t_{4}	t_{5}	t_{6}	t_{7}	\emptyset	t_{1}	t_{2}	t_{3}	t_{9}	t_{8}
t_{5}	t_{5}	t_{4}	t_{9}	t_{8}	t_{1}	\emptyset	t_{7}	t_{6}	t_{3}	t_{2}
t_{6}	t_{6}	t_{8}	t_{4}	t_{9}	t_{2}	t_{7}	\emptyset	t_{5}	t_{1}	t_{3}
t_{7}	t_{7}	t_{9}	t_{8}	t_{4}	t_{3}	t_{6}	t_{5}	\emptyset	t_{2}	t_{1}
t_{8}	t_{8}	t_{6}	t_{7}	t_{5}	t_{9}	t_{3}	t_{1}	t_{2}	\emptyset	t_{4}
t_{9}	t_{9}	t_{7}	t_{3}	t_{6}	t_{8}	t_{2}	t_{3}	t_{1}	t_{4}	\emptyset

It follows that there are no new possible triples in the table which give us new Eckardt points. Therefore \mathscr{S} has exactly 9 Eckardt points which correspond to the triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}$ and t_{9}.

Remark 4.6. The nine triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}$, and t_{9} in Corollary 4.8 contain all the 27 lines on a non-singular cubic surface \mathscr{S}. Furthermore, every triple in the previous list occurs 4 times among the 12 triads $T_{i} ; i \in\{1, \ldots, 12\}$.

Corollary 4.9. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(9)}(q)$ that corresponds to $c\left(\mathscr{S}^{(9)}\right) \in \mathbb{E}^{(9)}$ is of type $\left[(q-10)^{2}, 27(q-8), 108,9\right]$.

Proof. Recall that $\mathscr{S}^{(9)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly 9 Eckardt points over the Galois field $G F(q)$. By the same argument used in
the proof of Corollary 4.7, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=9 \\
& e_{2}=135-27=108, \\
& e_{1}=27(q-4)-108=27(q-8), \\
& e_{0}=(q-10)^{2} .
\end{aligned}
$$

Theorem 4.4. Let \mathscr{S} be a non-singular cubic surface with the six triples t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6} mentioned in the proof of Corollary 4.6, and let t_{7} be another triple on \mathscr{S}, that is $t_{7} \in \mathbb{T}^{(3)} \backslash\left\{t_{i}: i \in\{1, \ldots, 6\}\right\}$. Then
I. \mathscr{S} has at least 10 Eckardt points and at least 10 triads if all lines of t_{7} are in common with one of the 4 triads generated by t_{1}, \ldots, t_{6}.
II. Otherwise, \mathscr{S} has at least 18 Eckardt points and at least 42 triads.

Proof. I. According to the argument introduced in the proof of Corollary 4.6, we have the following 4 triads:

$$
T_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}, T_{2}=\left\{t_{2}, t_{4}, t_{5}\right\}, T_{3}=\left\{t_{3}, t_{4}, t_{6}\right\}, \text { and } T_{4}=\left\{t_{1}, t_{5}, t_{6}\right\}
$$

where

$$
\begin{aligned}
t_{1} & :=\left(a_{2} b_{1} c_{12}\right), \\
t_{2} & :=\left(a_{4} b_{3} c_{34}\right), \\
t_{3} & :=\left(c_{14} c_{23} c_{56}\right), \\
t_{4} & :=\left(a_{3} b_{1} c_{13}\right), \\
t_{5} & :=\left(a_{1} b_{4} c_{14}\right), \\
t_{6} & :=\left(a_{4} b_{2} c_{24}\right) .
\end{aligned}
$$

Suppose that all lines of t_{7} are in common with the triad T_{1}. Then there are three choices for the triple t_{7} :
(1) $t_{7}:=\left(a_{2} b_{3} c_{23}\right)$,
(2) $t_{7}:=\left(a_{4} b_{1} c_{14}\right)$,
(3) $t_{7}:=\left(c_{12} c_{34} c_{56}\right)$.

However we can transform between the two choices (1) and (2) via the permutation (13)(24). Thus up to permutations and quadratic transformations, there are two cases for t_{7}, namely

$$
\begin{aligned}
& \text { Case(1): } t_{7}=\left(a_{2} b_{3} c_{23}\right), \\
& \text { Case(2): } t_{7}=\left(c_{12} c_{34} c_{56}\right) .
\end{aligned}
$$

For case (1), we construct the symmetric table which is determined by t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6} and t_{7} (see Table 4.18).
where

$$
\begin{aligned}
t_{8} & :=\left(a_{1} b_{2} c_{12}\right), \\
t_{9} & :=\left(c_{13} c_{24} c_{56}\right), \\
t_{10} & :=\left(a_{3} b_{4} c_{34}\right) .
\end{aligned}
$$

Table 4.18: The symmetric table 12

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}	\emptyset
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}	\emptyset
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}	t_{8}
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}	t_{9}
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset	t_{10}
t_{7}	t_{7}	\emptyset	\emptyset	\emptyset	t_{8}	t_{9}	t_{10}	\emptyset

Thus we have at least 10 Eckardt points determined by

$$
t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, t_{9}, \text { and } t_{10}
$$

Furthermore, we have the following 10 triads:

$$
\begin{aligned}
& T_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}, \\
& T_{2}=\left\{t_{1}, t_{5}, t_{6}\right\}, \\
& T_{3}=\left\{t_{1}, t_{9}, t_{10}\right\}, \\
& T_{4}=\left\{t_{2}, t_{4}, t_{5}\right\}, \\
& T_{5}=\left\{t_{2}, t_{8}, t_{9}\right\}, \\
& T_{6}=\left\{t_{3}, t_{4}, t_{6}\right\}, \\
& T_{7}=\left\{t_{3}, t_{8}, t_{10}\right\}, \\
& T_{8}=\left\{t_{4}, t_{7}, t_{8}\right\}, \\
& T_{9}=\left\{t_{5}, t_{7}, t_{9}\right\}, \\
& T_{10}=\left\{t_{6}, t_{7}, t_{10}\right\} .
\end{aligned}
$$

For the case (2), we have a table similar to the one in case (1) except some changes, namely

$$
\begin{aligned}
t_{8} & :=\left(a_{2} b_{4} c_{24}\right), \\
t_{9} & :=\left(a_{3} b_{2} c_{23}\right), \\
t_{10} & :=\left(a_{1} b_{3} c_{13}\right)
\end{aligned}
$$

Consequently, we have at least 10 Eckardt points determined by

$$
t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, t_{9}, \text { and } t_{10}
$$

In fact, we can transform from one case to another via some exchanges in triples so that the two cases represent the same kind:

Form for the case (2) \longleftrightarrow Form for the case (1)

$$
\begin{array}{ccc}
T:=\left\{t_{3}, t_{4}, t_{6}\right\} & \longleftrightarrow & T:=\left\{t_{1}, t_{2}, t_{3}\right\} \\
t:=t_{1} & \longleftrightarrow & t:=t_{4} \\
t_{7}:=t_{9}=\left(c_{12} c_{34} c_{56}\right) & \longleftrightarrow & t_{7}:=\left(a_{2} b_{3} c_{23}\right)
\end{array}
$$

Thus we have the same 10 trihedral pairs for the case (1).
II. If t_{7} has no line common in with one of the 4 triads, namely

$$
\begin{aligned}
& T_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}, \\
& T_{2}=\left\{t_{2}, t_{4}, t_{5}\right\}, \\
& T_{3}=\left\{t_{3}, t_{4}, t_{6}\right\}, \\
& T_{4}=\left\{t_{1}, t_{5}, t_{6}\right\},
\end{aligned}
$$

then we can assume t_{7} has no line common in with triad T_{1}. If t_{7} and t_{4} have a common line, we can replace T_{1} by T_{3}, t_{4} by t_{5}, and t_{7} by t_{9} so that we can avoid this case.

Now if t_{7} has no line common in with triad T_{1} and the triple t_{4}, then we have the following possibilities for t_{7} :

1. $\left(a_{5} b_{2} c_{25}\right),\left(a_{5} b_{4} c_{45}\right),\left(a_{1} b_{5} c_{15}\right)$, and $\left(c_{15} c_{24} c_{36}\right)$,
2. $\left(a_{6} b_{2} c_{26}\right),\left(a_{6} b_{4} c_{46}\right),\left(a_{1} b_{6} c_{16}\right)$, and $\left(c_{16} c_{24} c_{35}\right)$.

However we can transform between the two cases, namely (1) and (2), via the permutation (56) (see the diagram in Figure 4.8)

Figure 4.8: Cases of t_{7} on \mathscr{S}.

Consequently, we get exactly the following two cases for t_{7}

$$
\begin{aligned}
& \text { Case (i): } t_{7}=\left(a_{5} b_{2} c_{25}\right) \text { or } t_{7}=\left(a_{1} b_{5} c_{15}\right), \\
& \text { Case (ii): } t_{7}=\left(a_{5} b_{4} c_{45}\right) \text { or } t_{7}=\left(c_{15} c_{24} c_{36}\right) .
\end{aligned}
$$

Let us consider the case (i): $t_{7}=\left(a_{5} b_{2} c_{25}\right)$ or $t_{7}=\left(a_{1} b_{5} c_{15}\right)$. If $t_{7}=\left(a_{5} b_{2} c_{25}\right)$, then we have the symmetric Table 4.19.

Table 4.19: The symmetric table 13

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}	t_{8}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset	t_{9}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}	t_{10}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}	t_{11}
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}	t_{12}
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset	\emptyset
t_{7}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	t_{12}	\emptyset	\emptyset

where

$$
\begin{aligned}
t_{8} & =\left(a_{1} b_{5} c_{15}\right), \\
t_{9} & =\left(c_{16} c_{24} c_{35}\right), \\
t_{10} & =\left(a_{3} b_{6} c_{36}\right), \\
t_{11} & =\left(c_{15} c_{23} c_{46}\right), \\
t_{12} & =\left(c_{12} c_{36} c_{45}\right) .
\end{aligned}
$$

Thus we have at least 18 Eckardt points determined by the triples $t_{j}, j=1, \ldots, 18$ where

$$
\begin{array}{ll}
t_{13}=t_{2} t_{8}=\left(c_{13} c_{26} c_{45}\right), & t_{14}=t_{3} t_{8}=\left(a_{6} b_{4} c_{46}\right), \\
t_{15}=t_{4} t_{8}=\left(a_{5} b_{3} c_{35}\right), & t_{16}=t_{4} t_{9}=\left(a_{6} b_{5} c_{56}\right), \\
t_{17}=t_{5} t_{9}=\left(a_{2} b_{6} c_{26}\right), & t_{18}=t_{5} t_{10}=\left(c_{16} c_{25} c_{34}\right) .
\end{array}
$$

Now if we assume that $t_{7}=\left(a_{1} b_{5} c_{15}\right)$, we get the symmetric Table 4.20.
Table 4.20: The symmetric table 14

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}	t_{8}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset	t_{9}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}	t_{10}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}	t_{11}
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}	\emptyset
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset	t_{12}
t_{7}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	\emptyset	t_{12}	\emptyset

where

$$
\begin{aligned}
t_{8} & =\left(a_{5} b_{2} c_{25}\right), \\
t_{9} & =\left(c_{13} c_{26} c_{45}\right), \\
t_{10} & =\left(a_{6} b_{4} c_{46}\right), \\
t_{11} & =\left(a_{5} b_{3} c_{35}\right), \\
t_{12} & =\left(c_{12} c_{36} c_{45}\right) .
\end{aligned}
$$

Therefore we have at least 18 Eckardt points determined by the triples $t_{j}, j=1, \ldots, 18$
where

$$
\begin{array}{ll}
t_{13}=t_{2} t_{8}=\left(c_{16} c_{24} c_{35}\right), & t_{14}=t_{3} t_{8}=\left(a_{3} b_{6} c_{36}\right), \\
t_{15}=t_{4} t_{8}=\left(c_{15} c_{23} c_{46}\right), & t_{16}=t_{6} t_{9}=\left(a_{6} b_{5} c_{56}\right), \\
t_{17}=t_{5} t_{13}=\left(a_{2} b_{6} c_{26}\right), & t_{18}=t_{5} t_{14}=\left(c_{16} c_{25} c_{34}\right) .
\end{array}
$$

Case (ii): $t_{7}=\left(a_{5} b_{4} c_{45}\right)$ or $t_{7}=\left(c_{15} c_{24} c_{36}\right)$. In the same argument for the case (i), if we assume that $t_{7}=\left(a_{5} b_{4} c_{45}\right)$ then we get the symmetric Table 4.21.

Table 4.21: The symmetric table 15

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}	t_{8}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset	t_{9}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}	t_{10}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}	t_{11}
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}	t_{12}
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset	\emptyset
t_{7}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	t_{12}	\emptyset	\emptyset

where

$$
\begin{aligned}
t_{8} & =\left(c_{15} c_{24} c_{36}\right), \\
t_{9} & =\left(a_{3} b_{5} c_{35}\right), \\
t_{10} & =\left(a_{1} b_{6} c_{16}\right), \\
t_{11} & =\left(c_{15} c_{26} c_{34}\right), \\
t_{12} & =\left(a_{2} b_{5} c_{25}\right) .
\end{aligned}
$$

Again we have at least 18 Eckardt points that correspond to the triples $t_{j}, j=$ $1, \ldots, 18$ where

$$
\begin{array}{ll}
t_{13}=t_{2} t_{8}=\left(a_{6} b_{2} c_{26}\right), & t_{14}=t_{3} t_{8}=\left(c_{13} c_{25} c_{46}\right), \\
t_{15}=t_{4} t_{8}=\left(a_{5} b_{6} c_{56}\right), & t_{16}=t_{6} t_{9}=\left(c_{16} c_{23} c_{45}\right), \\
t_{17}=t_{4} t_{10}=\left(a_{6} b_{3} c_{36}\right), & t_{18}=t_{6} t_{10}=\left(c_{12} c_{35} c_{46}\right) .
\end{array}
$$

let us consider the case(ii) for $t_{7}=\left(c_{15} c_{24} c_{36}\right)$. In this case, we have the symmetric Table 4.22.

