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A B S T R A C T   

The study of oil-field reservoir heterogeneity is an important task in the oil industry as it affects waterflooding, 
developing injection production systems, and optimizing hydrocarbon production. In this study, vertical reser
voir heterogeneity was quantified using the Lorenz statistical index, empirical Bayesian kriging, and seven 
machine-learning classifiers (Classification and Regression Trees, Boosted Regression Trees, Random Forest, 
Naïve Bayes, Logistic Regression, K-Nearest Neighbors, and Support Vector Machine with three different kernels 
(linear, radial, and polynomial) under the geographic information system platform. The main pay zone of the 
Zubair Formation in the Rumaila oil field from southern Iraq was used as a case study. The degree of hetero
geneity was first quantified using the Lorenz index, and a borehole-heterogeneity inventory location map was 
prepared according to the determined Lorenz index. Information about five factors influencing the heterogeneity, 
namely, porosity, permeability, volume of shale, reservoir-unit thickness, and depth to the top of reservoir unit, 
was collected based on available cores, nuclear magnetic resonance log, gamma-ray logs, and drilling- 
information logs. Factors from these sources were interpolated to show their spatial distribution using the 
empirical Bayesian kriging technique. The relationship between the borehole inventory map of vertical het
erogeneity and the five factors was examined using the seven machine-learning classifiers. Two statistical-error 
measures, namely, accuracy and Cohen’s kappa, were used to verify the performance of the classifiers in both 
training and testing stages. Results proved that Random Forest, Support Vector Machine with radial kernel 
function, and Logistic Regression were the best models. The probabilities of the best performance models were 
then interpolated and classified into five heterogeneity zones: Very low, low, moderate, high, and very high. The 
high-very high classes for each of these models approximately occupy 60% of the oil field and are mainly 
distributed in the middle and north of the field, whereas the other classes encompass about 40% of the field and 
mostly occur in the south. This distribution of classes is most likely related to the distribution and complexity of 
former depositional environments.   

1. Introduction 

Heterogeneity in petroleum reservoir studies is a concept used to 
define the variability within a particular space and/or time, and at a 
given scale, of a single or combination of petrophysical properties (Fitch 
et al., 2015). Heterogeneity is an intrinsic, pervasive, and critical 
property that is highly dependent on observational scales and the 
measurement methods used (Frazer et al., 2005). Reservoir 

heterogeneity occurs at different levels and scales from micrometers to 
hundreds of meters (Morad et al., 2010) and is commonly related to 
variations in depositional facies, diagenesis, and structural features (e. 
g., the presence of fractures and faults) (De Ros, 1998). Heterogeneity 
plays a major role in controlling fluid flow and recovery processes and 
thus has a vital influence on reservoir performance. For the imple
mentation of a successful reservoir-development strategy, the prediction 
of reservoir heterogeneity is of primary importance. A quantitative 
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assessment of heterogeneity is crucial for predicting reservoir perfor
mance during waterflooding, developing an effective injection produc
tion system, and optimizing hydrocarbon production (Handhal et al., 
2020b). There are two essential types of heterogeneity: vertical and 
horizontal (i.e., depth and lateral variations, respectively). In the pe
troleum industry, geostatistical approaches are widely used to describe 
the two types of heterogeneity (Ahmed, 2018). For defining vertical 
heterogeneity, two statistical parameters are frequently used: the Lorenz 
coefficient Lk and the Dykstra-Parsons permeability variation Vk (Tiab 
and Donaldson, 2015), and geostatistical interpolation techniques 
(deterministic and stochastic) can be effectively used to assess the lateral 
heterogeneity through interpolation, as well as to extrapolate the rock 
and fluid characteristics of unsampled locations. 

Geospatial analysis is an important GIS technique used to extract 
new information by integrating information from multiple, separate and 
disparate sources by applying a complex set of spatial operators. Geo
spatial analysis goes beyond simple mapping to allow research into the 
characteristics of places and their interrelationships. This extensive 
range of methods involving in geospatial analysis expands the capacity 
to address challenging spatial questions and lends new perspectives to 
decision-making. The process of integrating geospatial analysis, geo
statistics, knowledge-driven, and data-driven advanced modeling tech
niques has opened broad prospects for studying different stochastic and 
deterministic petroleum-related science and engineering problems. 
Analysis of hydrocarbon potential and productivity (Amiri et al., 2015; 
Alshayef et al., 2019; Handhal et al., 2020b; Ren et al., 2020), discovery 
of new hydrocarbon resources (Bingham et al., 2012), and tracing paths 
of hydrocarbon migration (Liu et al., 2008; Rudini et al., 2018) are ex
amples of the successful application of spatial analysis in 
petroleum-related fields. 

In this regard, Liu et al. (2008) presented GIS-based models for 
searching the pathways of secondary hydrocarbon migration by 
considering the geologic mechanisms. The proposed algorithms were 
effectively implemented in the modeling of secondary pathways in the 
northern Songliao Basin, northeast China. The findings of modeling 
agreed well with the drilling data and demonstrated the resilience of the 
approaches suggested. Bingham et al. (2012) proposed a GIS-based 
multicriteria (MCE) method for petroleum exploration based on fuzzy 
logic to produce a favorability map of potential exploration areas and a 
case study from northern south America was taken to show the potential 
new exploration areas in the Cretaceous-Paleogene and 
Miocene-Holocene. They concluded that it is possible to use the sug
gested GIS approach in an exploratory scenario and to other locations of 
the world. Amiri et al. (2015) mapped the hydrocarbon resource po
tential using GIS-based two statistical models namely, frequency ratio 
and evidential belief functions. A case study in the Red River petroleum 
system in the Canadian Williston Basin in southeastern Saskatchewan of 
Canada is selected to assess the feasibility of the proposed modeling 
techniques. Model results are evaluated by success rate and prediction 
rate efficiency curves. The resulting hydrocarbon potential map has led 
to the delineation of high-potential areas which cover approximately 
15% of the study area. Rudini et al. (2018) modeled the migration of 
hydrocarbon using GIS and used the top of Group E horizon of the 
northeast Malay basin as an illustrated example. They utilized the 
seismic data, well log data, lithology, and simple overlay technique to 
map the hydrocarbon migration and showed that the produced map is 
well-matched with previous studies which use advanced technology to 
carry out the analysis. Alshayef et al. (2019) have tried to use the 
geophysical, geological, and remote sensing data incorporated into 
ArcGIS software to delineate promising zones of hydrocarbon potential 
in the Masila oil field, Yamen. They used lineaments as the main theme 
to produce a map of hydrocarbon potentiality beside the seismic, grav
ity, magnetic, and geological map of the considered basin. The resulting 
potential map of their study was classified into four zones: low, mod
erate, high, and very high and verified with oil fields and existing pro
ductive wells which showed a positive correlation. Their main 