Table 4.22: The symmetric table 16

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}	t_{8}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset	t_{9}
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}	t_{10}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}	t_{11}
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}	t_{12}
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset	\emptyset
t_{7}	t_{7}	t_{8}	t_{9}	t_{10}	t_{11}	t_{12}	\emptyset	\emptyset

where

$$
\begin{aligned}
t_{8} & =\left(a_{5} b_{4} c_{45}\right), \\
t_{9} & =\left(a_{6} b_{2} c_{26}\right), \\
t_{10} & =\left(c_{13} c_{25} c_{46}\right), \\
t_{11} & =\left(a_{5} b_{6} c_{56}\right), \\
t_{12} & =\left(a_{2} b_{5} c_{25}\right)
\end{aligned}
$$

Again we have at least 18 Eckardt points determined by the triples $t_{j}, j=1, \ldots, 18$ where

$$
\begin{array}{ll}
t_{13}=t_{2} t_{8}=\left(a_{3} b_{5} c_{35}\right), & t_{14}=t_{3} t_{8}=\left(a_{1} b_{6} c_{16}\right), \\
t_{15}=t_{4} t_{8}=\left(c_{15} c_{26} c_{34}\right), & t_{16}=t_{6} t_{13}=\left(c_{16} c_{23} c_{45}\right), \\
t_{17}=t_{4} t_{14}=\left(a_{6} b_{3} c_{36}\right), & t_{18}=t_{6} t_{14}=\left(c_{12} c_{35} c_{46}\right) .
\end{array}
$$

Note that we can transform from one case to another via some exchanges in triples so that the two cases represent the same kind:

$$
\begin{aligned}
& \text { form for the case (i) } \xrightarrow{T:=T_{1}, t:=t_{4}, t_{7}:=t_{14}} \text { form for the case (ii) } \\
& \text { form for the case (i) } \stackrel{T:=T_{1}, t:=t_{4}, t_{7}:=t_{13}}{\leftrightarrows} \text { form for the case (ii) }
\end{aligned}
$$

Consequently, we also have 42 triads for case (ii). In fact, the 42 triads which correspond to case (i) are:

$$
\begin{array}{lll}
T_{1}=\left\{t_{1}, t_{2}, t_{3}\right\}, & T_{2}=\left\{t_{1}, t_{5}, t_{6}\right\}, & T_{3}=\left\{t_{1}, t_{7}, t_{8}\right\}, \\
T_{4}=\left\{t_{1}, t_{9}, t_{14}\right\}, & T_{5}=\left\{t_{1}, t_{10}, t_{13}\right\}, & T_{6}=\left\{t_{1}, t_{11}, t_{15}\right\}, \\
T_{7}=\left\{t_{1}, t_{16}, t_{18}\right\}, & T_{8}=\left\{t_{2}, t_{4}, t_{5}\right\}, & T_{9}=\left\{t_{2}, t_{7}, t_{9}\right\}, \\
T_{10}=\left\{t_{2}, t_{8}, t_{13}\right\}, & T_{11}=\left\{t_{2}, t_{10}, t_{14}\right\}, & T_{12}=\left\{t_{2}, t_{11}, t_{17}\right\}, \\
T_{13}=\left\{t_{2}, t_{12}, t_{16}\right\}, & T_{14}=\left\{t_{3}, t_{4}, t_{6}\right\}, & T_{15}=\left\{t_{3}, t_{7}, t_{10}\right\}, \\
T_{16}=\left\{t_{3}, t_{8}, t_{14}\right\}, & T_{17}=\left\{t_{3}, t_{9}, t_{13}\right\}, & T_{18}=\left\{t_{3}, t_{12}, t_{18}\right\}, \\
T_{19}=\left\{t_{3}, t_{15}, t_{17}\right\}, & T_{20}=\left\{t_{4}, t_{7}, t_{11}\right\}, & T_{21}=\left\{t_{4}, t_{8}, t_{15}\right\}, \\
T_{22}=\left\{t_{4}, t_{9}, t_{16}\right\}, & T_{23}=\left\{t_{4}, t_{12}, t_{17}\right\}, & T_{24}=\left\{t_{4}, t_{14}, t_{18}\right\}, \\
T_{25}=\left\{t_{5}, t_{7}, t_{12}\right\}, & T_{26}=\left\{t_{5}, t_{9}, t_{17}\right\}, & T_{27}=\left\{t_{5}, t_{10}, t_{18}\right\},
\end{array}
$$

$$
\begin{array}{lll}
T_{28}=\left\{t_{5}, t_{11}, t_{16}\right\}, & T_{29}=\left\{t_{5}, t_{13}, t_{15}\right\}, & T_{30}=\left\{t_{6}, t_{8}, t_{12}\right\}, \\
T_{31}=\left\{t_{6}, t_{10}, t_{11}\right\}, & T_{32}=\left\{t_{6}, t_{13}, t_{16}\right\}, & T_{33}=\left\{t_{6}, t_{14}, t_{17}\right\}, \\
T_{34}=\left\{t_{6}, t_{15}, t_{18}\right\}, & T_{35}=\left\{t_{7}, t_{13}, t_{14}\right\}, & T_{36}=\left\{t_{7}, t_{16}, t_{17}\right\} \\
T_{37}=\left\{t_{8}, t_{9}, t_{10}\right\}, & T_{38}=\left\{t_{8}, t_{17}, t_{18}\right\}, & T_{39}=\left\{t_{9}, t_{11}, t_{12}\right\} \\
T_{40}=\left\{t_{10}, t_{15}, t_{16}\right\}, & T_{41}=\left\{t_{11}, t_{13}, t_{18}\right\}, & T_{42}=\left\{t_{12}, t_{14}, t_{15}\right\} .
\end{array}
$$

Furthermore, the triads $T_{5}, T_{9}, T_{16}, T_{23}, T_{28}$, and T_{34} contain all the 27 lines on \mathscr{S}.

Remark 4.7. Let $\mathbb{E}^{(10)}$ and $\mathbb{E}^{(18)}$ denote respectively the subsets of $\mathbb{E}^{(10,10)}$ and $\mathbb{E}^{(18,10)}$ that correspond to the non-singular cubic surfaces of kind I and II of Theorem 4.4 respectively. Note that according to Theorem 4.4 , the two sets $\mathbb{E}^{(10,10)}$ and $\mathbb{E}^{(18,10)}$ are subsets of $\mathbb{E}^{(6,4)}$. A non-singular cubic surface \mathscr{S}, which corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(10)}$, has exactly 10 Eckardt points determined by the triples $t_{i} ; i \in\{1, \ldots, 10\}$ which contain 15 lines among the 27 lines on cubic surface, namely

$$
a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{2}, b_{4}, c_{12}, c_{13}, c_{14}, c_{23}, c_{24}, c_{34}, \text { and } c_{56},
$$

and each t_{i} belongs to exactly three triads. On the other hand, a non-singular cubic surface \mathscr{S}, which corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(18)}$, has exactly 18 Eckardt points determined by the triples $t_{i} ; i \in\{1, \ldots, 18\}$. In fact, the triples $t_{i} ; i \in\{1, \ldots, 18\}$ contain all the 27 lines on cubic surface, and each t_{i} belongs to exactly seven triads. All the detail are shown in the following corollary.

Corollary 4.10. The non-singular cubic surfaces that corresponds to members in $\mathbb{E}^{(10)}$ and $\mathbb{E}^{(18)}$ have exactly 10 and 18 Eckardt points respectively.

Proof. According to Theorem 4.4 part I, a non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(10)}$ has at least 10 Eckardt points. Up to permutations and
quadratic transformations, the Eckardt points on \mathscr{S} are precisely the points that are associated to the triples t_{i} for $i \in\{1, \ldots, 10\}$, where

$$
\begin{aligned}
t_{1} & =\left(a_{2} b_{1} c_{12}\right), \\
t_{2} & =\left(a_{4} b_{3} c_{34}\right), \\
t_{3} & =\left(c_{14} c_{23} c_{56}\right), \\
t_{4} & =\left(a_{3} b_{1} c_{13}\right), \\
t_{5} & =\left(a_{1} b_{4} c_{14}\right), \\
t_{6} & =\left(a_{4} b_{2} c_{24}\right), \\
t_{7} & =\left(a_{2} b_{3} c_{23}\right), \\
t_{8} & =\left(a_{1} b_{2} c_{12}\right), \\
t_{9} & =\left(c_{13} c_{24} c_{56}\right), \\
t_{10} & =\left(a_{3} b_{4} c_{34}\right)
\end{aligned}
$$

Consequently, we have the symmetric table for the triples $t_{i} ; i \in\{1, \ldots, 10\}$ (see Table 4.23).

Table 4.23: The symmetric table 17

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	t_{6}	t_{5}	\emptyset	\emptyset	t_{10}	t_{9}
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	t_{5}	t_{4}	\emptyset	\emptyset	t_{9}	t_{8}	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	t_{6}	\emptyset	t_{4}	\emptyset	t_{10}	\emptyset	t_{8}
t_{4}	t_{4}	\emptyset	t_{5}	t_{6}	\emptyset	t_{2}	t_{3}	t_{8}	t_{7}	\emptyset	\emptyset
t_{5}	t_{5}	t_{6}	t_{4}	\emptyset	t_{2}	\emptyset	t_{1}	t_{9}	\emptyset	t_{7}	\emptyset
t_{6}	t_{6}	t_{5}	\emptyset	t_{4}	t_{3}	t_{1}	\emptyset	t_{10}	\emptyset	\emptyset	t_{7}
t_{7}	t_{7}	\emptyset	\emptyset	\emptyset	t_{8}	t_{9}	t_{10}	\emptyset	t_{4}	t_{5}	t_{6}
t_{8}	t_{8}	\emptyset	t_{9}	t_{10}	t_{7}	\emptyset	\emptyset	t_{4}	\emptyset	t_{10}	t_{9}
t_{9}	t_{9}	t_{10}	t_{8}	\emptyset	\emptyset	t_{7}	\emptyset	t_{5}	t_{10}	\emptyset	t_{8}
t_{10}	t_{10}	t_{9}	\emptyset	t_{8}	\emptyset	\emptyset	t_{7}	t_{6}	t_{9}	t_{8}	\emptyset

It follows that there are no new possible triples in the table which give us new Eckardt points. Therefore, \mathscr{S} has exactly 10 Eckardt points which correspond to the triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}, t_{9}$ and t_{10}.

Similarly, according to Theorem 4.4 part II, a non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(18)}$ has at least 18 Eckardt points. Up to permutations and quadratic transformations, the Eckardt points on \mathscr{S} are precisely the points that are associated to the triples $t_{i} ; i \in\{1, \ldots, 18\}$ where

$$
\begin{array}{ll}
t_{1}=\left(a_{2} b_{1} c_{12}\right), & t_{2}=\left(a_{4} b_{3} c_{34}\right), \\
t_{3}=\left(c_{14} c_{23} c_{56}\right), & t_{4}=\left(a_{3} b_{1} c_{13}\right), \\
t_{5}=\left(a_{1} b_{4} c_{14}\right), & t_{6}=\left(a_{4} b_{2} c_{24}\right), \\
t_{7}=\left(a_{5} b_{4} c_{45}\right), & t_{8}=\left(c_{15} c_{24} c_{36}\right), \\
t_{9}=\left(a_{3} b_{5} c_{35}\right), & t_{10}=\left(a_{1} b_{6} c_{16}\right), \\
t_{11}=\left(c_{15} c_{26} c_{34}\right), & \left.t_{14}=a_{2} b_{5} t_{25}\right),\left(c_{13} c_{25} c_{46}\right), \\
t_{13}=t_{2} t_{8}=\left(a_{6} b_{2} c_{26}\right), & t_{16}=t_{6} t_{9}=\left(c_{16} c_{23} c_{45}\right), \\
t_{15}=t_{4} t_{8}=\left(a_{5} b_{6} c_{56}\right), & t_{18}=t_{6} t_{10}=\left(c_{12} c_{35} c_{46}\right) . \\
t_{17}=t_{4} t_{10}=\left(a_{6} b_{3} c_{36}\right), &
\end{array}
$$

When we construct the symmetric table for the triples $t_{i} ; i \in\{1, \ldots, 18\}$, we are not have any new possible triples in the table. Consequently, there are no new Eckardt points on the cubic surface \mathscr{S}. Therefore, \mathscr{S} has exactly 18 Eckardt points which correspond to the triples $t_{i} ; i \in\{1, \ldots, 18\}$.

Corollary 4.11. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(10)}(q)$ corresponds to $c\left(\mathscr{S}^{(10)}\right) \in \mathbb{E}^{(10)}$ is of type $\left[(q-10)^{2}-1,27(q-8)+3,105,10\right]$.

Proof. Recall that $\mathscr{S}^{(10)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly ten Eckardt points over the Galois field $G F(q)$. By the same argument
used in the proof of Corollary 4.2, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=10 \\
& e_{2}=135-30=105, \\
& e_{1}=27(q-4)-105=27(q-8)+3, \\
& e_{0}=(q-10)^{2}-1
\end{aligned}
$$

Corollary 4.12. For $q>7$ and q prime, every non-singular cubic surface $\mathscr{S}^{(18)}(q)$ corresponds to $c\left(\mathscr{S}^{(18)}\right) \in \mathbb{E}^{(18)}$ is of type $\left[(q-10)^{2}-9,27(q-7), 81,18\right]$.

Proof. Recall that $\mathscr{S}^{(18)}(q)$ denotes a non-singular cubic surface with 27 lines that has exactly eighteen Eckardt points over the Galois field $G F(q)$. By the same argument used in the proof of Corollary 4.2, we have

$$
\begin{aligned}
n_{q} & =e_{3}+e_{2}+e_{1}, \\
3 e_{3}+e_{2} & =135, \\
3 e_{3}+2 e_{2}+e_{1} & =27(q+1),
\end{aligned}
$$

and

$$
e_{3}+e_{2}+e_{1}+e_{0}=q^{2}+7 q+1
$$

Thus

$$
\begin{aligned}
& e_{3}=18 \\
& e_{2}=135-54=81, \\
& e_{1}=27(q-4)-81=27(q-7), \\
& e_{0}=(q-10)^{2}-9
\end{aligned}
$$

Proposition 4.7. Let \mathscr{S} be a cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(4)}$ with 4 triples, namely the set $T \vee t$ mentioned in Corollary 4.4. Let $t^{\prime} \in \mathbb{T}^{(3)}$ be another triple on \mathscr{S} all of whose lines are in common with T. Then $c(\mathscr{S}) \in \mathbb{E}^{(9,4)}$.

Proof. From Corollary 4.4, we have

$$
\begin{aligned}
t_{1} & :=\left(a_{2} b_{1} c_{12}\right), \\
t_{2} & :=\left(a_{3} b_{4} c_{34}\right), \\
t_{3} & :=\left(c_{13} c_{24} c_{56}\right), \\
t_{4} & :=t=\left(a_{3} b_{1} c_{13}\right) .
\end{aligned}
$$

Up to the permutation $\sigma=(34)$, the triad $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ transforms to

$$
\begin{aligned}
t_{1} & :=\left(a_{2} b_{1} c_{12}\right), \\
t_{2} & :=\left(a_{4} b_{3} c_{34}\right), \\
t_{3} & :=\left(c_{14} c_{23} c_{56}\right),
\end{aligned}
$$

and the triple $t:=t_{4}=\left(a_{3} b_{1} c_{13}\right)$ transforms to $t:=t_{4}=\left(a_{4} b_{1} c_{14}\right)$. Again, up permutations and quadratic transformations, we can assume that $t^{\prime}:=\left(c_{12} c_{34} c_{56}\right)=$ t_{5}. Let us construct the corresponding symmetric table for the triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}$ (see Table 4.24).

Table 4.24: The symmetric table 18

	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
\emptyset	\emptyset	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}
t_{1}	t_{1}	\emptyset	t_{3}	t_{2}	\emptyset	\emptyset
t_{2}	t_{2}	t_{3}	\emptyset	t_{1}	\emptyset	\emptyset
t_{3}	t_{3}	t_{2}	t_{1}	\emptyset	\emptyset	\emptyset
t_{4}	t_{4}	\emptyset	\emptyset	\emptyset	\emptyset	t_{6}
t_{5}	t_{5}	\emptyset	\emptyset	\emptyset	t_{6}	\emptyset

where $t_{6}=\left(a_{2} b_{3} c_{23}\right)$. Now if there is another triple $t^{\prime} \in \mathbb{T}^{(3)}$ on \mathscr{S} whose all lines in common with triad T then \mathscr{S} has at least 6 Eckardt points that correspond to the triples $t_{i} ; i \in\{1, \ldots, 6\}$. However, $c(\mathscr{S}) \in \mathbb{S}^{(4)}$ and has at least 6 Eckardt points. This implies that $c(\mathscr{S}) \in \mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}$ (see the argument before Definition 4.6)

If $c(\mathscr{S}) \in \mathbb{E}^{(9,4)}$ then we are done. Otherwise, it is enough to show that there is another triple t_{7} on \mathscr{S} and hence $c(\mathscr{S}) \in \mathbb{E}^{(9,4)}$. By change of coordinates system over the complex field, we can assume that

$$
P_{1}=(1: 0: 0), P_{2}=(0: 1: 0), P_{3}=(1: 1: 1) \text { and } P_{4}=(0: 0: 1)
$$

A little algebraic computations shows that the conic, namely \mathscr{C}_{1}, which pass through the points P_{2}, P_{3}, P_{4}, has the form:

$$
\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}-x_{1} x_{2}\right)
$$

The above conic has two tangents at the points P_{2} and P_{4}, namely

$$
l_{12}=\mathbb{V}\left(x_{2}\right) \text { and } l_{14}=\mathbb{V}\left(x_{1}\right)
$$

respectively. Now if the two points, namely $P_{5}:=\left(\alpha_{5}: \beta_{5}: \gamma_{5}\right)$ and $P_{6}:=\left(\alpha_{6}: \beta_{6}\right.$: γ_{6}), belong to the conic \mathscr{C}_{1} then $\alpha_{5}^{2}=\beta_{5} \gamma_{5}$ and $\alpha_{6}^{2}=\beta_{6} \gamma_{6}$. It follows that

$$
P_{5}:=(1: \zeta: \bar{\zeta}) \text { and } P_{6}:=(1: \bar{\zeta}: \zeta)
$$

or

$$
P_{5}:=(1: \bar{\zeta}: \zeta) \text { and } P_{6}:=(1: \zeta: \bar{\zeta})
$$

where ζ is a primitive cubic root of unity. Now consider the following lines:

$$
\begin{array}{ll}
l_{34}=\mathbb{V}\left(x_{0}-x_{1}\right), & l_{23}=\mathbb{V}\left(x_{0}-x_{2}\right), \\
l_{16}=\mathbb{V}\left(x_{1}-\bar{\zeta} x_{2}\right), & \left.l_{35}=\mathbb{V}(\zeta-\bar{\zeta}) x_{0}-(\zeta-1) x_{1}+(\bar{\zeta}-1) x_{2}\right), \\
l_{24}=\mathbb{V}\left(x_{0}\right) . &
\end{array}
$$

Note that

$$
P_{7}:=(1: 1: 0) \in l_{12} \cap l_{34} \text { and } P_{8}:=(1: 0: 1) \in l_{14} \cap l_{23} .
$$

Moreover, $l_{78}=\mathbb{V}\left(x_{0}-x_{1}-x_{2}\right)$ and $l_{16} \cap l_{24} \cap l_{35}=\left\{P_{9}\right\}$ (see Figure 4.9).

Figure 4.9: $l_{16} \cap l_{24} \cap l_{35}=\left\{P_{9}\right\}$.

So we can take $t_{7}:=\left(c_{16} c_{24} c_{35}\right)$ where $c_{16}=\widetilde{l_{16}}, c_{24}=\widetilde{l_{24}}$ and $c_{35}=\widetilde{l_{35}}$.
Proposition 4.8. $\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}=\mathbb{S}^{(6)}=\mathbb{S}^{(5)}$.

Proof. According to Corollary 4.6, every non-singular cubic surface \mathscr{S} with 27 lines, which corresponds to $c(\mathscr{S}) \in \mathbb{E}^{(6,4)}$, has 6 Eckardt points. Also according to Proposition 4.6, every non-singular cubic surface \mathscr{S} with 27 lines, which corresponds to
$c(\mathscr{S}) \in \mathbb{E}^{(9,4)}$, has 9 Eckardt points. Moreover, $\mathbb{S}^{(6)} \subset \mathbb{S}^{(5)} \subseteq \mathbb{S}^{(4)}$. Therefore, we have

$$
\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)} \subset \mathbb{S}^{(6)} \subset \mathbb{S}^{(5)} \subseteq \mathbb{S}^{(4)}
$$

If \mathscr{S} is a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(5)} \subseteq \mathbb{S}^{(4)}$, then \mathscr{S} has 4 triples $T \vee t$ on it (see Definition 4.6). On the other hand, \mathscr{S} has another triple, namely t^{\prime}. Now if t^{\prime} has one or no common line with triad T then $c(\mathscr{S}) \in$ $\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}$ and we are done. Otherwise, all lines of t^{\prime} are in common with T and hence $c(\mathscr{S}) \in \mathbb{E}^{(9,4)} \subseteq \mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}$ (see Proposition 4.7). Therefore

$$
\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)} \subseteq \mathbb{S}^{(6)} \subseteq \mathbb{S}^{(5)} \subseteq \mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}
$$

Proposition 4.9. $\mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}=\mathbb{S}^{(7)}=\mathbb{S}^{(8)}=\mathbb{S}^{(9)}$.

Proof. It is clear that

$$
\mathbb{S}^{(9)} \subseteq \mathbb{S}^{(8)} \subseteq \mathbb{S}^{(7)} \subseteq \mathbb{S}^{(6)}
$$

Now according to Proposition 4.8 , we have $\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}=\mathbb{S}^{(6)}$. It follows that

$$
\mathbb{S}^{(7)} \subseteq \mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}
$$

Consequently, we get

$$
\begin{aligned}
\mathbb{S}^{(7)} & =\mathbb{S}^{(7)} \cap\left(\mathbb{E}^{(6,4)} \cup \mathbb{E}^{(9,4)}\right) \\
& =\left(\mathbb{S}^{(7)} \cap \mathbb{E}^{(6,4)}\right) \cup\left(\mathbb{S}^{(7)} \cap \mathbb{E}^{(9,4)}\right) \\
& =\left(\mathbb{S}^{(7)} \cap \mathbb{E}^{(6,4)}\right) \cup \mathbb{E}^{(9,4)},
\end{aligned}
$$

since $\mathbb{E}^{(9,4)} \subseteq \mathbb{S}^{(7)}$. On the other hand, let \mathscr{S} be any non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(7)} \cap \mathbb{E}^{(6,4)}$. Then $c(\mathscr{S}) \in \mathbb{E}^{(6,4)}$ and has 6 triples $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}$. Recall that Theorem 4.4 says that if \mathscr{S} has a triple $t_{7} \in$
$\mathbb{T}^{(3)} \backslash\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$, then $c(\mathscr{S}) \in \mathbb{E}^{(10,10)}$ or $c(\mathscr{S}) \in \mathbb{E}^{(18,10)}$. So $c(\mathscr{S}) \in \mathbb{E}^{(10,10)} \cup$ $\mathbb{E}^{(18,10)}$. It follows that

$$
\mathbb{S}^{(7)} \cap \mathbb{E}^{(6,4)} \subseteq \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}
$$

Consequently, we get

$$
\left(\mathbb{S}^{(7)} \cap \mathbb{E}^{(6,4)}\right) \cup \mathbb{E}^{(9,4)} \subseteq \mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}
$$

Thus

$$
\begin{aligned}
\mathbb{S}^{(7)} & \subseteq\left(\mathbb{S}^{(7)} \cap \mathbb{E}^{(6,4)}\right) \cup \mathbb{E}^{(9,4)} \subseteq \mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)} \\
& \subseteq \mathbb{S}^{(9)} \subseteq \mathbb{S}^{(8)} \subseteq \mathbb{S}^{(7)}
\end{aligned}
$$

Proposition 4.10. $\mathbb{S}^{(10)}=\mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}$.

Proof. Assume that $c(\mathscr{S}) \in \mathbb{S}^{(10)}$. By the definition of $\mathbb{S}^{(9)}$, we get $c(\mathscr{S}) \in \mathbb{S}^{(9)}$. Now according to Proposition 4.9, we have $c(\mathscr{S}) \in \mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}$. It follows that

$$
\mathbb{S}^{(10)} \subseteq \mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}
$$

Consequently, we get

$$
\begin{aligned}
\mathbb{S}^{(10)} & =\mathbb{S}^{(10)} \cap\left(\mathbb{E}^{(9,4)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}\right) \\
& =\left(\mathbb{S}^{(10)} \cap \mathbb{E}^{(9,4)}\right) \cup\left(\mathbb{S}^{(10)} \cap \mathbb{E}^{(10,10)}\right) \cup\left(\mathbb{S}^{(10)} \cap \mathbb{E}^{(18,10)}\right) \\
& =\left(\mathbb{S}^{(10)} \cap \mathbb{E}^{(9,4)}\right) \cup\left(\mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}\right) \text { since } \mathbb{E}^{(10,10)}, \mathbb{E}^{(18,10)} \subseteq \mathbb{S}^{(10)} .
\end{aligned}
$$

Now if $c(\mathscr{S}) \in \mathbb{S}^{(10)} \cap \mathbb{E}^{(9,4)}$ then the corresponding non-singular cubic surface \mathscr{S} has 9 Eckardt points which correspond to the triples $t_{i} ; i \in\{1, \ldots, 9\}$. Up to permutations and quadratic transformations, we can assume that (see Proposition 4.6)

$$
\begin{aligned}
& t_{1}=\left(c_{12} c_{34} c_{56}\right), \\
& t_{2}=\left(c_{15} c_{24} c_{36}\right), \\
& t_{3}=\left(c_{13} c_{26} c_{45}\right), \\
& t_{4}=\left(a_{4} b_{1} c_{14}\right), \\
& t_{5}=\left(a_{2} b_{3} c_{23}\right), \\
& t_{6}=\left(a_{5} b_{2} c_{25}\right), \\
& t_{7}=\left(a_{3} b_{5} c_{35}\right), \\
& t_{8}=\left(a_{1} b_{6} c_{16}\right), \\
& t_{9}=\left(a_{6} b_{4} c_{46}\right),
\end{aligned}
$$

Moreover, the previous 9 triples contain all the 27 lines on \mathscr{S} (see Remark 4.6). However, if $c(\mathscr{S}) \in \mathbb{S}^{(10)}$ then there is another Eckardt point which corresponds to some triple on \mathscr{S}, namely $t_{10} \in \mathbb{T}^{(3)} \backslash\left\{t_{1}, \ldots, t_{9}\right\}$. So all lines of t_{10} must belong to some triad among the 12 triads on \mathscr{S}. Without loss of generality, we can assume all the line of t_{10} are in common with the triad $T_{5}=\left\{t_{1}, t_{2}, t_{3}\right\}$ (see Proposition 4.6). Up to permutations and quadratic transformations, we can take $t_{10}=\left(c_{12} c_{36} c_{45}\right)$. Now if we consider the triad $T_{1}=\left\{t_{1}, t_{4}, t_{5}\right\}$ in Proposition 4.6, then we get that t_{10} has only one common line with T_{1}. Consequently, according to Corollary 4.6, the set $T_{1} \vee t_{10}$ will generate 6 Eckardt points on \mathscr{S} and 4 triads so that T_{1} is one of them. Hence $c(\mathscr{S}) \in \mathbb{E}^{(6,4)}$. On the other hand, the lines of the triple t_{2} are not all in common with T_{1}. Therefore, according to Theorem 4.4(II), we deduce that the set of triples $T_{1} \vee t_{10} \vee t_{2}$ generate the 18 Eckardt points on \mathscr{S} and hence $c(\mathscr{S}) \in \mathbb{E}^{(18,10)}$. It follows that

$$
\mathbb{S}^{(10)} \subseteq \mathbb{E}^{(18,10)} \cup \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}=\mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)} \subseteq \mathbb{S}^{(10)}
$$

Proposition 4.11. $\mathbb{S}^{(11)}=\mathbb{S}^{(12)}=\mathbb{S}^{(13)}=\mathbb{S}^{(14)}=\mathbb{S}^{(15)}=\mathbb{S}^{(16)}=\mathbb{S}^{(17)}=\mathbb{S}^{(18)}=$ $\mathbb{E}^{(18,10)}$.

Proof. It obvious that

$$
\mathbb{E}^{(18,10)} \subseteq \mathbb{S}^{(18)} \subseteq \mathbb{S}^{(17)} \subseteq \mathbb{S}^{(16)} \subseteq \mathbb{S}^{(15)} \subseteq \mathbb{S}^{(14)} \subseteq \mathbb{S}^{(13)} \subseteq \mathbb{S}^{(12)} \subseteq \mathbb{S}^{(11)} \subseteq \mathbb{S}^{(10)}
$$

Now according to Proposition 4.10, we get

$$
\mathbb{S}^{(10)}=\mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}
$$

More precisely, we have $\mathbb{S}^{(11)} \subseteq \mathbb{E}^{(10,10)} \cup \mathbb{E}^{(18,10)}$. However, $\mathbb{S}^{(11)} \nsubseteq \mathbb{E}^{(10,10)}$ and $\mathbb{E}^{(10,10)} \cap \mathbb{E}^{(18,10)}=\emptyset$. It follows that $\mathbb{S}^{(11)} \subseteq \mathbb{E}^{(18,10)}$. Thus

$$
\mathbb{E}^{(18,10)} \subseteq \mathbb{S}^{(18)} \subseteq \mathbb{S}^{(17)} \subseteq \mathbb{S}^{(16)} \subseteq \mathbb{S}^{(15)} \subseteq \mathbb{S}^{(14)} \subseteq \mathbb{S}^{(13)} \subseteq \mathbb{S}^{(12)} \subseteq \mathbb{S}^{(11)} \subseteq \mathbb{E}^{(18,10)}
$$

So we can replace the inclusion relation by equality.
Corollary 4.13. For every $k>18$, we have $\mathbb{S}^{(k)}=\emptyset$.
Proof. Let \mathscr{S} be a non-singular cubic surface that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(18)}$. We know that \mathscr{S} has 18 Eckardt points which correspond to the 18 triples $t_{i} ; i \in$ $\{1, \ldots, 18\}$ [see Theorem 4.4(II)]. Furthermore, applying our operation on the previous triples does not give any new triples.

Now if there is a non-singular cubic surface \mathscr{S} that corresponds to $c(\mathscr{S}) \in \mathbb{S}^{(k)}$ for some $k>18$, then

$$
\mathbb{S}^{(k)} \subseteq \mathbb{S}^{(k-1)} \subseteq \ldots \subseteq \mathbb{S}^{(18)}=\mathbb{E}^{(18,10)}
$$

which is a contradiction.

The following diagram (see Figure 4.10) illustrates most properties of the classes $\mathbb{S}^{(k)}$ and $\mathbb{E}^{(m, k)}$, where the end of dotted arrows is the union of their beginnings. The hook line represents the inclusion relation while the double line refers to equality relation.

Figure 4.10: The main diagram for $\mathbb{S}^{(k)}$ and $\mathbb{E}^{(m, k)}$.

4.3 Irreducibility and codimension of classes of Smooth cubic SURFACES OVER THE COMPLEX FIELD

In this section, we discuss the irreducibility and codimension of classes of smooth cubic surfaces as a subvarieties of $\mathbb{P}_{\mathbb{C}}^{19}$. Let $\varphi: X \rightarrow Y$ be a morphism of affine algebraic sets [see [25], Page 80], defined over an algebraically closed field k. For $y \in Y$, the set $\varphi^{-1}(y)$ is called the fiber over y. Recall from ([13], Page 23) that X is an affine variety if it is an irreducible closed subset of \mathbb{A}^{n}, and a morphism $\varphi: X \rightarrow Y$ between two varieties is said to be dominant if the image of φ is dense in Y.

Theorem 4.5. ([5], Page 62) Let $\varphi: X \rightarrow Y$ be a finite dominant morphism of affine varieties. Then

1. φ is surjective.
2. If $y \in Y$, then the fiber $\varphi^{-1}(y)$ is finite.
3. Let $Z \subset X$ be a closed subvariety. Then $\varphi(Z)$ is closed, $\operatorname{dim}(Z)=\operatorname{dim}(\varphi(Z))$ and $\varphi: Z \rightarrow \varphi(Z)$ is finite.

Theorem 4.6. ([5], Page 64) Let $\varphi: X \rightarrow Y$ be a dominant morphism of affine varieties. There exists a nonempty open set $\mathcal{U} \subset \varphi(X)$ such that for all $y \in \mathcal{U}$ and any irreducible component Z of $\varphi^{-1}(y), \operatorname{dim}(Z)=r:=\operatorname{dim}(X)-\operatorname{dim}(Y)$.

Theorem 4.7. ([29], Page 76) Let $\varphi: X \rightarrow Y$ be a regular map between irreducible varieties. Suppose that φ is surjective, $\varphi(X)=Y$, and that $\operatorname{dim} X=n, \operatorname{dim} Y=m$. Then $m \leq n$, and

1. $\operatorname{dim} F \geq n-m$ for any $y \in Y$ and for any component F of the fibre $\varphi^{-1}(y)$;
2. there exists a nonempty open subset $\mathcal{U} \subset Y$ such that $\varphi^{-1}(y)=n-m$ for $y \in \mathcal{U}$.