conclusion confirmed that spatial models are significant for hydrocar
bon potential resource planning and management. Handhal et al. (2019) 
used three machine learning models, specifically, support vector ma
chine, naïve Bayes, and random forest with GIS to delineate the tar mat 
occurrence in the upper part of Zubari Formation at Rumila oil field, 
Iraq. Applying the models suggested that the random forest was the best 
performance model followed by a support vector machine with a poly
nomial kernel. Their findings confirmed that GIS-based machine 
learning models offer an easy and costly way of avoiding the drilling 
wells where the tar is expected to occur. Ren et al. (2020) applied a 
Bayesian network algorithm to predict the spatial distribution of oil and 
gas resources and used the first member of Dongying Formation of 
Nanpu Depression Bohai Bay Basin, China as a case study. They utilized 
222 exploratory wells, basin simulation, seismic interpretation, and 
other auxiliary data to train the Tree Augmented Bayesian Network 
structure and mapped the hydrocarbon-bearing posterior probability of 
the reservoir member. Results of this study showed that the Bayesian 
network captures essential spatial characteristics of hydrocarbon accu
mulations and accurately predicts the spatial distribution of oil and gas 
resources, which can help to manage the reservoir units and initiate 
successful drilling programs. Handhal et al. (2020b) developed a 
GIS-based hybridization of Shannon’s entropy and the technique for 
order preference by similarity to an ideal solution (TOPSIS) model to 
map the hydrocarbon productivity of the middle reservoir unit of the 
Nahr Umr Formation in the Luhais oil field in southern Iraq. They 
quantified the heterogeneity of the reservoir unit using the Lorenz co
efficient and Dykstra-Parsons permeability indices and used the hy
draulic flow unit concept to overcome the heterogeneity problem in the 
spatial model formulation. They utilized the ordinary kriging technique 
to interpolate the seven selected petrophysical properties (porosity, unit 
thickness, volume of shale, bulk volume of water, total water saturation, 
hydrocarbon saturation, and bulk volume of hydrocarbon) and entropy 
information theory to assign weights of these properties to use in the 
TOPSIS model to demarcate the hydrocarbon productivity across the 
reservoir unit. The major conclusion of their study revealed that the 
spatial model offers a simple approach to map hydrocarbon productivity 
that can be successfully used by reservoir management, geologist, and 
reservoir engineers for drilling new productive boreholes with the least 
effort and expense. 

From a review of previous studies, it can be said that there is no study 
so far to study the spatial distribution of vertical heterogeneity using GIS 
and machine learning-based techniques. Therefore, in this study, the 
spatial distribution of vertical heterogeneity of the DJ unit of the main 
pay zone of the Zubair Formation (Fig. 1), southern Iraq, were modeled 
using the statistical Lorenz coefficient (Lk), the Empirical Bayesian 
kriging interpolation (EBK) technique, and advanced master machine- 
learning algorithms. The objective was to map the spatial distribution 
of vertical gross heterogeneity across the field to better manage the 
reservoir unit by modeling the relationship between the Lk as the target 
variable and five reservoir-related properties, namely, the depth to 
reservoir unit top, the average of unit thickness, and the average of 
porosity, permeability, and volume of shale as predictors. 

2. Study area location and geological setting 

Rumaila is a supergiant oil field found in 1953 by Basrah Petroleum 
Company, situated 50 km west of the city of Basrah and 30 km west of 
Zubair oil field in southern Iraq (Fig. 2). It covers an area of 1600 km2 

and represents an 80-km-long, north-south anticline, extending from the 
Iraqi-Kuwait border in the south into the West Qurna oilfield to the 
north. The topography of the field is almost smooth, sloping gently from 
about 70 m above mean sea level in the south to near sea level in the 
north. The field is composed of two domes (north and south). It is a 
gentle sloping longitudinal anticline and is stretching around 83 km long 
and 12 km wide. In June 1959, the north Rumaila structure was drilled 
as a northern step-out of the Rumaila axis to delineate the northern 
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plunge and explore the depth of carbonate prospects in the Upper 
Cretaceous Mishrif Formation, as well as for investigating the lower 
sandstone member of Zubair Formation below the main pay zone. The 
North Rumaila structure is approximately 42 to 11 km in width and 
gently slopes southwards to form a saddle that separates it from the 
south Rumaila structure (Al-Ansari, 1993) (Fig. 2). From a geological 
point of view, the Rumaila oilfield is located in the Mesopotamian Plain, 
an area of subsiding, Quaternary, terrestrial, floodplain sedimentation 
that sits atop the Mesopotamian foredeep (Fouad, 2010). At one time, 
the present foredeep area was part of a stable shelf area on the north
eastern margin of the Arabian plate, and from Permian to Late Creta
ceous time, the area was a passive-margin, epicontinental basin, which 
experienced periods of rifting and subsidence, related to the opening of 
the Neo-Tethys Sea (Jassim and Goff, 2006). By Late Cretaceous time, 
closure of the Neo-Tethys had begun with major thrusting of ophiolites 
and deep-water sediments against the western margin of the Arabian 
plate, at which time the Mesopotamian epicontinental basin became a 
distal part of the Zagros foreland basin (Fouad, 2010; Fouad and Sissa
kian, 2011; Jassim and Goff, 2006). Closure of the Neo-Tethys continues 
to this day with the collision of the Arabian and Eurasian (Iranian) plates 
with the Mesopotamian and Persian Gulf basins representing terrestrial 
and marine remnants, respectively, of the Zagros foreland basin (Fouad 
and Sissakian, 2011). Hence, the Mesopotamian foredeep is an unstable, 
actively subsiding area with mainly subsurface structures, including 
folds, faults, and diapiric structures. Two of these faults, the 
northeast-southwest, Takadid-Qurna and Al-Batin faults are reactivated 

Precambrian transverse faults that define the Zubair fault block or 
subzone of the Mesopotamian basin (Jassim and Goff, 2006) (Fig. 2), in 
which the Rumaila oilfield is situated. The Rumaila oilfield and others in 
the area, formed over a series of north-south-oriented, Infracambrian rift 
basins containing salt, which were remobilized by east-west compres
sion during Tertiary collision of the Arabian and Eurasian (Iranian) 
plates (Jassim and Goff, 2006; Fouad, 2010; Fouad and Sissakian, 2011). 