Recall that $\mathbb{S}^{(k)}$ denotes the set of all smooth cubic surfaces with at least k Eckardt points (as a subvariety of $\mathbb{P}_{\mathbb{C}}^{19}$). It is clear that \mathbb{S}_{6} is an open subvariety of $\left(\mathbb{P}^{2}\right)^{6}$ and hence $\operatorname{dim} \mathbb{S}_{6}=12$. Furthermore, $\operatorname{dim} \mathbb{W}_{s}=4$. Let $s:=\kappa_{123456} \in \mathbb{S}_{6}$ and assume that $\widehat{w_{1234}}$ forms a basis of \mathbb{W}_{s}, where \mathbb{W}_{s} is the space of all plane cubics passing through the points of $\widehat{s}:=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$. Then we have the following birational map

$$
\mathbb{P}^{2} \longrightarrow \mathbb{P}^{3}: P \mapsto\left(w_{1}(P): w_{2}(P): w_{3}(P): w_{4}(P)\right)
$$

which induces a morphism

$$
\psi: \mathbb{P}^{2}-\widehat{\kappa_{123456}} \longrightarrow \mathbb{P}^{3}: P \mapsto\left(w_{1}(P): w_{2}(P): w_{3}(P): w_{4}(P)\right) .
$$

In this case, we get $\operatorname{im} \psi:=\mathrm{blw}_{s} \mathbb{P}^{2}=\mathscr{S}$ which is a non-singular cubic surface with 27 lines. As we said previously, \mathscr{S} corresponds to $c(\mathscr{S}) \in \mathbb{S}_{s m}$. Moreover, the 27 lines are on \mathscr{S} :

1. the exceptional curves $\widetilde{P}_{i}:=a_{i}$ is defined to be the total transform of P_{i} in \widehat{s},
2. the curve $\widetilde{l_{i j}}:=c_{i j}$ is the strict transform of $l_{i j}=\overline{P_{i} P_{j}}$,
3. the curve $\widetilde{\mathscr{C}}_{j}:=b_{j}$ is the strict transform of the conic \mathscr{C}_{j} passing through all points of \widehat{s} except P_{j}.

Following ([24], Page 173), if $\mathscr{S}(c):=\mathbb{V}\left(\sum c_{\alpha} x^{\alpha}\right)$ represents a cubic surface with coefficients $c(\mathscr{S})=\left(c_{\alpha}\right)$, then we can consider \mathscr{S} as a subvariety of \mathbb{P}^{19}. It follows that

$$
\mathscr{H}:=\bigcup_{c \in \mathbb{P}^{19}} \mathscr{S}(c) \times\{c\} \subseteq \mathbb{P}^{3} \times \mathbb{P}^{19}
$$

is defined by the equation $\sum z_{\alpha} x^{\alpha}=0$ where z_{α} denotes the homogeneous coordinates of the projective space \mathbb{P}^{19}. Now if $S \subseteq \mathscr{H}$ is the set of points where $p_{2}: \mathscr{H} \rightarrow \mathbb{P}_{z}^{19}$ is not smooth or equivalently where the fiber $\mathscr{S}(c)$ is not smooth, then let $\mathbb{S}_{s n}:=$ $p_{2}(S)$. Consequently, $\mathbb{P}_{z}^{19}-\mathbb{S}_{s n}$ parameterize the smooth cubics. In fact, there is a
homogeneous polynomial $d \in k\left[z_{0}, \ldots, z_{19}\right]$ such that $\mathbb{S}_{s n}=\mathbb{V}(d)$. Thus $\mathbb{P}_{z}^{19}-\mathbb{S}_{s n}$ is an open subset of \mathbb{P}_{z}^{19} and hence it is irreducible and dense. Therefore, $\operatorname{dim} \mathbb{S}_{s m}=19$.

Let $P_{1}=(1: 0: 0)=Q_{1}, P_{2}=(0: 1: 0)=Q_{2}, P_{3}=(0: 0: 1)=Q_{3}$, and $\pi_{S(P)}$ represents the blowing up of \mathbb{P}_{X}^{2} at $S(P):=\left\{P_{1}, P_{2}, P_{3}\right\}$, $\pi_{S(Q)}$ represents the blowing up of \mathbb{P}_{Y}^{2} at $S(Q):=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$,

$$
\mathcal{V}:=\operatorname{blw}_{S(P)} \mathbb{P}_{X}^{2}
$$

then we have the following proposition.

Proposition 4.12. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and

$$
t=\left\{Q_{1}, Q_{2}, Q_{3}, \varphi_{123}\left(P_{4}\right), \varphi_{123}\left(P_{5}\right), \varphi_{123}\left(P_{6}\right)\right\}
$$

Then

$$
\mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{t} \mathbb{P}_{Y}^{2}
$$

In particular, if $s^{\prime} \in \mathbb{S}_{6}$ is obtained from s via quadratic transformation, then

$$
\mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{s^{\prime}} \mathbb{P}_{X}^{2}
$$

Proof. Let $\rho_{1}: \mathcal{X} \rightarrow \mathcal{V}$ represent the blowing up of \mathcal{V} at $\pi_{S(P)}^{-1}\left(P_{4}\right), \pi_{S(P)}^{-1}\left(P_{5}\right)$, $\pi_{S(P)}^{-1}\left(P_{6}\right)$ and let

$$
\rho_{2}: \mathcal{Y} \rightarrow \mathcal{V}
$$

represent the blowing up of \mathcal{V} at $\left\{\pi_{S(Q)}^{-1}\left(\varphi_{123}\left(P_{4}\right)\right), \pi_{S(Q)}^{-1}\left(\varphi_{123}\left(P_{5}\right), \pi_{S(Q)}^{-1}\left(\varphi_{123}\left(P_{6}\right)\right\}\right.\right.$.
Since $\pi_{S(Q)} \circ \pi_{S(P)}^{-1}=\varphi_{123}$, we have $\pi_{S(P)}^{-1}\left(P_{k}\right)=\pi_{S(Q)}^{-1}\left(\varphi_{123}\left(P_{k}\right)\right)$ for $k \in\{4,5,6\}$. Thus

$$
\mathcal{X}=\mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{t} \mathbb{P}_{Y}^{2}=\mathcal{Y}
$$

See the diagram in Figure 4.11.

Figure 4.11: $\mathrm{blw}_{s} \mathbb{P}_{X}^{2} \cong \mathrm{blw}_{t} \mathbb{P}_{Y}^{2}$.

Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and $E_{s}=\left(a_{1}, \ldots, a_{6}\right)$ be the exceptional curves corresponding to s. Let $\mathscr{S}=\operatorname{blw}_{s} \mathbb{P}^{2}$. Define

$$
\begin{aligned}
& \mathbb{B}_{1}:=\left\{\left(s, c(\mathscr{S}), E_{s}\right): s \in \mathbb{S}_{6}\right\}, \\
& \mathbb{B}_{2}:=\left\{\left(c(\mathscr{S}), \lambda_{123456}\right): l_{i} \cap l_{j}=\emptyset\right\} .
\end{aligned}
$$

Consider the following mappings:

By David Mumford ([24], Page 174) we have $\mathbb{B}_{2} \subset \mathbb{P}^{19} \times \mathbb{G}_{2,4}^{6}$. According to the projection Γ we get the fiber $\Gamma^{-1}(c(\mathscr{S}))$ has 51840 elements which is a finite set, and $\operatorname{dim} \mathbb{B}_{2}=19$. In fact, $\operatorname{dim} \Gamma^{-1}(c(\mathscr{S}))=0$ and hence

$$
\operatorname{dim} \mathbb{B}_{2}=\operatorname{dim} \mathbb{S}_{s m}+\operatorname{dim} \Gamma^{-1}(c(\mathscr{S}))=19+0=19
$$

Furthermore, the fiber

$$
\Psi^{-1}(s) \cong \operatorname{Aut}\left(\mathbb{P}^{3}\right) \cong \operatorname{PGL}(3, k) \cong \operatorname{GL}(4, k) / k^{*}
$$

has dimension equal to $4^{2}-1=15$. Similarly, the fiber

$$
\Xi^{-1}\left(c(\mathscr{S}), \lambda_{123456}\right) \cong \operatorname{Aut}\left(\mathbb{P}^{2}\right) \cong \operatorname{PGL}(2, k) \cong \mathrm{GL}(3, k) / k^{*}
$$

has dimension equal to $3^{2}-1=8$.
Assume that \mathbb{K} is a closed subset of \mathbb{S}_{6}. Define the closed subset of $\mathbb{K} \times\left(\mathbb{P}^{9}\right)^{4}$ as follows:

$$
\mathcal{W}:=\left\{\left(s, w_{1234}\right): s \in \mathbb{K}, \widehat{w_{1234}} \subset \mathbb{W}_{s} \backslash\{\mathbf{0}\}\right\} .
$$

Let us define an open subset \mathcal{W}^{*} of \mathcal{W} as follows:

$$
\mathcal{W}^{*}:=\left\{w=\left(s, w_{1234}\right) \in \mathcal{W}: \widehat{w_{1234}} \text { forms a basis for } \mathbb{W}_{s}\right\},
$$

Then we have the following maps:

Where $p_{\mathbb{K}}$ is the projection to the first coordinate, and ι_{1}, ι_{2} represent the embedding maps. The following map, namely

$$
\omega: \mathcal{W} \longrightarrow \mathbb{K}:\left(s, w_{1234}\right) \stackrel{\omega}{\longmapsto} s
$$

is surjective and $\omega=p_{\mathrm{K}} \circ \iota_{2}$. Furthermore, the fiber is $\omega^{-1}(s) \cong\left(\mathbb{P}^{3}\right)^{4}$ and has dimension equal to 12 . It follows that \mathcal{W} is an irreducible closed subset of $\mathbb{K} \times\left(\mathbb{P}^{9}\right)^{4}$ with

$$
\begin{equation*}
\operatorname{dim} \mathcal{W}=\operatorname{dim} \mathbb{K}+12 \tag{4.3.1}
\end{equation*}
$$

Since \mathcal{W}^{*} is an irreducible open subset of \mathcal{W}, it follows that \mathcal{W}^{*} is irreducible and dense in \mathcal{W} (i.e, $\left.\overline{\mathcal{W}^{*}}=\mathcal{W}\right)$ and hence

$$
\operatorname{dim} \mathcal{W}^{*}=\operatorname{dim} \overline{\mathcal{W}^{*}}=\operatorname{dim} \mathcal{W} .
$$

Let $B_{1}:=\psi^{-1}(\mathbb{K})$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\gamma\left(B_{2}\right)$ is a closed subset of $\mathbb{S}_{s m}$ where

$$
\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{B_{2}} \text { and } \psi:=\left.\Psi\right|_{B_{1}} .
$$

Note that for any basis $\widehat{w_{1234}}$ of $\mathbb{W}_{s} ; s \in \mathbb{S}_{6}$ there exists an embedding in \mathbb{P}^{3} of the blow-up of \mathbb{P}^{2} at six points in general position, namely the embedding coming from
the birational map

$$
\mathbb{P}^{2} \rightarrow \mathbb{P}^{3}: P \mapsto\left(\alpha_{1} w_{1}(P): \alpha_{2} w_{2}(P): \alpha_{3} w_{3}(P): \alpha_{4} w_{4}(P)\right) ; \alpha_{j} \in k^{*}
$$

where $\left\{\alpha_{1} w_{1}, \alpha_{2} w_{2}, \alpha_{3} w_{3}, \alpha_{4} w_{4}\right\}$ forms a basis of \mathbb{W}_{s}. The above birational map induces a morphism, namely

$$
\mathbb{P}^{2}-s \rightarrow \mathbb{P}^{3}: P \mapsto\left(w_{1}(P): w_{2}(P): w_{3}(P): w_{4}(P)\right),
$$

Thus we deduced that B_{1} isomorphic to an open subset \mathcal{U} of $\mathcal{W}^{*} \times \mathbb{P}^{3}$ (see Figure 4.12). Hence B_{1} is irreducible with

$$
\operatorname{dim} B_{1}=\operatorname{dim} \overline{\mathcal{U}}=\operatorname{dim}\left(\mathcal{W}^{*} \times \mathbb{P}^{3}\right)=\operatorname{dim} \mathcal{W}+3
$$

According to Equation (4.4), we get

$$
\begin{equation*}
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}+15 \tag{4.3.2}
\end{equation*}
$$

All the above results are illustrated in the main diagram (Figure 4.12), where

$$
\omega: \mathcal{W} \longrightarrow \mathbb{K}:\left(s, w_{1234}\right) \stackrel{\omega}{\longmapsto} s,
$$

is the surjective map which is defined previously. In fact, $\omega=p_{\mathrm{K}} \circ \iota_{2}$.
Lemma 4.3.1. Let $\mathbb{K}^{(1)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(12,34,56) \neq \emptyset\right\}$. Then $\mathbb{K}^{(1)}$ is an irreducible subset of \mathbb{S}_{6} and $\operatorname{codim} \mathbb{K}^{(1)}=1$.

Proof. Let \mathbb{L}_{1} be a subset of $\mathbb{P}^{2} \times \mathbb{G}_{2,3}^{3}$ defined by

$$
\mathbb{L}_{1}:=\left\{\left(Q ; \lambda_{123}\right): \wedge\left(\lambda_{123}\right)=Q\right\} .
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times\left(\mathbb{P}^{2}\right)^{6}$ defined by

$$
\mathbb{L}_{2}:=\left\{(t ; s): s=\kappa_{123456} \in \mathbb{S}_{6}, t \in \mathbb{L}_{1} \text { such that } \lambda_{123}=\left(l_{12}, l_{34}, l_{56}\right)\right\}
$$

Then we have the following projections:

Figure 4.12: Main diagram.

Let us consider the fiber of each map (see Figure 4.13).
The fiber $p_{1}^{-1}(Q)$ is an irreducible subset \mathbb{L}_{1} with $\operatorname{dim} p_{1}^{-1}(Q)=3$. Hence \mathbb{L}_{1} is an irreducible subset of $\mathbb{P}^{2} \times \mathbb{G}_{2,3}^{3}$ with dimension equal to 5 .

The fiber $p_{2}^{-1}(t)$ is an irreducible subset of \mathbb{L}_{2} with dimension equal to 6 . So \mathbb{L}_{2} is an irreducible subset of $\mathbb{L}_{1} \times\left(\mathbb{P}^{2}\right)^{6}$ with

$$
\operatorname{dim} \mathbb{L}_{2}=\operatorname{dim} \mathbb{L}_{1}+6=5+6=11
$$

If we assume $l_{12}:=l_{1}, l_{34}:=l_{2}$ and $l_{56}:=l_{3}$ so that $\wedge(12,34,56)=Q$, we get the

Figure 4.13: $\mathbb{K}^{(1)}$ and configurations of members of the fibers.
following isomorphism

$$
\mathbb{L}_{2} \xrightarrow{p_{3}} \mathbb{K}^{(1)}:(t ; s) \mapsto s
$$

Thus $\mathbb{K}^{(1)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal to 1 .

Theorem 4.8. $\mathbb{S}^{(1)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 1 .
Proof. Assume that $\mathbb{K}:=\mathbb{K}^{(1)}$, where $\mathbb{K}^{(1)}$ is the set defined in Lemma 4.3.1. Let us consider the following diagram (see Figure 4.14):

Figure 4.14: $\mathbb{S}^{(1)}=\gamma \circ \xi\left(B_{1}\right)$.
where $B_{1}:=\psi^{-1}\left(\mathbb{K}^{(1)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{S}^{(1)}=\gamma\left(B_{2}\right)$ where

$$
\xi:=\left.\Xi\right|_{B_{1}}, \quad \gamma:=\left.\Gamma\right|_{B_{2}} \text { and } \psi:=\left.\Psi\right|_{B_{1}} .
$$

Then according to Equation (4.3.2), we have:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(1)}+15=11+15=26
$$

Consequently, $\mathbb{S}^{(1)}=\gamma \circ \xi\left(B_{1}\right)$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{S}^{(1)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}\left(b_{2}\right) \\
& =26-8=18, \text { where } b_{2}=\gamma^{-1}(x) \text { and } x \in \mathbb{S}^{(1)}
\end{aligned}
$$

Hence $\mathbb{S}^{(1)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 1.

Lemma 4.3.2. Let

$$
\mathbb{K}^{(2)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{7}\right\} \text { and } \wedge(12,35,46)=\left\{P_{8}\right\}\right\}
$$

Then $\mathbb{K}^{(2)}$ is an irreducible subset of \mathbb{S}_{6} and codim $\mathbb{K}^{(2)}=2$.

Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{1}:=\left\{x=\left(P_{7}, P_{8}\right) \in \mathbb{P}^{2} \times \mathbb{P}^{2}: P_{7} \neq P_{8}\right\}
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{G}_{2,3}^{4}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; \lambda_{1234}\right): x \in \mathbb{L}_{1} \text { and } \wedge(1,2)=\left\{P_{7}\right\}, \wedge(3,4)=\left\{P_{8}\right\}\right\}
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{3}:=\left\{\left(y ; P_{1}, P_{2}\right): y \in \mathbb{L}_{2} \text { and } P_{1}, P_{2} \in l_{78}\right\}
$$

Then we have the following projections:

$$
\begin{array}{ccc}
\mathbb{L}_{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} & \mathbb{L}_{1} \times \mathbb{G}_{2,3}^{4} & \mathbb{P}^{2} \times \mathbb{P}^{2} \\
\cup & \cup & \cup \\
\mathbb{L}_{3} \longrightarrow & p_{1} & \mathbb{L}_{2} \longrightarrow \\
\left(y ; P_{1}, P_{2}\right) \longmapsto & \mathbb{L}_{1} \\
& & \left(x ; \lambda_{1234}\right) \longmapsto
\end{array}
$$

It is evident that the set \mathbb{L}_{1} is an open subset of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ and hence

$$
\operatorname{dim} \mathbb{L}_{1}=\operatorname{dim} \overline{\mathbb{L}_{1}}=\operatorname{dim}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}\right)=4
$$

Let us consider the fiber of each map (see Figure 4.15).

Figure 4.15: $\mathbb{K}^{(2)}$ and configurations of members of the fibers.

The fiber $p_{2}^{-1}(x)$ is an irreducible subset \mathbb{L}_{2} with $\operatorname{dim} p_{2}^{-1}(x)=4$. Since p_{2} is surjective with irreducible target of dimension $4, \mathbb{L}_{2}$ is an irreducible with dimension $4+4=8$. Furthermore, \mathbb{L}_{3} is irreducible with $\operatorname{dim} \mathbb{L}_{3}=8+2=10$ since p_{1} is surjective and the fiber $p_{1}^{-1}\left(\left(x ; \lambda_{1234}\right)\right)$ is irreducible with $\operatorname{dim} p_{1}^{-1}\left(\left(x ; \lambda_{1234}\right)\right)=2$. If we assume that $\wedge(1,3)=\left\{P_{3}\right\}, \wedge(1,4)=\left\{P_{4}\right\}, \wedge(2,3)=\left\{P_{5}\right\}$ and $\wedge(2,4)=\left\{P_{6}\right\}$, then $\mathbb{K}^{(2)}$ becomes an open subset of \mathbb{L}_{3}. Thus $\mathbb{K}^{(2)}$ is an irreducible subset of \mathbb{S}_{6} with dimension

$$
\operatorname{dim} \mathbb{K}^{(2)}=\operatorname{dim} \overline{\mathbb{K}^{(2)}}=\operatorname{dim} \mathbb{L}_{3}=10
$$

Theorem 4.9. $\mathbb{E}^{(2)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 2.

Proof. Let $\mathbb{K}:=\mathbb{K}^{(2)}$, where $\mathbb{K}^{(2)}$ is the set defined in Lemma 4.3.2. Assume that Ξ, Ψ, and Γ are the maps defined in the main diagram (Figure 4.12). Let $B_{1}:=\psi^{-1}\left(\mathbb{K}^{(2)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(2)}=\gamma\left(B_{2}\right)$ where

$$
\xi:=\left.\Xi\right|_{B_{1}}, \quad \gamma:=\left.\Gamma\right|_{B_{2}} \text { and } \psi:=\left.\Psi\right|_{B_{1}} .
$$

Then up to the diagram (see Figure 4.16), we have

Figure 4.16: $\mathbb{E}^{(2)}=\gamma \circ \xi\left(B_{1}\right)$.
$\mathbb{E}^{(2)}=\gamma \circ \xi\left(B_{1}\right)$ which is a subset of $\mathbb{S}_{s m}$. According to Equation (4.3.2), we have:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(2)}+15=10+15=25
$$

Consequently, $\mathbb{E}^{(2)}=\gamma \circ \xi\left(B_{1}\right)$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(2)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}\left(b_{2}\right) \\
& =25-8=17, \text { where } b_{2}=\gamma^{-1}(x) \text { and } x \in \mathbb{E}^{(2)} .
\end{aligned}
$$

Therefore $\mathbb{E}^{(2)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 2.

Lemma 4.3.3. Let

$$
\mathbb{K}^{(3)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{7}\right\} \text { and } \wedge(13,45,26)=\left\{P_{8}\right\}\right\}
$$

Then $\mathbb{K}^{(3)}$ is an irreducible subset of \mathbb{S}_{6} and $\operatorname{codim} \mathbb{K}^{(3)}=2$.
Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{1}:=\left\{x=\left(P_{7}, P_{8}\right) \in \mathbb{P}^{2} \times \mathbb{P}^{2}: P_{7} \neq P_{8}\right\}
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{G}_{2,3}^{4}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; \lambda_{1234}\right): x \in \mathbb{L}_{1} \text { and } \wedge(1,2)=\left\{P_{7}\right\}, \wedge(3,4)=\left\{P_{8}\right\}\right\} .
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{3}:=\left\{\left(y ; P_{1}, P_{2}\right): y \in \mathbb{L}_{2} \text { and } P_{7} \in \overline{P_{1} P_{2}}, P_{8} \in \overline{P_{1} P_{3}}\right\}
$$

Then we have the following projections:

Let us consider the fiber of each projection (see Figure 4.17).

Figure 4.17: $\mathbb{K}^{(3)}$ and configurations of members of the fibers.

As we illustrated in Lemma 4.3.2, the set \mathbb{L}_{1} is an open subset of $\mathbb{P}^{2} \times \mathbb{P}^{2}$ with

$$
\operatorname{dim} \mathbb{L}_{1}=\operatorname{dim} \overline{\mathbb{L}_{1}}=\operatorname{dim} \mathbb{P}^{2} \times \mathbb{P}^{2}=4
$$

Let us consider the following projections:

By the same argument used in the proof of Lemma 4.3.2, the surjectivity of p_{2} implies the irreducibility of the fiber $p_{2}^{-1}(x)$. Moreover, we have $\operatorname{dim} p_{2}^{-1}(x)=4$. Since p_{2} is surjective with irreducible target of dimension 4 , it follows that the set \mathbb{L}_{2} is an irreducible with dimension $4+4=8$. Furthermore, \mathbb{L}_{3} is an irreducible set with $\operatorname{dim} \mathbb{L}_{3}=8+2=10$ since p_{1} is surjective and the fiber $p_{1}^{-1}(y)$ is irreducible with $\operatorname{dim} p_{1}^{-1}\left(\left(x ; \lambda_{1234}\right)\right)=2$. If we assume that $\wedge(2,4)=\left\{P_{3}\right\}, \wedge(2,3)=\left\{P_{4}\right\}, \wedge(1,3)=$ $\left\{P_{5}\right\}, \wedge(1,2)=\left\{P_{7}\right\}, \wedge(3,4)=\left\{P_{8}\right\}$ and $l_{1} \cap \overline{P_{2} P_{8}}=\left\{P_{6}\right\}$ (see Figure 4.17), we conclude that $\mathbb{K}^{(3)}$ is an open subset of \mathbb{L}_{3}. Thus $\mathbb{K}^{(3)}$ becomes an irreducible subset of \mathbb{S}_{6} with dimension

$$
\operatorname{dim} \mathbb{K}^{(3)}=\operatorname{dim} \overline{\mathbb{K}^{(3)}}=\operatorname{dim} \mathbb{L}_{3}=10
$$

Theorem 4.10. $\mathbb{E}^{(3)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 2.

Proof. Let $\mathbb{K}:=\mathbb{K}^{(3)}$ be the set defined as in Lemma 4.3.3. Let us consider the same procedure used in the proof of Theorem 4.9, and assume that Ξ, Ψ, and Γ are the maps defined as in the main diagram (Figure 4.12). Let $B_{1}:=\psi^{-1}\left(\mathbb{K}^{(3)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(3)}=\gamma\left(B_{2}\right)$ where

$$
\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{B_{2}} \text { and } \psi:=\left.\Psi\right|_{B_{1}}
$$

Then according to the following diagram (see Figure 4.18), we have $\mathbb{E}^{(3)}=\gamma \circ \xi\left(B_{1}\right)$ which is a subset of $\mathbb{S}_{s m}$. According to Equation (4.3.2), we obtain:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(3)}+15=10+15=25
$$

Figure 4.18: $\mathbb{E}^{(3)}=\gamma \circ \xi\left(B_{1}\right)$.

Consequently, $\mathbb{E}^{(3)}=\gamma \circ \xi\left(B_{1}\right)$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(3)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}\left(b_{2}\right) \\
& =25-8=17, \text { where } b_{2}=\gamma^{-1}(x) \text { and } x \in \mathbb{E}^{(3)}
\end{aligned}
$$

Therefore $\mathbb{E}^{(3)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 2.

Corollary 4.14. $\mathbb{S}^{(1)}$ and $\mathbb{S}^{(2)}$ are closed subset of $\mathbb{S}_{s m}$. Moreover, $\mathbb{S}^{(2)}$ has two irreducible components $\mathbb{E}^{(2)}$ and $\mathbb{E}^{(3)}$ in $\mathbb{S}_{s m}$ with codimension 2.

Proof. Let $\mathbb{L}_{\mathscr{\mathscr { C }}}:=\left(l_{1}, \ldots, l_{27}\right)$ be the 27 lines on the non-singular cubic surface \mathscr{S}. Define

$$
\begin{aligned}
\mathbb{G} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right): c(\mathscr{S}) \in \mathbb{S}_{s m}\right\} \subset \mathbb{S}_{s m} \times \mathbb{G}_{2,4}^{27}, \\
\mathbb{G}_{1} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \in \mathbb{G}: \lambda_{123} \in \mathbb{T}^{(3)}\right\} \subseteq \mathbb{G}, \\
\mathbb{G}_{2} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \in \mathbb{G}: \lambda_{123}, \lambda_{145} \in \mathbb{T}^{(3)}\right\} \subseteq \mathbb{G} \\
\mathbb{G}_{3} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \in \mathbb{G}: \lambda_{123}, \lambda_{456} \in \mathbb{T}^{(3)}\right\} \subseteq \mathbb{G}
\end{aligned}
$$

We know that $\mathbb{T}^{(3)} \subset \mathbb{G}_{2,4}^{3}$ and it is evident that the set

$$
\mathbb{G}^{*}:=\left\{\lambda_{12} \in \mathbb{G}_{2,4} \times \mathbb{G}_{2,4}: \wedge\left(\lambda_{12}\right) \neq \emptyset\right\},
$$

is a closed subset of $\mathbb{G}_{2,4} \times \mathbb{G}_{2,4}$ (see [2] and [24]). Let

$$
\mathbb{G} \xrightarrow{p} \mathbb{S}_{s m}:\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \mapsto c(\mathscr{S})
$$

be the projection map, and consider the mappings in Figure 4.19.
Note that

$$
\mathbb{T}^{(3)}=\eta_{12}^{-1}\left(\mathbb{G}^{*}\right) \cap \eta_{13}^{-1}\left(\mathbb{G}^{*}\right) \cap \eta_{23}^{-1}\left(\mathbb{G}^{*}\right) \subset \mathbb{G}_{2,4} \times \mathbb{G}_{2,4} \times \mathbb{G}_{2,4}
$$

Figure 4.19: Irreducible components of $\mathbb{S}^{(2)}$.

Hence $\mathbb{T}^{(3)}$ is a closed subset of $\mathbb{G}_{2,4} \times \mathbb{G}_{2,4} \times \mathbb{G}_{2,4}$. Furthermore, $\mathbb{G}_{1}=\eta_{123}^{-1}\left(\mathbb{T}^{(3)}\right)$. It follows that \mathbb{G}_{1} is a closed subset of \mathbb{G}. But we know that $\mathbb{S}^{(1)}=p\left(\mathbb{G}_{1}\right)$. This means that the set $\mathbb{S}^{(1)}$ is a closed subset of $\mathbb{S}_{s m}$. Moreover, the subsets

$$
\begin{aligned}
& \mathbb{G}_{2}=\eta_{123}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{145}^{-1}\left(\mathbb{T}^{(3)}\right), \\
& \mathbb{G}_{3}=\eta_{123}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{456}^{-1}\left(\mathbb{T}^{(3)}\right),
\end{aligned}
$$

are both closed subsets of $\mathbb{S}_{s m}$. Consequently, we get

$$
\begin{aligned}
& \mathbb{E}^{(2)}=p\left(\mathbb{G}_{2}\right), \\
& \mathbb{E}^{(3)}=p\left(\mathbb{G}_{3}\right),
\end{aligned}
$$

are closed subsets of $\mathbb{S}_{s m}$. Thus $\mathbb{S}^{(2)}$ is a closed subset of $\mathbb{S}_{s m}$ with two irreducible components, namely $\mathbb{E}^{(2)}$ and $\mathbb{E}^{(3)}$. According to Theorem 4.9 and Theorem 4.10, we know that both $\mathbb{E}^{(2)}$ and $\mathbb{E}^{(3)}$ have codimension 2 . Thus $\mathbb{S}^{(2)}$ has two irreducible components, namely $\mathbb{E}^{(2)}$ and $\mathbb{E}^{(3)}$ in $\mathbb{S}_{s m}$ with codimension 2 .

Lemma 4.3.4. Let

$$
\mathbb{K}^{(4)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(13,24,56)=\left\{P_{7}\right\} \text { and } l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}\right\}
$$

Then $\mathbb{K}^{(4)}$ is an irreducible subset of \mathbb{S}_{6} and $\operatorname{codim} \mathbb{K}^{(4)}=3$.

Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{C}_{s m} \times\left(\mathbb{P}^{2}\right)^{3}$ defined by

$$
\mathbb{L}_{1}:=\left\{\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right): l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}\right\}
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; P_{7}\right): x \in \mathbb{L}_{1} \text { and } P_{7} \in l_{13} \backslash\left\{P_{1}, P_{3}\right\}\right\} .
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{3}:=\left\{\left(y ; \kappa_{456}\right): y \in \mathbb{L}_{2} \text { and } P_{4} \in \mathscr{C}_{1} \cap l_{27} \text { and } P_{5}, P_{6} \in \mathscr{C}_{1}, l_{13} \cap l_{56}=\left\{P_{7}\right\}\right\}
$$

Then we have the projection mapping as in Figure 4.20.

Figure 4.20: Irreducibility of $\mathbb{K}^{(4)}$.

Let us consider the fiber of each projection in previous diagram (see Figure 4.21).
The surjectivity of p_{1} implies to the irreducibility of the fiber $p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)$ as a subset of \mathbb{L}_{1}. Moreover, we have $\operatorname{dim} p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)=2$. Since p_{1} has an irreducible target of dimension $5, \mathbb{L}_{1}$ is irreducible with dimension $5+2=7$. Furthermore, \mathbb{L}_{2} is an irreducible with $\operatorname{dim} \mathbb{L}_{2}=7+1=8$ since every fiber $p_{2}^{-1}\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right)$ has dimension 1 under the surjective map p_{2}.

Note that the fiber $p_{3}^{-1}\left(x ; P_{7}\right)$ is a subset of $\mathscr{C}_{1} \times \mathscr{C}_{1}$ and isomorphic to the set S, where $S:=\left\{\left(P_{5}, P_{6}\right) \in \mathscr{C}_{1} \times \mathscr{C}_{1}: P_{7} \in l_{56}\right\}$. Define the surjective map p_{5} as follows:

$$
p_{5}: S \longrightarrow \mathscr{C}_{1} \text { by }\left(P_{5}, P_{6}\right) \mapsto P_{5}
$$

We see that every fiber under the map p_{5} is a singleton set and hence $\operatorname{dim} S=$ 1. Therefore $\operatorname{dim} S=\operatorname{dim} p_{3}^{-1}\left(x ; P_{7}\right)=1$. Consequently, \mathbb{L}_{3} is irreducible with

Figure 4.21: $\mathbb{K}^{(4)}$ and configurations of members of the fibers.
dimension $8+1=9$. Finally, \mathbb{L}_{3} isomorphic to $\mathbb{K}^{(4)}$ via the projection map p_{4}. So $\mathbb{K}^{(4)}$ is an irreducible subset of \mathbb{S}_{6} with codim $\mathbb{K}^{(4)}=3$.

Theorem 4.11. $\mathbb{E}^{(4)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.