The stratigraphic column from the Rumaila field represents sedi
mentary rocks, ranging in age from Late Jurassic to Recent (Jaffar, 2018) 
and mainly comprises of cycles of clastic, carbonate and evaporitic rocks 
(Fig. 1). The most significant hydrocarbon system in this stratigraphic 
column is the Early Cretaceous–Miocene petroleum system. In this pe
troleum system, the Sulaiy and Yamama formations represent source 
rocks; the Tanuma, Shranish, and Rus formations form the sealing rocks; 
and the Yamama, Zubair, Nahr Umr, and Mishrif formations represent 
the reservoir rocks (Fig. 1). (Aqrawi et al., 2010). The Zubair Formation 
contains the most significant Lower Cretaceous cycle in Iraq, and it is 
primarily composed of fluvio-deltaic and marine sandstones (Fig. 1), 
which are Hauterivian-early Aptian in age (Bellen et al., 1959). The 
average thickness of the formation is 425 m, and the contact of the 
formation with adjacent formations is mostly gradational. It is overlain 
by Shuaiba Formation (limestone and dolomite) and is underlain by 
Ratawi Formation (interbedded limestones and shales). In type locality 
from the Zubair subzone, the formation is divided into five units: the 
upper shale member, the upper sandstone member (the main reservoir 
or main pay), the middle shale member, the lower sandstone member, 

Fig. 1. Stratigraphic column of North Rumaila oil field (after Handhal et al., 2019, and Elsevier, License No. 4970940455936, Dec. 16, 2020).  
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and the lower shale member (Owen and Nasr, 1958). The present study 
focuses on the upper sandstone member of the Zubair Formation, which 
is located at an average depth of approximately 3150 m below mean sea 
level. It consists of mainly sandstones with some interbedded shales. The 
total thickness of the reservoir is about 145 m, and it contains three 
reservoir units, namely AB, DJ, and LN from top to bottom, separated by 
two isolating units C and K (Figs. 1 and 3). The smallest and most 
widespread reservoir unit is the AB Unit, whose thickness ranges from 
2.8 to 14 m and mainly consists of sandstone with thin layers or lenses of 
silt or shale. The percentage of sand typically increases toward western 
parts of the field. Unit C is an isolating unit between sandstone units AB 
and DJ and mainly consists of shale and siltstone; its thickness ranges 

from 3 to 8 m and increases toward eastern and northern parts of the 
field. The thickest reservoir unit, the DJ unit, is about 46–66 m thick and 
consists of sandstone interspersed between two layers of siltstone. 
Because of its very good reservoir characteristics, it represents the main 
part of the reservoir in the upper sandstone member (the main pay). In 
contrast, the K unit represents a barrier between DJ and LN units, and 
the lithology of the unit changes from siltstone at the top and along the 
western margin of the structure to the shale and silty shale along the 
northern and eastern margins of the field; its thickness ranges from 3 to 
9 m. The K unit decreases in thickness in the southern, western, and 
southwestern parts of the field. The thickness of the LN unit ranges from 
30 to 53 m and represents sandstone with interbedded layers and lenses 

Fig. 2. Study area relative to other oilfields and transverse fault zones in the Zubair subzone of the Mesopotamian foredeep basin.  
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Fig. 3. The main members of Zubair Formation in the North Rumaila oil field, along with their gamma-ray, porosity-input, saturation, porosity and lithologic log 
characteristics. 
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of shaly siltstone and shale, which are greater in number than those 
found in the DJ unit. The siltstone and shale content of the LN unit often 
increases towards the base of the unit, reflecting its proximity to the 
underlying middle shale member. The percentage of sand in the LN unit 
increases toward the western margin of the structure. 

3. Methodology 

In mapping the gross spatial vertical heterogeneity of the DJ reser
voir unit, six steps were followed (Fig. 4): (i) Collecting available core 
porosity and permeability data from 26 boreholes in the DJ unit, nuclear 
magnetic resonance (NMR) data from five boreholes, the well-drilling 
information from 58 boreholes, and gamma-ray logs from 58 bore
holes; (ii) using porosity and permeability data, the degree of hetero
geneity was calculated using the Lorenz coefficient Lk; (iii) preparing 
borehole-heterogeneity inventory map based on the calculated Lk by 
assigning 0 (homogenous) for boreholes having Lk < 0.5 and 1 (het
erogeneous) for boreholes having Lk > 0.5; the total number of assigned 
boreholes was then divided into two sets after rebalancing classes, 
because the number of 0-coded points was much lower than 1-coded 
points with a 0.2/0.8 ratio: 70% for training and 30% of data for 
testing the models used; (iv) based on the available data, five factors 
were selected as influencing factors affecting the heterogeneity of the 
reservoir units, namely, the average porosity, permeability, volume of 
shale, unit thickness, and depth to the top of the reservoir unit; these five 
factors were initially interpolated using the Bayesian kriging technique 
to reveal their spatial distribution throughout the study area; (v) the 
relationships between borehole location (as the dependent variable; 
response) and the factors influencing heterogeneity were modeled using 
seven machine-learning algorithms, namely, (Classification and 

Regression Trees [CART], Boosted Regression Trees [BRT], and Random 
Forest [RF], Naïve Bayes [NB], Logistic Regression [LR], K-Nearest 
Neighbors [KNN], and Support Vector Machine [SVM] with three 
different kernels (linear, radial, and polynomial); two error-measuring 
statistics, specifically, the accuracy and Cohen’s kappa statistics were 
used to assess the models performance in both training and testing 
stages, and (vii) using the three best performance models, the proba
bility of heterogeneity were estimated and mapped for the unit reser
voir. A detailed description of these steps is outlined below. 

4. Material and methods 

4.1. Data used 

The φ (fraction) and k (md) core data from the 26 boreholes were 
used in this study to calculate the degree of heterogeneity of the reser
voir units using the LK method. The total number of core data used in this 
study was 1553. A statistical summary of the core data used is presented 
in Table 1, and the histograms of these parameters are shown in Fig. 5. 
Besides core data, there are five boreholes, namely R-227z, R-514, R- 
564, R-508, and R-518, which have only NMR-log data and 
conventional-log data. The k values for these boreholes were calculated 
using the Schlumberger-Doll-Research (SDR) model according to the 
following equation (Yarmohammadi et al., 2020): 

k=C1 × φm1 × Tn1
2lm (1)  

where φ is the total porosity (%), T2lm (ms) is the logarithmic mean of 
NMR T2 spectra, and m, n, and C are statistical parameters from the 
model. 

To investigate the relationship between the log(k), φ, and Vsh, 

Fig. 4. Steps adapted in this study for mapping gross heterogeneity of the DJ reservoir unit.  
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correlation and regression analyses of three wells, namely, R-083, R- 
508, and R-013 that distribute at the northern, middle, and southern 
parts of the oil field, was implemented (Table 2). 