Proof. Let $\mathbb{K}:=\mathbb{K}^{(4)}$ be the set defined as in Lemma 4.3.4. Assume that $B_{1}:=$ $\psi^{-1}\left(\mathbb{K}^{(4)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(4)}=\gamma\left(B_{2}\right)$ where $\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{N}$, and $\psi:=\left.\Psi\right|_{M}$ (see Figure 4.12). Consequently, we have $\mathbb{E}^{(4)}=\gamma \circ \xi\left(B_{1}\right)$ which is a subset of $\mathbb{S}_{s m}$ (see Figure 4.22).

Figure 4.22: $\mathbb{E}^{(4)}=\gamma \circ \xi\left(B_{1}\right)$.

According to Equation (4.3.2), we have:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(4)}+15=9+15=24
$$

It follows that $\mathbb{E}^{(4)}=\gamma \circ \xi\left(B_{1}\right)$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(4)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}\left(b_{2}\right) \\
& =24-8=16, \text { where } b_{2}=\gamma^{-1}(x) \text { and } x \in \mathbb{E}^{(4)}
\end{aligned}
$$

Therefore we conclude that $\mathbb{E}^{(4)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.

Lemma 4.3.5. Let

$$
\mathbb{K}^{(6)}:=\left\{s=\kappa_{123456} \in \mathbb{S}_{6}: \wedge(14,23,56)=\left\{P_{7}\right\} \text { and } l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}\right\}
$$

Then $\mathbb{K}^{(6)}$ is an irreducible subset of \mathbb{S}_{6} with codim $\mathbb{K}^{(6)}=3$.

Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{C}_{s m} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{1}:=\left\{\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right): l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}\right\}
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; P_{4}\right): x \in \mathbb{L}_{1} \text { and } P_{4} \in \mathscr{C}_{1} \backslash\left\{P_{2}, P_{3}\right\}\right\}
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{3}:=\left\{\begin{array}{c}
\left(y ; P_{5}, P_{6}\right): \kappa_{123456} \in \mathbb{S}_{6}, y \in \mathbb{L}_{2} \text { and } P_{5}, P_{6} \in \mathscr{C}_{1} \\
\text { and } \wedge(14,23,56)=\left\{P_{7}\right\}
\end{array}\right\}
$$

Then we have the projections as in Figure 4.23.

$$
\begin{aligned}
& \left(y ; P_{5}, P_{6}\right) \longmapsto\left(x ; P_{4}\right) \longmapsto\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right) \longmapsto \longmapsto\left(\mathscr{C}_{1}\right)
\end{aligned}
$$

Figure 4.23: Irreducibility of $\mathbb{K}^{(6)}$.

Figure 4.24: $\mathbb{K}^{(6)}$ and configurations of members of the fibers.

Let us consider the fiber of each projection in previous diagram (see Figure 4.24). As in Lemma 4.3.4, the surjectivity of p_{1} implies to the irreducibility of the fiber
$p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)$ as a subset of \mathbb{L}_{1}. Moreover, we have $\operatorname{dim} p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)=2$. Since p_{2} has an irreducible target of dimension $5, \mathbb{L}_{1}$ is an irreducible with dimension $5+2=$ 7. Furthermore, \mathbb{L}_{2} is irreducible with $\operatorname{dim} \mathbb{L}_{2}=7+1=8$ because every fiber $p_{2}^{-1}\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right)$ has dimension 1 under the surjective map p_{2}.

Note that the fiber $p_{3}^{-1}\left(x ; P_{4}\right)$ consists of all points P_{5}, P_{6} on the non-singular conic \mathscr{C}_{1}, so that $P_{7} \in l_{56}$. More precisely, the fiber $p_{3}^{-1}\left(x ; P_{4}\right)$ is a subset of $\mathscr{C}_{1} \times \mathscr{C}_{1}$ isomorphic to the set S, where

$$
S:=\left\{\left(P_{5}, P_{6}\right) \in \mathscr{C}_{1} \times \mathscr{C}_{1}: P_{7} \in l_{56}\right\}
$$

Define the surjective map p_{5} as follows:

$$
p_{5}: S \longrightarrow \mathscr{C}_{1} \text { by }\left(P_{5}, P_{6}\right) \mapsto P_{5} .
$$

Now the fiber under the map p_{5} consists of one point, and hence it has dimension equal to 1. Thus $\operatorname{dim} S=\operatorname{dim} p_{3}^{-1}\left(x ; P_{4}\right)=1$. Consequently, \mathbb{L}_{3} is irreducible with dimension $8+1=9$. Finally, \mathbb{L}_{3} is isomorphic to $\mathbb{K}^{(6)}$ via the projection map p_{4}. So $\mathbb{K}^{(6)}$ is an irreducible subset of \mathbb{S}_{6} with $\operatorname{codim} \mathbb{K}^{(6)}=3$.

Theorem 4.12. $\mathbb{E}^{(6)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.

Proof. Let $\mathbb{K}:=\mathbb{K}^{(6)}$ be the set defined as in Lemma 4.3.5. Let us assume $B_{1}:=$ $\psi^{-1}\left(\mathbb{K}^{(6)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(6)}=\gamma\left(B_{2}\right)$ where $\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{B_{2}}$, and $\psi:=$ $\left.\Psi\right|_{B_{1}}$ (see the main diagram in Figure 4.12). Consequently, we have $\mathbb{E}^{(6)}=\gamma \circ \xi\left(B_{1}\right)$ which is a subset of $\mathbb{S}_{s m}$ (see Figure 4.25).

Figure 4.25: $\mathbb{E}^{(6)}=\gamma \circ \xi\left(B_{1}\right)$.

According to Equation (4.3.2), we have:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(6)}+15=9+15=24
$$

Since $\mathbb{E}^{(6)}=\gamma \circ \xi\left(B_{1}\right)$, it follows that $\mathbb{E}^{(6)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(6)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}(n) \\
& =24-8=16, \text { where } n=\gamma^{-1}(x) \text { and } x \in \mathbb{E}^{(6)} .
\end{aligned}
$$

Therefore we conclude that $\mathbb{E}^{(6)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.

Lemma 4.3.6. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and define

$$
\mathbb{K}^{(9)}:=\left\{\begin{array}{c}
s \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{8}\right\}, \wedge(15,24,36)=\left\{P_{7}\right\} \text { and } \\
l_{14} \text { tangent to } \mathscr{C}_{1} \text { at } P_{4}
\end{array}\right\} .
$$

Then $\mathbb{K}^{(9)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 3.

Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{1}:=\left\{\kappa_{1234}: \text { there is no three points in } \widehat{\kappa_{1234}} \text { on the same line }\right\} .
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; P_{7}\right): x \in \mathbb{L}_{1} \text { and } P_{7} \in l_{24} \backslash l_{23} \cup l_{14} \cup l_{13}\right\}
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{3}:=\left\{\begin{array}{c}
\left(y ; P_{5}, P_{6}\right): \kappa_{123456} \in \mathbb{S}_{6}, y \in \mathbb{L}_{2}, \wedge(15,24,36)=\left\{P_{7}\right\} \text { and } \\
l_{14} \text { tangent to } \mathscr{C}_{1} \text { at } P_{4}
\end{array}\right\} .
$$

Then we have the following projections (see Figure 4.26).
Now let us consider the fiber of each projection in the diagram (see Figure 4.27).

Figure 4.26: Irreducible components of $\mathbb{K}^{(9)}$.

Figure 4.27: $\mathbb{K}^{(9)}$ and configurations of members of the fibers.

It is evident that \mathbb{L}_{1} is an open subset of $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$. Thus $\operatorname{dim} \mathbb{L}_{1}=8$. Furthermore, the surjectivity of p_{1} implies the irreducibility of the fiber $p_{1}^{-1}\left(\kappa_{1234}\right)$ as a subset of \mathbb{L}_{2}. Moreover, we have $\operatorname{dim} p_{1}^{-1}\left(\kappa_{1234}\right)=1$. Consequently, \mathbb{L}_{2} is an irreducible with dimension equal to $8+1=9$.

More precisely, Let

$$
P_{1}=(1: 0: 1), P_{2}=(1: 1: 0), P_{3}=(-1: 1: 0), \text { and } P_{4}=(0: 0: 1) .
$$

Then

$$
\begin{aligned}
& l_{13}=\mathbb{V}\left(x_{0}+x_{1}+x_{2}\right), \\
& l_{14}=\mathbb{V}\left(x_{1}\right), \\
& l_{23}=\mathbb{V}\left(x_{2}\right), \\
& l_{24}=\mathbb{V}\left(x_{0}-x_{1}\right) .
\end{aligned}
$$

Note that $P_{7}=(\alpha: \alpha: 1) \in l_{24} \backslash l_{23} \cup l_{14} \cup l_{13}$ where $\alpha \in(k \backslash\{0\}) \cup\{\infty\}$. Therefore, except for finite number of values of α, the fiber $p_{2}^{-1}\left(\left(x ; P_{7}\right)\right)$ consists of two distinct points. It follows that $\operatorname{dim} p_{2}^{-1}\left(x ; P_{8}\right)=0$, and the set \mathbb{L}_{3} has dimension equal to 9 .

More precisely, we have

$$
\operatorname{dim} \mathbb{L}_{3}=\operatorname{dim} \mathbb{L}_{2}+0=9
$$

But \mathbb{L}_{3} isomorphic to $\mathbb{K}^{(9)}$ via the projection map p_{3}. It follows that $\mathbb{K}^{(9)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 3 .

Theorem 4.13. $\mathbb{E}^{(9)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 3.

Proof. First, Let $\mathbb{K}:=\mathbb{K}^{(9)}$ (see Lemma 4.3.6). Let us assume $B_{1}:=\psi^{-1}\left(\mathbb{K}^{(9)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(9)}=\gamma\left(B_{2}\right)$ where $\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{B_{2}}$, and $\psi:=\left.\Psi\right|_{B_{1}}$ (see the main diagram in Figure 4.12). Consider the diagram (see Figure 4.28).

Figure 4.28: $\mathbb{E}^{(9)}=\gamma \circ \xi\left(B_{1}\right)$.

According to Equation (4.3.2), we have:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(9)}+15=9+15=24
$$

Since $\mathbb{E}^{(9)}=\gamma \circ \xi\left(B_{1}\right)$, it follows that $\mathbb{E}^{(9)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(9)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}(n) \\
& =24-8=16, \text { where } n=\gamma^{-1}(x), x \in \mathbb{E}^{(9)}
\end{aligned}
$$

Corollary 4.15. $\mathbb{E}^{(4)}, \mathbb{E}^{(6)}$ and $\mathbb{E}^{(9)}$ are closed subset of $\mathbb{S}_{s m}$.

Proof. Let $\mathbb{L}_{\mathscr{S}}:=\left(l_{1}, \ldots, l_{27}\right)$ be the 27 lines on a non-singular cubic surface \mathscr{S} with coefficients $c(\mathscr{S})$. Define

$$
\begin{aligned}
\mathbb{G} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right): c \in \mathbb{S}_{s m}\right\} \subset \mathbb{S}_{s m} \times \mathbb{L}_{27}^{27}, \\
\mathbb{G}_{1} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \in \mathbb{G}: \lambda_{123}, \lambda_{145}, \lambda_{267} \in \mathbb{T}^{(3)}\right\} \subset \mathbb{G}, \\
\mathbb{G}_{2} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \in \mathbb{G}: \lambda_{123}, \lambda_{145}, \lambda_{678} \in \mathbb{T}^{(3)}\right\} \subset \mathbb{G}, \\
\mathbb{G}_{3} & :=\left\{\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \in \mathbb{G}: \lambda_{123}, \lambda_{456}, \lambda_{789} \in \mathbb{T}^{(3)}\right\} \subset \mathbb{G} .
\end{aligned}
$$

We know that $\mathbb{T}^{(3)} \subset \mathbb{G}_{2,4} \times \mathbb{G}_{2,4} \times \mathbb{G}_{2,4}$. Moreover, it is evident that the set

$$
\mathbb{G}^{*}:=\left\{\lambda_{12} \in \mathbb{G}_{2,4} \times \mathbb{G}_{2,4}: \wedge\left(\lambda_{12}\right) \neq \emptyset\right\}
$$

is closed subset of $\mathbb{G}_{2,4} \times \mathbb{G}_{2,4}$ (see [2] and [24]). Let

$$
\mathbb{G} \xrightarrow{p} \mathbb{S}_{s m}:\left(c(\mathscr{S}), \mathbb{L}_{\mathscr{S}}\right) \mapsto c(\mathscr{S})
$$

be the projection map, and consider the mappings in Figure 4.29.
Note that

$$
\mathbb{T}^{(3)}=\eta_{12}^{-1}\left(\mathbb{G}^{*}\right) \cap \eta_{13}^{-1}\left(\mathbb{G}^{*}\right) \cap \eta_{23}^{-1}\left(\mathbb{G}^{*}\right) \subset \mathbb{G}_{2,4} \times \mathbb{G}_{2,4} \times \mathbb{G}_{2,4} .
$$

Hence $\mathbb{T}^{(3)}$ is a closed subset of $\mathbb{G}_{2,4} \times \mathbb{G}_{2,4} \times \mathbb{G}_{2,4}$. Furthermore,

$$
\mathbb{G}_{1}=\eta_{123}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{145}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{267}^{-1}\left(\mathbb{T}^{(3)}\right) .
$$

Figure 4.29: $\mathbb{E}^{(4)}, \mathbb{E}^{(6)}$ and $\mathbb{E}^{(9)}$ are closed subsets of $\mathbb{S}_{s m}$.

So \mathbb{G}_{1} is closed subset of \mathbb{G}. Moreover, we have

$$
\begin{aligned}
& \mathbb{G}_{2}=\eta_{123}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{145}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{678}^{-1}\left(\mathbb{T}^{(3)}\right), \\
& \mathbb{G}_{3}=\eta_{123}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{456}^{-1}\left(\mathbb{T}^{(3)}\right) \cap \eta_{789}^{-1}\left(\mathbb{T}^{(3)}\right) .
\end{aligned}
$$

It follows that both \mathbb{G}_{2} and \mathbb{G}_{3} are closed subsets of \mathbb{G}. Finally, since

$$
\mathbb{E}^{(4)}=p\left(\mathbb{G}_{1}\right), \mathbb{E}^{(6)}=p\left(\mathbb{G}_{2}\right) \text { and } \mathbb{E}^{(9)}=p\left(\mathbb{G}_{3}\right)
$$

we have $\mathbb{E}^{(4)}, \mathbb{E}^{(6)}$ and $\mathbb{E}^{(9)}$ are closed subsets of $\mathbb{S}_{s m}$.

Lemma 4.3.7. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and define

$$
\mathbb{K}^{(10)}:=\left\{\begin{array}{c}
s \in \mathbb{S}_{6}: \wedge(12,34,56)=\left\{P_{7}\right\} ; \wedge(14,23,56)=\left\{P_{8}\right\} \text { and } \\
l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}
\end{array}\right\} .
$$

Then $\mathbb{K}^{(10)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 4 .

Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{C}_{s m} \times\left(\mathbb{P}^{2}\right)^{3}$ defined by

$$
\left.\mathbb{L}_{1}:=\left\{c\left(\mathscr{C}_{1}\right), \kappa_{123}\right): l_{12}, l_{13} \text { are tangents to } \mathscr{C}_{1} \text { at } P_{2}, P_{3} \text { respectively }\right\} .
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; P_{8}\right): x \in \mathbb{L}_{1} \text { and } P_{8} \in l_{23} \backslash\left\{P_{2}, P_{3}\right\}\right\} .
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times\left(\mathbb{P}^{2}\right)^{3}$ defined by

$$
\mathbb{L}_{3}:=\left\{\begin{array}{c}
\left(y ; \kappa_{456}\right): \kappa_{123456} \in \mathbb{S}_{6}, y \in \mathbb{L}_{2} \text { and } P_{5}, P_{6} \in \mathscr{C}_{1}, \wedge(23,56)=\left\{P_{8}\right\}, \\
\wedge(12,34,56) \neq \emptyset \text { and } \mathscr{C}_{1} \cap l_{18}=\left\{P_{4}\right\}
\end{array}\right\} .
$$

Let us consider the following projections (Figure 4.30).

Figure 4.30: Irreducible components of $\mathbb{K}^{(10)}$.