4.2. Degree of heterogeneity calculation and borehole heterogeneity 
inventory map 

Lk is a statistical measure of heterogeneity calculated by plotting the 
cumulative flow capacity (a product of the average permeability and 
reservoir unit thickness) on the y-axis against the cumulative storage 
capacity (a product of average porosity and thickness for the same 
reservoir unit) on the x-axis (Handhal et al., 2020b). The Lk value varies 
from 0 to 1, and the reservoir will have a uniform distribution of 
permeability (entirely homogeneous) if Lk = 0, but if Lk = 1, the reser
voir is deemed to be entirely heterogeneous (Tiab and Donaldson, 
2015). After calculating Lk from the available data (from core and NMR 
logs) (see Table 3 and Fig. 6), the boreholes were classified into two 
groups: those having Lk < 0.5 and those having Lk > 0.5. Boreholes that 
have Lk < 0.5, were assigned a 0 code (homogeneous), whereas bore
holes that have Lk > 0.5 were assigned 1 code (heterogeneous). These 
codes were then used in the classification problem solved in this study to 
reveal the probability of spatial heterogeneity in the studied reservoir 
unit. The number of boreholes with a 0 code is much lower than the 
number of boreholes with a 1 code (the proportion is 0.2/0.8) (Table 3). 
In machine learning, this difference is referred to as class imbalance, and 
such a class imbalance has been found to have a major adverse effect on 
training machine-learning classifiers (Japkowicz and Stephen, 2002). 
An imbalance like this influences both convergences during the training 
phase and the generalization of a model on a test set (Buda et al., 2018). 
Methods to cope with this imbalance for master machine-learning 
classifiers are well established (Chawla, 2009; Mazurowski et al., 
2008). The most consistent and popular techniques are the use of sam
pling methods and these methods operate on the data itself (rather than 

Table 1 
Statistical summary of φ (fraction) and k (md) for the available core and NMR log data.  

Parameter N Min. Max. Mean St. Dev. Cv (%) Skewness 

φ (core) 1553 0.001 0.286 0.174 0.056 32.33 − 0.90 
φ (NMR) 1577 0.008 0.298 0.141 0.014 29.53 0.20 
k (core) 1553 0.000 6405 384.4 644.4 167.6 3.75 
k (NMR) 1577 0.000 5568 280.3 731.6 261.05 4.06 

N: number of measurements; St. Dev.: standard deviation; Cv: coefficient of variation. 

Fig. 5. Histograms of porosity and log of permeability from core- (upper) and NMR-derived logs (lower).  

Table 2 
Regression and correlation results.  

Well 
No. 

Log(k) vs. φ Regression 
Equation 

Log(k) vs. φ 
and Vsh 

Regression Equation 

R- 
013 

R2 = 0.685 
(strong) 

Log(k) =
− 1.271 +
17.95φ 

R2 = 0.741 
(strong) 

Log(k) = -0.427 +
14.47φ-5.79 Vsh 

R- 
508 

R2 = 0.446 
(weak) 

Log(k) =
-1.451 +
19.54φ 

R2 = 0.605 
(moderate) 

Log(k) = = 0.470 +
14.41φ-4.24Vsh 

R- 
083 

R2 = 0.618 
(moderate) 

Log(k) =
-1.901 +
15.53φ 

R2 = 0.626 
(moderate) 

Log(k) = = -1.993 +
15.39φ+1.70Vsh  

Correlation table 

Well No. Correlation Coefficient (r) 

R-013  Log(k) φ 
φ 0.828  
Vsh − 0.660 − 0.560 

R-508  Log(k) φ 
φ 0.668  
Vsh − 0.634 − 0.403 

R-083  Log(k) φ 
φ 0.786  
Vsh 0.152 0.076  
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Table 3 
Lk coefficients for the used boreholes.  

Borehole k (md) φ Lk Status Borehole k (md) φ Lk Status 

R-05 254.2 0.138 0.580 1 R-078 98.1 0.162 0.768 1 
R-08 510.4 0.197 0.400 0 R-083 52.0 0.160 0.735 1 
R-011 191.1 0.168 0.344 0 R-084 501.5 0.159 0.720 1 
R-013 510.3 0.199 0.440 0 R-085 146.2 0.158 0.590 1 
R-017 422.5 0.187 0.550 1 R-091 477.5 0.197 0.510 1 
R-019 205.1 0.139 0.570 1 R-093 252.7 0.159 0.570 1 
R-026 148.0 0.171 0.570 1 R-110 667.1 0.177 0.460 0 
R-028 197.7 0.158 0.740 1 R-115 447.2 0.187 0.340 0 
R-029 311.4 0.174 0.510 1 R-118 984.9 0.169 0.560 1 
R-033 190.6 0.179 0.540 1 R-141 23.1 0.157 0.760 1 
R-036 762.6 0.182 0.600 1 R-227Z 241.5 0.145 0.590 1 
R-051 294.4 0.184 0.640 1 R-508 29.8 0.109 0.640 1 
R-056 324.9 0.175 0.590 1 R-514 74.1 0.130 0.580 1 
R-062 589.5 0.193 0.555 1 R-518 855.4 0.150 0.570 1 
R-063 784.8 0.197 0.410 0 R-564 45.3 0.208 0.700 1 
R-068 193.8 0.193 0.605 1      

0 means homogeneous; 1 means heterogeneous. 

Fig. 6. Lorenz coefficient Lk for selected boreholes across the oil field.  

A.M. Handhal et al.                                                                                                                                                                                                                            



Journal of Petroleum Science and Engineering 208 (2022) 109482

9

the model) to increase its balance. In general, these methods are struc
tured to use a process that adjusts an imbalanced dataset to a balanced 
one. This adjustment happens by modifying the scale of the original 
dataset to insure the same balancing ratio (Al-Abadi and Alsamaani, 
2020; Handhal et al., 2019). The options available for adjustment are 
oversampling, undersampling, both (over and under), synthetic data 
generation, and cost-sensitive learning. The class balance is also 
answered at the level of the classifier itself. In such instances, the al
gorithms are updated by, for example, introducing various weights to 
misclassify examples from different classes (Zhou and Liu, 2005) or 
directly changing the probabilities of the prior class (Lawrence et al., 
1998). In this study, the “both” scheme was used so that the minority 
and majority classes are oversampled (with replacement) and under
sampled (without replacement), respectively. For the class-unbalance 
issue in this study, we used the ROSE package in R statistical software. 
By trial-and-error procedure, the number of examples was optimized to 
60 (30 for boreholes having a homogeneous code and 30 for boreholes 
with a heterogeneous code). Finally, the balanced dataset was randomly 
partitioned into two sets: training and testing. Seventy percent (70%) of 
the data was used for training the seven machine-learning models, 
whereas the remaining (30%) was used for validating the models. 

4.3. Factors affecting heterogeneity 

In this study and depending on data available in the first place and 
the nature of the problem-solving, five factors were taken into consid
eration to model the spatial distribution of heterogeneity: the average of 
φ, k, and volume of shale (Vsh), in addition to depth to the top of 
reservoir unit and reservoir unit thickness. It is well known that reser
voir heterogeneity, a measure of spatial porosity/permeability varia
tion, is a lithology property, resulting from a combination of 
sedimentary and diagenetic processes. To reveal the spatial distribution 
of φ and k, EBK interpolation techniques were used in this study. EBK is a 
special kind of stochastic kriging technique, which utilizes a linear- 
estimation procedure to estimate a value at unsampled locations. In 
principle, the technique assumes that the value at the unsampled loca
tion is estimated by (Kelkar et al., 2002): 

X*(uo
→)=

∑n

i=1
λiX(ui

→) (2)  

where X*(uo
→
) and X(ui

→
)are the estimated value at the unsampled loca

tion and the value at the neighboring location, respectively; ui
→ and λi is 

the weight assigned to the neighboring value. 
In simple words, kriging uses the spatial-variance model to estimate 

the variable in locations where there are no values for this variable, 
based on the measured values at neighboring locations, and it takes into 
account the covariance function between the known and unknown data 
(Al-Mudhafar, 2019). The purpose of the estimation procedure is to 
estimate the weights allocated to the individual points in the neigh
borhood. The spatial relationship between locations without samples 
and the neighboring sample values, as well as the relationship among 
the neighboring values, depends on these weights. These relationships 
are obtained from the modeling of the variogram (Rivoirard, 2005). The 
downside to kriging is the neglecting of uncertainty in variogram pa
rameters (sill, range, and nugget) when building the covariance func
tion. Therefore, EBK has been proposed to account for parameter 
uncertainty among the variogram parameters (Al-Mudhafar, 2019; 
Al-Mudhafar and Hakim, 2015). In EBK, the variogram parameters are 
calculated automatically by a process of subsetting and simulation 
(Krivoruchko, 2011). The semivariogram parameters in EBK are calcu
lated using restricted maximum likelihood, unlike other kriging 
methods which use weighted least squares. The input data is first 
divided into overlapping subsets of a given size (the default is 100 points 
per subset in the Geostatistical extension of ArcGIS software used here to 
interpolate process), Semivariograms are calculated in each subset in the 

following way (Gribov and Krivoruchko, 2020): (i) The data in the 
subset is used to build a semivariogram. (ii) New data is unconditionally 
simulated at each of the input positions in the subset using this semi
variogram as a model. (iii) The simulated data is used to create a new 
semivariogram. (iv) The steps 2 and 3 are repeated for a specified 
number of times. The semivariogram calculated in phase 1 is used to 
simulate a new set of data at the input locations in each repetition, and 
the simulated data is then used to estimate a new semivariogram. For a 
given distance h, EBK of ArcMap GIS Geostatistical extension supports 
three semivariograms: Power (y(h) = Nugget + b|h|α, Linear y(h) =

Nugget + b|h|, and Thin Plate Spline y(h) = Nugget + b
⃒
⃒
⃒h2

⃒
⃒
⃒*ln(|h|). The 

nugget and slope (b) must be positive and the power α must be between 
0.25 and 1.75. These three models do not have a rang or sill parameter 
because the functions have not upper bound (Krivoruchko, 2011). EBK 
also offers different normal transformation to modify the skewed normal 
properties with the choice of two base distribution: Empirical and log 
Empirical. Instead of using an inherent random function, a simple 
kriging model is used when the transformation is implemented. The 
parameter distribution shift to Nugget, Sill, and Range as a result of 
these modification (Krivoruchko, 2011). The math behind EBK can be 
found elsewhere (e.g., Diggle and Lophaven, 2006; Nowak et al., 2010). 

The interpolated surfaces of φ and k using EBK are shown in Fig. 7a 
and b. The Geostatistics package from ESRI ArcGIS 10.7 was used to 
interpolate these petrophysical properties in the study area. The semi
variogram analyses for the used factors were shown in Table 4. We used 
the root mean squared error (RMSE) as an error statistic to select the best 
performance model. It is mathematically defined as (Li et al., 2020): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − xi)

2

√

(3)  

where yi and xi are the simulated and observed values, respectively. The 
smaller the value of this statistic, the better performance of the model is. 

The other factors used in the analysis include Vsh, the depth to the top 
of reservoir unit, and unit thickness. These variables were investigated 
to establish a statistical proxy relationship which can be used for pre
diction of reservoir heterogeneity where direct observation of hetero
geneity is not possible. The Vsh was estimated using data from gamma- 
ray logs available from the 58 boreholes in the study area. Data for 
reservoir unit thickness were gathered from drilling-information logs for 
the same boreholes used to calculate Vsh. The interpolated surfaces for 
Vsh and unit thickness were also generated by EBK using the Geo
statistics tool in ArcGIS 10.7 software (Fig. 7c and d). The depth to the 
top of the reservoir unit was digitized from a hard copy of this parameter 
from other work (e.g., Almalikee and Al-Najm, 2019; Handhal et al., 
2020b; Jaffar and Abdulnaby, 2018), Fig. 7e. 

For the φ and k (the major factors affecting heterogeneity), the 
arithmetic and geometric means of factors were used to quantify the 
effect of averaging on the interpolated surfaces (Table 3) while the 
arithmetic average of Vsh and reservoir unit factors were used to produce 
the interpolated surfaces of these factors. 

4.4. Machine-learning classifiers 

4.4.1. CART 
CART is a term invented by Leo Breiman (Breiman et al., 1984) to 

refer to decision-tree (DT) algorithms that can be used for classification 
and regression modeling problems. It is a binary, recursive, partitioning 
procedure capable of processing continuous and nominal attributes as 
targets and predictors (Wu and Kumar, 2009). CART constructs a pre
dictive model by splitting the data in the root node into two “children,” 
and each of the children is split into “grandchildren” in turn. Trees are 
grown to full size without use of a stopping rule; when no more splits are 
possible due to lack of data, the tree-growing process ceases (Al-Abadi 
et al., 2019; Wu and Kumar, 2009). The full tree is then pruned back to 
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the root through the cost-complexity pruning process. The next split to 
be pruned is the one that least contributes to the overall output of the 
tree on training data. The mechanism of CART that produces an accurate 
predictive model depends on building a sequence of complex and 
overlapping trees rather than producing a single tree. By assessing the 
predictive performance of each tree in the pruning sequence based on 
independent test data, the preferred “right-sized” tree is determined. 
The CART is attractive because it models data in a way that is easy to 
visualize and interpret; the data used in the CART model can be of any 
type (numeric, binary, categorical, etc.); resistance to outliers is 
inherent; the handling of missing data is automatic; class balancing is 
automatic; and cost-sensitive, learning, dynamic-feature construction 

and probability-tree estimation are allowed (Aertsen et al., 2010; Brei
man et al., 1984; Wu and Kumar, 2009). 

4.4.2. BRT 
BRT is an ensemble of powerful learning strategies aimed at 

enhancing a single model’s efficiency by fitting and integrating multiple 
models for prediction (Elith et al., 2008). BRT incorporates the strength 
of two algorithms, regression trees and boosting, to build a predictive 
model. Regression trees are models that relate a response to their pre
dictors by recursive binary splits, whereas boosting is a strategy to 
combine the output of many “weak learners” into a powerful “com
mittee” (Hastie et al., 2009). The outcome is an additive regression 

Fig. 7. Interpolated surfaces of factors affecting heterogeneity: (a) porosity (b) permeability (c) volume of shale (d) DJ unit thickness, and (e) depth to the top of 
DJ unit. 
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model trained in a forward, stage-wise manner. The major advantage of 
BRT compared to other decision tree models is its ability to deal with 
different types of data (numeric, binary, categorical, etc.) and not be 
affected by the missing data. Also, the data used as predictors to build a 
BRT model do not need to transform, standardize, or deleting the out
liers (Al-Abadi and Al-Najar, 2020). BRT is also distinguished by its 
ability to easily fit non-linear models in addition to accounting for the 
effects of interactions among the predictors (Elith et al., 2008). 