The fibers of each projection are illustrated in Figure 4.31.
As in Lemma 4.3.5, the surjectivity of p_{1} implies to the irreducibility of the fiber $p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)$ as a subset of \mathbb{L}_{1}. Moreover, we have $\operatorname{dim} p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)=2$. Since p_{2} has an irreducible target of dimension $5, \mathbb{L}_{1}$ is irreducible with dimension $5+2=7$. Furthermore, \mathbb{L}_{2} is an irreducible with $\operatorname{dim} \mathbb{L}_{2}=7+1=8$ because every fiber $p_{2}^{-1}\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right)$ has dimension 1 under the surjective map p_{2}.

Note that the fiber $p_{3}^{-1}\left(x ; P_{8}\right)$ consists of all points P_{5}, P_{6} on the non-singular conic \mathscr{C}_{1}, so that $P_{7} \in l_{56}$. More precisely, the fiber $p_{3}^{-1}\left(x ; P_{8}\right)$ is a subset of $\mathscr{C}_{1} \times \mathscr{C}_{1}$ isomorphic to the set S, where

$$
S:=\left\{\left(P_{5}, P_{6}\right) \in \mathscr{C}_{1} \times \mathscr{C}_{1}: P_{7} \in l_{56}\right\}=\left\{\left(P_{5}, P_{6}\right),\left(P_{6}, P_{5}\right)\right\} .
$$

Figure 4.31: $\mathbb{K}^{(10)}$ and configurations of members of the fibers.

Since S is finite, we get $\operatorname{dim} S=0=\operatorname{dim} p_{3}^{-1}\left(x ; P_{8}\right)$. Consequently, \mathbb{L}_{3} is irreducible with dimension $8+0=8$. Finally, \mathbb{L}_{3} isomorphic to $\mathbb{K}^{(10)}$ via the projection map p_{4}. So we conclude that $\mathbb{K}^{(10)}$ is irreducible subset of \mathbb{S}_{6} with codim $\mathbb{K}^{(10)}=4$.

Theorem 4.14. $\mathbb{E}^{(10)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 4.

Proof. Let $\mathbb{K}:=\mathbb{K}^{(10)}$ be the set defined as in Lemma 4.3.7. As in the proof of Theorem 4.11. Let us assume $B_{1}:=\psi^{-1}\left(\mathbb{K}^{(10)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(10)}=\gamma\left(B_{2}\right)$ where $\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{B_{2}}$, and $\psi:=\left.\Psi\right|_{B_{1}}$ (see the main diagram in Figure 4.12).

Then we have $\mathbb{E}^{(10)}=\gamma \circ \xi\left(B_{1}\right)$ which is a subset of $\mathbb{S}_{s m}$ (see Figure 4.32).

Figure 4.32: $\mathbb{E}^{(10)}=\gamma \circ \xi\left(B_{1}\right)$.

According to Equation (4.3.2), we have:

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(10)}+15=8+15=23
$$

Since $\mathbb{E}^{(10)}=\gamma \circ \xi\left(B_{1}\right)$, it follows that $\mathbb{E}^{(10)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(10)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}(n) \\
& =23-8=15, \text { where } n=\gamma^{-1}(x), x \in \mathbb{E}^{(10)} .
\end{aligned}
$$

Therefore we conclude that $\mathbb{E}^{(10)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 4.

Lemma 4.3.8. Let $s=\kappa_{123456} \in \mathbb{S}_{6}$ and define

$$
\mathbb{K}^{(18)}:=\left\{\begin{array}{c}
s \in \mathbb{S}_{6}: \wedge(15,24,36)=\left\{P_{7}\right\} ; \wedge(14,23,56)=\left\{P_{8}\right\} \text { and } \\
l_{12}, l_{13} \text { tangents to } \mathscr{C}_{1}
\end{array}\right\}
$$

Then $\mathbb{K}^{(18)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 4.

Proof. Let \mathbb{L}_{1} be the subset of $\mathbb{C}_{s m} \times\left(\mathbb{P}^{2}\right)^{3}$ defined by

$$
\left.\mathbb{L}_{1}:=\left\{c\left(\mathscr{C}_{1}\right), \kappa_{123}\right): l_{12}, l_{13} \text { are tangents to } \mathscr{C}_{1} \text { at } P_{2}, P_{3} \text { respectively }\right\} .
$$

Let \mathbb{L}_{2} be the subset of $\mathbb{L}_{1} \times \mathbb{P}^{2}$ defined by

$$
\mathbb{L}_{2}:=\left\{\left(x ; P_{8}\right): x \in \mathbb{L}_{1} \text { and } P_{8} \in l_{23} \backslash\left\{P_{2}, P_{3}\right\}\right\}
$$

Let \mathbb{L}_{3} be the subset of $\mathbb{L}_{2} \times\left(\mathbb{P}^{2}\right)^{3}$ defined by

Figure 4.33: Irreducible components of $\mathbb{K}^{(18)}$.

$$
\mathbb{L}_{3}:=\left\{\begin{array}{c}
\left(y ; \kappa_{456}\right): \kappa_{123456} \in \mathbb{S}_{6}, y \in \mathbb{L}_{2} \text { and } P_{5}, P_{6} \in \mathscr{C}_{1}, \wedge(23,56)=\left\{P_{8}\right\} \\
\wedge(15,24,36) \neq \emptyset \text { and } \mathscr{C}_{1} \cap l_{18}=\left\{P_{4}\right\}
\end{array}\right\}
$$

Let us consider the following projections (Figure 4.33):
As in Lemma 4.3.7, the surjectivity of p_{1} implies the irreducibility of the fiber $p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)$ as a subset of \mathbb{L}_{1}. Moreover, we have $\operatorname{dim} p_{1}^{-1}\left(c\left(\mathscr{C}_{1}\right)\right)=2$. Since p_{2} has an irreducible target of dimension $5, \mathbb{L}_{1}$ is irreducible with dimension $5+2=$ 7. Furthermore, \mathbb{L}_{2} is irreducible with $\operatorname{dim} \mathbb{L}_{2}=7+1=8$ because every fiber $p_{2}^{-1}\left(c\left(\mathscr{C}_{1}\right), \kappa_{123}\right)$ has dimension 1 under the surjective map p_{2}.

Note that the fiber $p_{3}^{-1}\left(x ; P_{8}\right)$ consists of all points P_{5}, P_{6} on the non-singular conic

$$
\mathscr{C}_{1}=\mathbb{V}\left(\alpha_{1} x_{0}^{2}+\alpha_{2} x_{1}^{2}+\alpha_{3} x_{2}^{2}+\alpha_{4} x_{0} x_{1}+\alpha_{5} x_{0} x_{2}+\alpha_{6} x_{1} x_{2}\right)
$$

so that $P_{5}, P_{6} \in \mathscr{C}_{1}$. First of all, we need to find the equation of the non-singular conic \mathscr{C}_{1} so that \mathscr{C}_{1} passing through $P_{2}, P_{3}, P_{4}, P_{5}, P_{6}$ and has two tangents l_{12}, l_{13} at P_{2}, P_{3} respectively. Now by change of coordinates, we can assume

$$
P_{1}=(0: 1: 0), P_{2}=(-1: 0: 1), P_{3}=(1: 0: 1), P_{4}=(0: 1: 1) .
$$

It is clear that $l_{12}=\mathbb{V}\left(x_{0}+x_{2}\right)$ and $l_{13}=\mathbb{V}\left(x_{0}-x_{2}\right)$. Being the curve \mathscr{C}_{1} passing through the points P_{2}, P_{3}, P_{4} implies $\alpha_{5}=0$ and $\alpha_{3}=-\alpha_{1}$. Furthermore, l_{12} and l_{13} being tangents to \mathscr{C}_{1} at P_{2}, P_{3} respectively implies that $\alpha_{1}=-\frac{1}{2}, \alpha_{3}=\frac{1}{2}, \alpha_{6}-\alpha_{4}=0$
and $\alpha_{6}+\alpha_{4}=0$. Thus $\alpha_{2}=-\alpha_{3}=\frac{1}{2}$ and $\alpha_{6}=\alpha_{4}=0$. It follows that

$$
\mathscr{C}_{1}=\mathbb{V}\left(x_{0}^{2}+x_{1}^{2}-x_{2}^{2}\right)
$$

By some algebraic computations, if we assume ξ is a cubic root of -1 then we can choose

$$
P_{5}=\left(1-\xi^{2}: 2 \xi: 1+\xi^{2}\right) \text { and } P_{6}=\left(\xi^{2}-1:-2 \xi: 1+\xi^{2}\right)
$$

or

$$
P_{5}=\left(1+\xi:-2 \xi^{2}: 1-\xi\right) \text { and } P_{6}=\left(-1-\xi: 2 \xi^{2}: 1-\xi\right) .
$$

The fiber $p_{3}^{-1}\left(x ; P_{8}\right)$ consists of two distinct points. It follows that $\operatorname{dim} p_{3}^{-1}\left(x ; P_{8}\right)=$ 0 , and the set \mathbb{L}_{3} has dimension equal to 8 .

More precisely, we have

$$
\operatorname{dim} \mathbb{L}_{3}=\operatorname{dim} \mathbb{L}_{2}+0=8
$$

But \mathbb{L}_{3} isomorphic to $\mathbb{K}^{(18)}$ via the projection map p_{4}. It follows that $\mathbb{K}^{(18)}$ has dimension equal 8. Therefore we conclude that $\mathbb{K}^{(18)}$ is an irreducible subset of \mathbb{S}_{6} with codimension equal 4. .

Theorem 4.15. $\mathbb{E}^{(18)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 4.

Proof. First, let $\mathbb{K}:=\mathbb{K}^{(18)}$ (see Lemma 4.3.8). Let us assume $B_{1}:=\psi^{-1}\left(\mathbb{K}^{(18)}\right)$, and $B_{2}:=\xi\left(B_{1}\right)$. Then $\mathbb{E}^{(18)}=\gamma\left(B_{2}\right)$ where $\xi:=\left.\Xi\right|_{B_{1}}, \gamma:=\left.\Gamma\right|_{B_{2}}$, and $\psi:=\left.\Psi\right|_{B_{1}}$ (see the main diagram in Figure 4.12). According to following diagram (see Figure 4.34) and Equation (4.3.2), we have

Figure 4.34: $\mathbb{E}^{(18)}=\gamma \circ \xi\left(B_{1}\right)$.

$$
\operatorname{dim} B_{1}=\operatorname{dim} \mathbb{K}^{(18)}+15=8+15=23 .
$$

Since $\mathbb{E}^{(18)}=\gamma \circ \xi\left(B_{1}\right)$, it follows that $\mathbb{E}^{(18)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with

$$
\begin{aligned}
\operatorname{dim} \mathbb{E}^{(18)} & =\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1} \circ \gamma^{-1}(x)=\operatorname{dim} B_{1}-\operatorname{dim} \xi^{-1}(n) \\
& =23-8=15, \text { where } n=\gamma^{-1}(x), x \in \mathbb{E}^{(18)}
\end{aligned}
$$

Thus $\mathbb{E}^{(18)}$ is an irreducible subset of $\mathbb{S}_{s m}$ with codimension 4.

Almost all the main results of this section are summarized in Table 4.25.
Table 4.25: Closed subsets of $\mathbb{S}_{s m}$ with their codimension

Closed subsets of $\mathbb{S}_{s m}$	Irreducible components	Codimension
$\mathbb{S}^{(1)}$	$\mathbb{S}^{(1)}$	1
$\mathbb{S}^{(2)}$	$\mathbb{E}^{(2)}$	2
	$\mathbb{E}^{(3)}$	2
$\mathbb{E}^{(4)}$	$\mathbb{E}^{(4)}$	3
$\mathbb{E}^{(6)}$	$\mathbb{E}^{(4)}$	3
$\mathbb{E}^{(9)}$	$\mathbb{E}^{(9)}$	3
$\mathbb{E}^{(10)}$	$\mathbb{E}^{(10)}$	4
$\mathbb{E}^{(18)}$	$\mathbb{E}^{(18)}$	4

Bibliography

[1] Enrique Arrondo, Subvarieties of grassmannians, Lecture notes series 10 (1996).
[2] Anton Betten, James WP Hirschfeld, and Fatma Karaoglu, Classification of cubic surfaces with twenty-seven lines over the finite field of order thirteen, European Journal of Mathematics 4 (2018), no. 1, 37-50.
[3] Jennifer Bonsangue, Visualizing cubic algebraic surfaces, Ph.D. thesis, 2011.
[4] Anita Buckley and Tomaž Košir, Determinantal representations of smooth cubic surfaces, Geometriae Dedicata 125 (2007), no. 1, 115-140.
[5] Daniel Bump, Algebraic geometry, World Scientific Publishing Company, 1998.
[6] Arthur Cayley, On the triple tangent planes of surfaces of the third order, The Cambridge and Dublin mathematical journal 4 (1849), 118-132.
[7] Alfred Clebsch, Die geometrie auf den flächen dritter ordnung., Journal für die reine und angewandte Mathematik 65 (1866), 359-380.
[8] David Cox, John Little, Donal O'Shea, and Moss Sweedler, Ideals, varieties, and algorithms, American Mathematical Monthly 101 (1994), no. 6, 582-586.
[9] Igor Dolgachev and Alexander Duncan, Automorphisms of cubic surfaces in positive characteristic, arXiv preprint arXiv:1712.01167 (2017).
[10] Igor V Dolgachev, Classical algebraic geometry: a modern view, Cambridge University Press, 2012.
[11] David Eisenbud and Joe Harris, The geometry of schemes \{Graduate Texts in Mathematics; 197\}, Springer-Verlag New York Incorporated, 2000.
[12] Sergey Finashin and Viatcheslav Kharlamov, Abundance of real lines on real projective hypersurfaces, International Mathematics Research Notices 2013 (2013), no. 16, 3639-3646.
[13] Robin Hartshorne, Graduate texts in mathematics, Algebraic Geometry 52 (1977).
[14] Archibald Henderson, The twenty-seven lines upon the cubic surface, Cambridge University Press, 2015.
[15] J. WP Hirschfeld, Projective geometries over finite fields. oxford mathematical monographs, Oxford University Press New York, 1998.
[16] James William Peter Hirschfeld et al., Finite projective spaces of three dimensions, Oxford University Press, 1985.
[17] James WP Hirschfeld, The double-six of lines over pg (3, 4), Journal of the Australian Mathematical Society 4 (1964), no. 1, 83-89.
[18] JWP Hirschfeld, Classical configurations over finite fields: I. the double-six and the cubic surface with 27 lines, Rend. Mat. e Appl 26 (1967), 115-152.
[19] Klaus Hulek, Elementary algebraic geometry, no. 20, American Mathematical Soc., 2003.
[20] Svante Janson, Resultant and discriminant of polynomials, Notes, September 22 (2007).
[21] Jesse Leo Kass and Kirsten Wickelgren, An arithmetic count of the lines on a smooth cubic surface, arXiv preprint arXiv:1708.01175 (2017).
[22] Ratnadha Kolhatkar, Grassmann varieties, Ph.D. thesis, McGill University Libraries, 2004.
[23] Yu I Manin, Cubic forms: algebra, geometry, arithmetic, vol. 4, Elsevier, 1986.
[24] David Mumford, Algebraic geometry i: complex projective varieties, Springer Science \& Business Media, 1995.
[25] Miles Reid, Undergraduate algebraic geometry, Cambridge University Press Cambridge, 1988.
[26] George Salmon, On the triple tangent planes to a surface of the third order, The Cambridge and Dublin mathematical journal 4 (1849), 252-260.
[27] Ludwig Schläfli, An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface, Quart. J. Math 2 (1858), 110-120.
[28] Beniamino Segre, The non-singular cubic surfaces: A new method of investigation with special reference to questions of reality, The Clarendon Press, 1942.
[29] Igor Rostislavovich Shafarevich and Miles Reid, Basic algebraic geometry, vol. 2, Springer, 1994.
[30] Karen E Smith, Lauri Kahanpää, Pekka Kekäläinen, William Treves, and Marc Chardin, An invitation to algebraic geometry, The Mathematical Intelligencer 26 (2004), no. 4, 71-72.
[31] Duco van Straten et al., A visual introduction to cubic surfaces using the computer software spicy, Algebra, Geometry and Software Systems, Springer, 2003, pp. 225-238.