4.4.3. RF 
RF is an ensemble, supervised, learning algorithm that combines the 

concept of DT and bagging to solve both regression and classification 
problems (Breiman, 2001). Bagging is a technique for producing mul
tiple training data by resampling with the replacement of the original 
training set (Carranza et al., 2020). Bagging generates several DTs from 
resampled data and combines the predicted values through averaging 
and voting. During bagging, 1/3 of the data that are not utilized during 
tree construction, referred to as out-of-bag (OOB) observations, are used 
as test data to evaluate the misclassification-error rate and estimate 
predictive accuracy. The RF algorithm has the intrinsic potential to 
measure predictor importance by determining how far the prediction 
error increases when OOB observations are permuted for the predictor 
while other predictors remain unchanged. The RF is also capable of 
handling missing values, resistance to overfitting, and large datasets 
with higher dimensionality (Handhal et al., 2020a). 

4.4.4. NB 
The NB is a family of simple probabilistic algorithms based on Baye’s 

theorem with strong independence assumptions between the features 
(Shmueli et al., 2017). NB has numerous advantages, including ease of 
design and construction, requires no sophisticated estimate of iterative 
parameters, and robustness to irrelevant feature and noise (Soria et al., 
2011).. The main weakness of NB lies in the assumption that the factors 
involved in model construction must be independent of each other; 
however, if there are factors dependent on each other, a large number of 
incorrect classifications may occur (Pham et al., 2017). 

4.4.5. SVM 
SVM is a supervised machine learning technique designed to solve 

both classification and regression problems. It seeks to find a hyperplane 
that best divides a dataset into distinguished classes. A hyperplane is a 
line that linearly separates a dataset (Pal and Mather, 2005). Support 
vectors, on the other hand, are the data points located close to the hy
perplane. They are critical elements of the SVM as removing these points 
dramatically changing the position of the dividing hyperplane. The 
margin is the distance between the hyperplane and the support vectors. 
The SVM algorithm chooses a hyperplane with the greatest possible 
margin between the hyperplane and any point within the training 
dataset, and thus the new data could be classified correctly (Vapnik and 
Chervonenkis, 1974). In case of difficulty to define a clear hyperplane, 
the two-dimensional data is converted to a three-dimension through 
kernelling concept and the hyperplane turns into a plane. The dataset is 
continually mapped into higher and higher dimensions until a hyper
plane can be formed for optimal segregate. The selection of kernel 
function and its parameters is crucial for successful application of SVM 
(Al-Mayahi et al., 2021). There are different types of kernel functions 

Table 4 
Variogram analysis of the EBK for the considered factors (bold refers to the best model).  

Factor average Semivariogram 

without transformation With transformation 

Model RMSE Empirical RMSE Log Empirical RMSE 

φ (Arithmetic) Linear 0.02261 Exponential 0.02222 Exponential 0.02223 
Power 0.02283 Exponential detrend 0.02147 Exponential detrend 0.02149 
Thin plate spline 0.02092 Whitte 0.02210 Whitte 0.02215   

Whitte detrend 0.02220 Whitte detrend 0.02214   
K-Bessel 0.02199 K-Bessel 0.02197   
K-Bessel detrend 0.02124 K-Bessel detrend 0.02121 

φ (Geometric) Linear 0.02155 Exponential 0.02178 Exponential 0.02184 
Power 0.02174 Exponential detrend 0.02113 Exponential detrend 0.02104 
Thin plate spline 0.02092 Whitte 0.02153 Whitte 0.02158   

Whitte detrend 0.02091 Whitte detrend 0.20957   
K-Bessel 0.02126 K-Bessel 0.02129   
K-Bessel detrend 0.02075 K-Bessel detrend 0.02077 

K (Arithmetic) Linear 260.91 Exponential 258.63 Exponential 259.34 
Power 260.37 Exponential detrend 242.01 Exponential detrend 248.60 
Thin plate spline 270.96 Whitte 257.36 Whitte 257.44   

Whitte detrend 242.15 Whitte detrend 248.72   
K-Bessel 255.18 K-Bessel 255.67   
K-Bessel detrend 242.53 K-Bessel detrend 249.37 

K (Geometric) Linear 79.93 Exponential 78.78 Exponential 78.88 
Power 78.55 Exponential detrend 73.15 Exponential detrend 75.09 
Thin plate spline 83.00 Whitte 77.37 Whitte 76.92   

Whitte detrend 74.03 Whitte detrend 74.95   
K-Bessel 76.01 K-Bessel 77.07   
K-Bessel detrend 73.14 K-Bessel detrend 74.44 

Vsh (Arithmetic) Linear 0.0021 Exponential 0.0025 Exponential 0.0025 
Power 0.0018 Exponential detrend 0.0019 Exponential detrend 0.0018 
Thin plate spline 0.0020 Whitte 0.0021 Whitte 0.0021   

Whitte detrend 0.0019 Whitte detrend 0.0018   
K-Bessel 0.0019 K-Bessel 0.0018   
K-Bessel detrend 0.0019 K-Bessel detrend 0.0017 

Unit thickness (Arithmetic) Linear 4.213 Exponential 4.137 Exponential 4.129 
Power 4.221 Exponential detrend 3.795 Exponential detrend 3.762 
Thin plate spline 4.787 Whitte 4.145 Whitte 4.148   

Whitte detrend 3.794 Whitte detrend 3.762   
K-Bessel 4.161 K-Bessel 4.137   
K-Bessel detrend 3.806 K-Bessel detrend 3.771  
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and their choice depends mostly on the nature and features of the 
examined phenomena (Arabgol et al., 2016). In this study, three kernel 
functions were selected: linear, radial, and polynomial. The math behind 
SVM can be elsewhere (Vapnik, 2013). 

4.4.6. KNN 
KNN is a non-parametrically supervised algorithm that can be used 

for both classification and regression problems. The KNN uses “similar” 
example in the training data to predict a new case. These “neighbors” are 
then used to predict the new instance by voting (for classification 
problem) or averaging (for regression) (Handhal et al., 2020a). Its 
simplicity, lake of parametric assumption, and robustness to noisy 
training data are the main advantage of this technique. 

4.4.7. LR 
LR is a classification algorithm that is used where the response var

iable has two only two possible outcomes (dichotomous variable) 
(Al-Abadi and Al-Najar, 2020). The idea behind this technique is to find 
a relationship between features and probability of particular outcome. 
The data used to build LR model do not need to be normally distributed 
and can be continuous, categorial, or both (Lee and Sambath, 2006). The 
algorithm of LR applies maximum likelihood estimation after trans
forming the dependent variable into a logit variable (Bai et al., 2010). 
The LR generates the coefficient of a formula to predict a logit trans
formation of the probability of the presence of the characteristic of 
interest. 

4.5. Model performance evaluation 

To evaluate the prediction accuracy of the classifiers used in this 
study, two statistical measures were used: accuracy and Cohen’s kappa. 
Accuracy is the proportion of observations that are correctly classified. It 
is calculated as: 

Accuracy=
TP + TN

TP + TN + FB + FN
(4)  

where TP is the number of boreholes predicted as positive (heteroge
neous) that turn out to be positive, TN is the number of boreholes pre
dicted as negative (homogeneous) that turn out to be negative, FP is the 
number of boreholes predicted as positive that turn out to be negative, 
and FN is the number of boreholes predicted as negative that turn out to 
be positive. 

Cohen’s kappa is a measure used to investigate the inter-rater reli
ability or agreement between two raters (Al-Abadi and Alsamaani, 
2020). It can be calculated as: 

k =
π0 − πe

1 − π0
(5)  

where π0 is an observational probability of agreement, and πe is a hy
pothetical expected probability of agreement under an appropriate set of 
baseline constraints, such as total independence of observer classifica
tions (Landis and Koch, 1977). The predictive model is said to be slight if 
k is between 0.01 and 0.20, fair if k is between 0.21 and 0.40, moderate 
if k is between 0.41 and 0.60, substantial if k is between 0.61 and 0.80, 
and an almost perfect if k is between 0.80 and 1.00. 

4.6. Software used for implementing classifiers 

The three machine-learning models used in this study were imple
mented using the Caret package (Kuhn, 2008) in R software. Caret is a 
group of functions that aim to streamline the predictive 
model-development process. Caret offers many tools for data splitting, 
pre-processing, feature selection, model tuning, variable importance 
evaluation, and many others. 

5. Results and discussion 

5.1. Data used 

The values of core φ data range from 0.001 to 0.283 with an average 
of 0.174, 0.056 standard deviation, and 32.33% coefficient of variation. 
In contrast, the core k values vary from 0 to 6405 md with an average of 
384.4, 644.4 standard deviation, and 167.6% coefficient of variation. 
Overall, both parameters are skewed, but φ exhibits less variation than 
k. The probability distributions of φ and log(k) are approximately 
normal (Fig. 5). The estimated φ values from the NMR log data are be
tween 0.008 and 0.298 with an average of 0.298 and a standard devi
ation equal to 0.017. The coefficient of variation is 29.53%. Concerning 
k values derived from the SDR model, the range of these values is from 
0 to 5568 with an average of 280.3 m. The standard deviation and co
efficient of variation are 731.6 and 261.05%, respectively. The proba
bility distributions of φ and log(k) are also approximately normal 
(Fig. 5). The estimated k values from the SDR model indicate an 
acceptable fit with the k data obtained from the core laboratory 
(Table 1). 

Results of regression and correlation analyses (Table 2) proved that 
there is a strong positive relationship between log(k) and φ (correlation 
of determination equal to 0.68) that improved by the addition of Vsh as a 
factor influencing the k distribution (R2 = 0.74) (multiple-regression 
model). This hold true for the reservoir unit’s homogeneous interval in 
the southern portion of the oil field, where the R-013 well is located. The 
correlation between log(k) and Vsh is negative, implying that as Vsh in
creases, k decreases. The connection between log(k) and φ and Vsh is 
weak to moderate in the central and northern portions of the oil field, 
where the R-508 and R-083 wells are located. In general, the relation
ship between log(k) and φ is positive, whereas the relationship between 
log(k) and Vsh is negative, indicating that the spatial k and φ distribu
tion of a sedimentary unit can be used to spatially predict vertical het
erogeneity of a reservoir unit in the study area. 

5.2. Select the best variogram 

From Table 4, it is obvious that thin plate spline semivariogram model 
for the arithmetic φ give the best performance model with lowest RMSE 
(equal to 0.02092) compared with other semivariograms (with and 
without transformation). On the other hand, the K-Bessel detrend 
(empirical transformed semivariogram) is the best one to simulate the k 
geometric mean across the reservoir unit with RMSE equal to 73.14. In 
the case of Vsh, the best model was log Empirical k-Bessel detrend with 
RMSE equal to 0.0017. The other models were good too either without 
and with the transformation process. Finally, both log Empirical expo
nential detrend and Whitte detrend are suitable to represent the semi
variogram of the DJ unit reservoir thickness with RMSE equal to 3.762 
for both models. 

5.3. Spatial distribution of factors affecting heterogeneity 

Through the spatial distribution of the average φ values in the field 
(Fig. 7a), it is clear that the φ in southern parts of the study area is 
generally greater than the φ values in the rest of the field. Smaller values 
of this petrophysical parameter generally appear in the middle, and 
moderate values generally occur in the northern parts of the field. In 
contrast, high k values (Fig. 7b) were recorded in the southern parts of 
the reservoir unit, and low values appear to the north. Moderate k values 
generally occupy the middle parts of the field. For the Vsh values, they 
show a different spatial distribution to that of φ and k. The Vsh distri
bution in the study area (Fig. 7c) shows a different pattern for the dis
tribution of φ and k, as the volume of shale increases from south to 
north. This distribution of Vsh reflects the effect of this factor on both φ 
and k, which in turn reduces the values of these two petrophysical pa
rameters. The thickness of the reservoir unit (Fig. 7d) generally increases 
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from north to south with moderate thickness values occurring in the 
middle of the field. Finally, as the Rumaila oil field is an anticline, the 
high depths to the reservoir top appear on the flanks of the fold, and low 
depths to the top of the reservoir appear along the fold axis (Fig. 7e). 

5.4. Training and validating classifiers 

The training results of the seven machine classifiers using in this 
study, in terms of accuracy and Cohen’s kappa, were presented in 
Table 5. The random-search technique was used to optimize the 
hyperparameters of each classifier. From Table 5, the RF classifier 
showed the highest accuracy (0.991), followed by SVM-radial (0.983), 
BRT (0.960), LR (0.955), and CART (0.944). The other classifiers are 
performed well too in the training stage (accuracy >0.80). In terms of 
Cohen’s kappa, all classifiers had almost perfect performance (>0.8), 
except KNN, Naïve Bayes, and SVM-polynomial which had substantial 
performance (between 0.61 and 0.8). The best performance of the 
models in terms of Cohen’s kappa is RF (0.970) followed by SVM-radial 
(0.966), SVM-Linear (0.915), BRT (0.912), LR (0.911), and CART 
(0.880). Investigating the importance of variables for the tree-based 
classifiers (CART, BRT, and RF) proved that the most important fac
tors in building the classifier models were Vsh, k, and φ (Fig. 8). The less 
important factors were unit thickness and depth to the top of the 
reservoir unit. Overall, all factors play a role in controlling the distri
bution of heterogeneity across the oil field. After training the classifiers 
was successful, the test dataset was passed to each classifier, and the 
results were compared (Table 5). The highest classification accuracy 
also belonged to RF (0.982), followed by SVM-radial (0.966), LR 
(0.944), BRT (0.865), CART (0.825), and Naïve Bayes (0.820). The 
lowest classification accuracy belonged to SVM-polynomial (0.730) and 
KNN (0.761). In terms of Cohen’s kappa, the almost perfect models were 
RF (0.962), followed by SVM-radial (0.960), LR (0.881), and SVM-linear 
(0.880). The CART, BRT, and Naïve Bayes were substantial significance 
and the KNN and Naïve Bayes were moderate performance models. 