Appendix A
 Main Algorithms

Algorithm 1 The classification of 5 -arcs in $P G(2, q)$

This algorithm is used for the classification of 5 -arcs in $P G(2, q)$. The algorithm's input is
projectively distinct 4 -arcs \mathcal{K} in $P G(2, q)$
and the algorithm's output is
projectively distinct 5 - $\operatorname{arcs} \mathcal{F}$ in $P G(2, q)$.

The algorithm proceeds in five stages.
Stage 1: For each 4-arc \mathcal{K}, calculate all bisecants $\overline{P_{i} P_{j}}$ of \mathcal{K}, where $i, j=1,2,3,4$.
Stage 2: For each 4-arc \mathcal{K}, calculate all points not on any bisecants of \mathcal{K}, namely $O(\mathcal{K})$.

Stage 3: For each 4 -arc \mathcal{K}, add one point from $O(\mathcal{K}) \backslash \mathcal{K}$ to \mathcal{K} in order to get 5 -arc. The number of 5 -arcs \mathcal{F} that produced in this stage is $\sum|O(\mathcal{K})|$ where the sum is taken over all $4-\operatorname{arcs} \mathcal{K}$.

Stage 4: For each 5 -arc \mathcal{F}, find the corresponding group of projectivities $G(\mathcal{F})$ (see the procedure used in Section 2.5).

Stage 5: Find the projectively distinct 5 -arcs in $P G(2, q)$. Two $5-\operatorname{arcs} \mathcal{F}_{1}$ and \mathcal{F}_{2} are projectively equivalent if and only if $G\left(\mathcal{F}_{1}\right) \cong G\left(\mathcal{F}_{2}\right)$.

Algorithm 2 The classification of 6 -arcs in $P G(2, q)$

This algorithm is used for the classification of 6 -arcs in $P G(2, q)$. The algorithm's input is
projectively distinct 5 -arcs \mathcal{F} in $P G(2, q)$
and the algorithm's output is
projectively distinct 6 - $\operatorname{arcs} \mathcal{S}$ in $P G(2, q)$.

The algorithm proceeds in five stages.
Stage 1: For each 5-arc \mathcal{F}, calculate all bisecants $\overline{P_{i} P_{j}}$ of \mathcal{F}, where $i, j=$ $1,2,3,4,5$.

Stage 2: For each 5 -arc \mathcal{F}, calculate all points not on any bisecants of \mathcal{F}, namely $O(\mathcal{F})$.

Stage 3: For each 5-arc \mathcal{F}, add one point from $O(\mathcal{F}) \backslash \mathcal{F}$ to \mathcal{F} in order to get 6 -arc. The number of 6 -arcs \mathcal{F} that produced in this stage is $\sum|O(\mathcal{F})|$ where the sum taken over all 5 -arcs \mathcal{F}.

Stage 4: For each 6-arc \mathcal{F}, find the corresponding group of projectivities $G(\mathcal{F})$ (see the procedure used in Section 2.5).

Stage 5: Find the projectively distinct 6 -arcs in $P G(2, q)$. Two 6 - $\operatorname{arcs} \mathcal{S}_{1}$ and \mathcal{S}_{2} are projectively equivalent if and only if $G\left(\mathcal{S}_{1}\right) \cong G\left(\mathcal{S}_{2}\right)$.

Algorithm 3 Blowing-up $P G(2, q)$ at six points in general position
This algorithm is used for the construction of the cubic surface with twentyseven lines in $P G(3, q)$ arising from a six points in general position in $P G(2, q)$. The algorithm's input is

$$
\mathcal{S}=6 \text {-arc not on a conic in } P G(2, q)
$$

and the algorithm's output is
$\mathscr{S}=$ cubic surface with twenty-seven lines in $P G(3, q)$ associated to the blowing-up of \mathcal{S}.

The algorithm proceeds in eight stages.
Stage 1: For each $6-\operatorname{arc} \mathcal{S}$, calculate six different conics \mathscr{C}_{j} through $\mathcal{S} \backslash P_{j}$, where $j=1, \ldots, 6$.

Stage 1: For each 6-arc \mathcal{S}, calculate six different conics \mathscr{C}_{j} through $\mathcal{S} \backslash P_{j}$, where $j=1, \ldots, 6$.

Stage 2: For each 6-arc \mathcal{S}, calculate 15 different bisecants $\overline{P_{i} P_{j}}$ of \mathcal{S}.
Stage 3: For each $5-\operatorname{arc} \mathcal{S}$, calculate 30 different cubic curves through \mathcal{S} of the form $\mathscr{C}_{j} \times \overline{P_{i} P_{j}}$.

Stage 4: For each 6 -arc \mathcal{S}, calculate 15 different cubic curves through \mathcal{S} of the form $\overline{P_{i} P_{j}} \times \overline{P_{k} P_{l}} \times \overline{P_{m} P_{n}}$.

Stage 5: For each 6-arc \mathcal{S}, fix a four linearly independent plane cubic curves as base curves. For example, for a 6 -arc
$\mathcal{S}_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{6}, \mathbf{3 3}\}$ in $\operatorname{PG}(2,19)$ we have

$$
\begin{array}{ll}
\omega_{1}=\mathbb{V}\left(\overline{P_{1} P_{3}} \times \mathscr{C}_{3}\right), & \omega_{1}^{\prime}=\mathbb{V}\left(\overline{P_{2} P_{3}} \times \mathscr{C}_{3}\right), \\
\omega_{2}=\mathbb{V}\left(\overline{P_{2} P_{6}} \times \mathscr{C}_{6}\right), & \omega_{2}^{\prime}=\mathbb{V}\left(\overline{P_{1} P_{3}} \times \overline{P_{2} P_{6}} \times \overline{P_{4} P_{5}}\right)
\end{array}
$$

Stage 6: For each 6 -arc \mathcal{S}, find the tritangent planes of the corresponding \mathcal{S} in $P G(3, q)$.

The tritangent plane $\left(c_{i j} c_{k l} c_{m n}\right)$ is the image of the cubic curve $\overline{P_{i} P_{j}} \times \overline{P_{k} P_{l}} \times \overline{P_{m} P_{n}}$ and the tritangent plane $\left(a_{i} b_{j} c_{i j}\right)$ is the image of the cubic curve $\mathscr{C}_{j} \times \overline{P_{i} P_{j}}$. Consider four base cubic plane curves, namely

$$
\begin{aligned}
& \omega_{1}=\mathbb{V}\left(W_{1}\right), \\
& \omega_{2}=\mathbb{V}\left(W_{2}\right), \\
& \omega_{3}=\mathbb{V}\left(W_{3}\right), \\
& \omega_{4}=\mathbb{V}\left(W_{4}\right),
\end{aligned}
$$

the four associated base tritangent planes can be written as follows:

$$
\begin{aligned}
\pi_{\omega_{1}} & =\mathbb{V}\left(\Pi_{W_{1}}\right), \\
\pi_{\omega_{2}} & =\mathbb{V}\left(\Pi_{W_{2}}\right), \\
\pi_{\omega_{3}} & =\mathbb{V}\left(\Pi_{W_{3}}\right), \\
\pi_{\omega_{4}} & =\mathbb{V}\left(\Pi_{W_{4}}\right),
\end{aligned}
$$

where $\Pi_{W_{j}}$ is a linear form defining $\pi_{\omega_{j}}$ and corresponding to the cubic form W_{j} defining ω_{j}. Every tritangent plane on \mathscr{S} can be written as a linear combination of $\Pi_{W_{1}}, \Pi_{W_{2}}, \Pi_{W_{3}}$ and $\Pi_{W_{4}}$. In this stage, 45 tritangent planes have to be calculated as the linear combination of $\Pi_{W_{1}}, \Pi_{W_{2}}, \Pi_{W_{3}}$ and $\Pi_{W_{4}}$.

Stage 7: For each 6 -arc \mathcal{S}, find the trihedral pairs of the corresponding nonsingular cubic surface \mathscr{S} in $\operatorname{PG}(3, q)$.

Pick a trihedral pair related to four base tritangent planes $\mathbb{V}\left(y_{0}\right), \mathbb{V}\left(y_{1}\right), \mathbb{V}\left(y_{2}\right), \mathbb{V}\left(y_{3}\right)$ and four base cubic curves $\omega_{1}, \omega_{2}, \omega_{1}^{\prime}, \omega_{2}^{\prime}$. For example, for the non-singular cubic surface $\mathscr{S}^{(10)}(19)$ that corresponds to the 6 -arc

$$
\mathcal{S}_{3}=\{\mathbf{1}, 2,3,4,6,33\}
$$

in $P G(2,19)$ we have the following trihedral pairs

$$
T_{12,36}, T_{13,26}, T_{34,52} \text { and } T_{14,56} .
$$

Pick one of them, namely

$$
\begin{aligned}
T_{12,36}: & a_{1}
\end{aligned} b_{3} \quad c_{13} \rightsquigarrow \omega_{1}=\mathbb{V}\left(W_{1}\right) \leftrightarrow \pi_{\omega_{1}}=\mathbb{V}\left(\Pi_{W_{1}}\right), ~\left(\begin{array}{lllll}
& \rightsquigarrow \omega_{2}=\mathbb{V}\left(W_{2}\right) \leftrightarrow \pi_{\omega_{2}}=\mathbb{V}\left(\Pi_{W_{2}}\right) \\
& b_{6} & a_{2} & c_{26} & \\
& c_{16} & c_{23} & c_{45} & \rightsquigarrow \omega_{3}=\mathbb{V}\left(W_{3}\right) \leftrightarrow \pi_{\omega_{3}}=\mathbb{V}\left(\Pi_{W_{3}}\right) \\
& \vdots & \vdots & \vdots \\
& \omega_{3}^{\prime} & \omega_{1}^{\prime} & \omega_{2}^{\prime}
\end{array}\right.
$$

where

$$
\begin{aligned}
& \omega_{3}^{\prime}=\mathbb{V}\left(W_{3}^{\prime}\right) \leftrightarrow \pi_{\omega_{3}^{\prime}}=\mathbb{V}\left(\Pi_{W_{3}^{\prime}}\right) \\
& \omega_{1}^{\prime}=\mathbb{V}\left(W_{1}^{\prime}\right) \leftrightarrow \pi_{\omega_{1}^{\prime}}=\mathbb{V}\left(\Pi_{W_{1}^{\prime}}\right) \\
& \omega_{2}^{\prime}=\mathbb{V}\left(W_{2}^{\prime}\right) \leftrightarrow \pi_{\omega_{2}^{\prime}}=\mathbb{V}\left(\Pi_{W_{2}^{\prime}}\right)
\end{aligned}
$$

Stage 8: For each 6 -arc \mathcal{S}, find the equation of the corresponding cubic surface with 27 lines \mathscr{S} where

$$
\begin{equation*}
\mathscr{S}=\mathbb{V}\left(\Pi_{W_{1}} \Pi_{W_{2}} \Pi_{W_{3}}-\lambda \Pi_{W_{1}^{\prime}} \Pi_{W_{2}^{\prime}} \Pi_{W_{3}^{\prime}}\right) \text { and } \lambda \in G F(q) \backslash\{0\} . \tag{A.0.1}
\end{equation*}
$$

It is known that every cubic surface can be written in 120 ways in the form above. The parameter λ can be found in the following way. The Clebsch map is surjective; that is, every point in $P G(2, q)$ is an image of points on the cubic surface \mathscr{S}. Now, pick any point not lying on any of the 4 base plane cubic, namely $P^{*}\left(x_{0}, x_{1}, x_{2}\right)$. It follows that

$$
\left(\omega_{1}\left(P^{*}\right): \omega_{2}\left(P^{*}\right): \omega_{1}^{\prime}\left(P^{*}\right): \omega_{2}^{\prime}\left(P^{*}\right)\right) \mapsto\left(y_{0}: y_{1}: y_{2}: y_{3}\right)
$$

where $\omega_{1}, \omega_{2}, \omega_{1}^{\prime}, \omega_{2}^{\prime}$ are the base cubic curves in the plane passing through the 6 -arc \mathcal{S}. Consequently, the parameter λ is found by evaluating $\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ in Equation

Algorithm $4 e$-invariants of a smooth cubic surface with 27 lines
This algorithm is used for the classification of cubic surfaces with twenty-seven lines in $P G(3, q)$ up to e-invariants. The algorithm's input is

$$
\mathscr{S}=\text { a cubic surface with twenty-seven lines in } P G(3, q) \text { associated to the }
$$

blowing-up of a 6 -arcs $\mathcal{S}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}$ not on a conic in $\operatorname{PG}(2, q)$.
and the algorithm's output is

$$
e \text {-invariants which correspond to } \mathscr{S} \text {, namely } e_{3}, e_{2}, e_{1}, e_{0} \text {. }
$$

The algorithm proceeds in three stages.
Stage 1: For each a cubic surface \mathscr{S} associated to the blowing-up of a 6 -arcs

$$
\mathcal{S}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}\right\}
$$

not on a conic in $P G(2, q)$, find all possible Eckardt points.

If $C_{j} \cap \overline{P_{i} P_{j}}=\left\{P_{i}\right\}$ then
print " $E_{i j}$ is an Eckardt point";
if else $\overline{P_{i} P_{j}} \cap \overline{P_{k} P_{l}} \cap \overline{P_{m} P_{n}}=\{P\}$ where $P \in P G(2, q)$ then
print " $E_{i j, k l, m n}$ is an Eckardt point";
else print failed;
end

In this stage we get the number of Eckardt points, namely e_{3}.
Stage 2: For each cubic surface \mathscr{S}, calculate e-invariants which correspond to \mathscr{S}, namely $e_{3}, e_{2}, e_{1}, e_{0}$ where

$$
\begin{aligned}
& e_{2}=135-3 e_{3}, \\
& e_{1}=27(q-4)-e_{2}, \\
& e_{0}=(q-10)^{2}-e_{3}+9
\end{aligned}
$$

Stage 3: Calculate the distinct non-singular cubic surfaces with 27 lines up to e-invariants in $P G(3, q)$.

Two cubic surfaces \mathscr{S}_{1} and \mathscr{S}_{2} are equivalent if and only if they have the same e-invariants.

Algorithm 5 Elliptic and hyperbolic lines on a non-singular cubic surface
This algorithm is used to determine the elliptic and hyperbolic lines on a nonsingular cubic surface with 27 lines in $P G(3, q)$. The algorithm's input is
$\mathscr{S}=$ a cubic surface with twenty-seven lines in $P G(3, q)$.
and the algorithm's output is

$$
\text { elliptic and hyperbolic lines on } \mathscr{S} \text {. }
$$

The algorithm proceeds in three stages.
Stage 1: Find all the 27 lines on $\mathscr{S}=\mathbb{V}(f)$.
Stage 2: For each line l on \mathscr{S}, namely

$$
l=\left\{\left(a_{0} \lambda+b_{0} \mu: a_{1} \lambda+b_{1} \mu: a_{2} \lambda+b_{2} \mu: a_{3} \lambda+a_{3} \mu\right):(\lambda: \mu) \in P G(2, q)\right\}
$$

pick a basis $\beta_{3}, \beta_{2}, \beta_{1}, \beta_{0}$ for $G F(q)^{\oplus 4}$ so that

$$
\begin{aligned}
& \beta_{3}=\left(a_{0}, a_{1}, a_{2}, a_{3}\right), \\
& \beta_{2}=\left(b_{0}, b_{1}, b_{2}, b_{3}\right) .
\end{aligned}
$$

Stage 3: For each line l on \mathscr{S}, compute the resultant of the partial derivative of the homogeneous polynomial defining \mathscr{S} with respect to β_{0} and β_{1}, and then restrict the result to the line l :

$$
R_{0,1}=R\left(\left.\frac{\partial f}{\partial \beta_{0}}\right|_{l},\left.\frac{\partial f}{\partial \beta_{1}}\right|_{l}\right) .
$$

If $R_{0,1}=\zeta^{2}(\bmod q)$ for some $\zeta \in G F(q)$ then print " l is a hyperbolic line";
else if $R_{0,1} \neq \zeta^{2}(\bmod q)$ for all $\zeta \in G F(q)$ then
print " l is an elliptic line";
end if