Examine the results (Table 5) proved that RF, SVM-radial, and LR 
performed much better than others in both training and testing stages 
phases. Therefore, the findings of these models were chosen to show the 
spatial heterogeneity of the DJ unit in the study area. 

5.5. Mapping the probability of spatial heterogeneity 

The probability values of the three classifiers (RF, SVM-radial, and 
LR) for training and testing phases were exported to ArcGIS 10.7 soft
ware, interpolated using EBK, and then visualized using five classes: 
very low, low, moderate, high, and very high (Fig. 9a–c). The natural- 
break classification scheme (Jenks, 1967) was used to classify proba
bility values into different categories. The natural break is an optimal 
classification method that seeks out class breaks that minimize 
within-class variance and maximize between-class differences. The areas 
occupied by the five classes were presented in Table 6. For the RF and 
SVM-radial models, the high-very high classes occupy ~60% (274 km2) 
of the study area and mainly distribute over middle and northern parts 

of the field. The very low-to-low zones encompass ~30% (142 km2) and 
occur in southern parts of the field. A zone of moderate heterogeneity is 
only present in a small strip between the low and high zones and oc
cupies only 10% (53 km2) of the field area (Fig. 9). For the LR model, 
there is a little difference between the areas occupied by the heteroge
neity zones and that encompass by the RF and SVM-radial, the very 
low-low, moderate, and high-very high occupy 29% (134 km2), 7% (35 
km2), and 64% (300 km2), respectively. The spatial distribution of 
heterogeneity for this model is similar to the other two models; high 
values in northern parts and low values in the southern portions. 

The mapping of heterogeneity (Fig. 9) and those factors influencing 
heterogeneity (Fig. 7) show that the mapped zones bear a clear rela
tionship to depositional environments. The Zubair Formation has been 
interpreted to represent the eastward and northeastward progradation 
of a delta system into a deeper-water, tide-influenced estuary to the east 
and northeast (Jassim and Goff, 2006). With source areas to the west and 
south on the Arabian Shield, sands were apparently transported to the 
estuary via a river system controlled by the Al-Batin transverse fault 
system (Aqrawi et al., 2010). Although some of the sands were deposited 
in very nearshore lagoonal to marsh areas, most of the sand was trans
ported farther seaward into delta-front, distributary-channel environ
ments, where the sands were reworked into well-sorted, cross-bedded, 

Table 5 
Evaluation of the classifiers’ performances. Bold refers to the best models.  

Model Training Testing 

Accuracy Cohen’s kappa Accuracy Cohen’s kappa 

CART 0.944 0.880 0.825 0.650 
BRT 0.960 0.912 0.865 0.711 
RF 0.991 0.970 0.982 0.962 
SVM-Linear 0.955 0.915 0.944 0.880 
SVM-Radial 0.983 0.966 0.980 0.960 
SVM-Polynomial 0.815 0.628 0.730 0.500 
Naïve Bayes 0.865 0.734 0.820 0.690 
KNN 0.880 0.761 0.790 0.584 
LR 0.955 0.911 0.944 0.881  

Fig. 8. Variable importance based on: (a) CART (b) BRT (c) RF.  
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fine-to medium-grained arenites by waves and tidal currents (e.g., 
Al-Zaidy (2020)). It is these sand bodies, like the DJ unit of the upper 
sandstone member, which form the well-sorted, pure quartz arenites of 
the main pay zone. They are concentrated in the southern end of the 
Rumaila field because that is where the rivers initially debouched their 
loads into the estuary to be reworked. Finer-grained sands, silts and 
muds were transported farther seaward to the north and east into 
deeper-water, prodeltaic parts of the estuary, where they became 
interbedded sandstones and mudstones, siltstones, and shales, explain
ing the distribution of heterogeneity and influencing factors shown in 
Figs. 9 and 7. For example, the unit thickness is greater in the south of 
the field than in the northern parts (Fig. 7d), reflecting the fact that 
southern parts of the field are closer to proximal source areas. Similarly, 
the porosity and permeability are also greater in southern parts of the 
field (Fig. 7a and b), because this area represents more proximal, 
higher-energy parts of the former delta where winnowing of the fines 
left behind pure quartz arenites with high porosities and permeabilities. 
Moreover, irregular sub-horizontal to sub-vertical bands of increased 
thickness and porosity to the north (Fig. 7a and d) probably represent 
thicker, purer sands in highly reworked offshore bars and distributary 
channels. Overall, however, the volume of shales in the DJ unit increases 
to the north (Fig. 7c) in more distal, deeper-water portions of the delta, 
and because of the increase in the volume of finer-grained rocks, overall 
heterogeneity increases to the north as well (Fig. 9). 

6. Conclusions 

The main conclusions of this study are: (1) the integration of the 
Lorenz heterogeneity index, geostatistics, and machine-learning classi
fiers can provide a simple and easy way to study and predict the spatial 
distribution of vertical heterogeneity of a reservoir unit. (2) The RF, 
SVM-radial, and LR classifiers were more powerful than other algo
rithms used in this study in modeling the spatial heterogeneity of the 
reservoir unit being studied. (3) The spatial volume of shale distribution 
can be correlated to the vertical heterogeneity of the DJ unit, and (4) The 
DJ reservoir unit is more heterogeneous in the middle and northern 
parts of the field than in southern parts. The fact that gross formation 
heterogeneity and influencing factors in the DJ unit mirror closely 
former depositional environments across the Rumaila field, suggests the 
validity of the methods in that they reflect actual depositional processes. 
Clearly, the use of geostatistics and GIS-based machine-learning classi
fiers show how effective the methods described herein can be the in the 
analysis of limited field data. 
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Fig. 9. Spatial distribution of the probability of heterogeneity in the DJ unit (a) RF (b) SVM-radial, (c) LR.  

Table 6 
Areas occupy by heterogeneity classes for the best three classifiers.  

GP zone RF SVM-radial LR 

Area 
(%) 

Area 
(km2) 

Area 
(%) 

Area 
(km2) 

Area 
(%) 

Area 
(km2) 

Very low 0.203 95 0.202 95 0.186 87 
Low 0.098 46 0.101 47 0.099 47 
Moderate 0.109 51 0.116 55 0.074 35 
High 0.112 52 0.125 58 0.104 49 
Very high 0.478 224 0.456 214 0.537 252  
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