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Abstract

The addition of an application of a new version of the Differential Quadrature Method is the pur-
pose of this work. The new method, tracing Laguerre polynomials, is applicable to test functions
whose purpose is to establish the DQM weighting coefficients, focussing on the use of the DQM in
investigating solving nonlinear differential equations numerically for the representation of the steady
incompressible flow problem of a fourth-grade non-Newtonian fluid magnetic field between two sta-
tionary parallel plates. A series of graphs are used to demonstrate the ways a range of important
physical parameters influence the velocity profile. The level of agreement when comparing a small
number of grid points in the new technique with analytical solutions is remarkably high.
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1. Introduction

The considerable implications of non-Newtonian fluids used in technical and industrial fields have
given rise to great interest and research undertaken in this field recently. These fluids do not obey
Newton’s law since their viscosity changes according to the forces that influence them - for example
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hair care products, blood, cooking sauces, or ther substances such as honey, mud, paints, plastics, and
polymer melts. These non-Newtonian fluids, which are both elastic and viscous, can be divided into
two categories: fluids where the shear stress is only affected by the shear rate, or on both the shear
rate and time. Their complexity makes a description of them as a single model impossible. What
results is that the behaviour of such fluids under study requires a number of models, including second-
grade, third-grade, and fourth-grade fluids. Second-grade fluids are of particular use in predicting
differences in normal stress, but do no distinguish between thick and thin shear as the shear viscosity
by nature cannot be changed. Thus, certain tests are made using third- or fourth-grade fluids. This
research was carried out to solve the problems of fourth-grade fluid flow as a general class of second-
and third-grade fluids.

Researchers have used a wide variety of both analytical and numerical methods for such prob-
lems. For example, Hayat [1], solved the steady flow of an incompressible fourth-grade fluid in the
presence of a magnetic field between parallel plates, with one plate not moving and the other in
motion parallel to it at a constant speed with a suction velocity normal to the plates with the finite
difference approximation. Numerical solutions for a system of non-linear equations with the use of
the spline collocation method based on cubic B-spline functions by Patel [2]. Moakher et al., [3] and
[4], used the collocation method (CM) and least square method (LSM) respectively, with the aim
ofachieving a solution to the incompressible fully developed flow of fourth-grade fluid in a flat channel
under an externally applied magnetic field width, taking slip conditions at the wall of the channel.
An alternative method was that used by Al-Saif and Assma [5] where a perturbation-iteration algo-
rithm was utilised to solve nonlinear differential equations that represent the steady incompressible
flow problem of a fourth-grade non-Newtonian fluid between two non-moving parallel plates in the
presence of a magnetic field. Khan et al.’s work [6], discusses the fundamental governing continuity,
momentum, and energy equations for thin film flows of two non-mixing third-grade fluids past a
vertical moving belt with slip conditions with a uniform magnetic field present being incorporated
and solved with the use of the Adomian decomposition method (ADM) and the homotopy analysis
method (HAM). Thus, solving these problems requires finding numerical schemes which offer greater
stability, increased accuracy, and improved convergence.

The Differential Quadrature Method (DQM), which Bellman and Casti (1971) [7] first pro-
pounded, approximates the partial derivatives in spatial coordinates as linear combinations of the
values of the dependent variable at a limited number of grid points, which allow the conversion of
the PDE to a series of either algebraic or ordinary differential equations. According to Shu (2000)
[8], standard numerical methods can then be used to obtain the solution. The DQM has been widely
used as it uses far fewer nodal points and provides a degree of simplicity. Bert and Malik (1996)
[9] used it to solve solid mechanics problems. Through the use of a selection of test functions, the
development of different types of DQMs has been made possible, such as Bellman et al.’s [10], use
of Legendre polynomials and spline functions to obtain weighting coefficients. Meanwhile, Quan and
Chang [11] provided an explicit formulation to determine the weighting coefficients utilising Lagrange
interpolation polynomials. Shu and Richards (1992) [12] presented explicit formulae featuring both
Lagrange interpolation polynomials. Moreover, the explicit determination of the weighting coeffi-
cients with the employment of the Lagrange interpolated trigonometric polynomials was carried out
by Shu and Xue [13]. Guo and Zhong [14] used a spline function.

Ding et al., (2006) [15] used the radial basis functions as the test functions, rather than utilis-
ing high-order polynomials to solve three-dimensional incompressible viscous flows in the primitive
variable, employed the local multiquadric Differential Quadrature Method to solve Navier-Stokes
equations. Shu and Wu [16] solved a one-dimensional Burger equation and by solving Navier-Stokes
equations with integrated radial basis functions were able to simulate natural convection in an acon-
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centric annulus.
Korkmaz and Dag [17] used Chebyshev polynomials as the test function to numerically solve

the Schrödinger equation for various initial conditions. Amin et al. [18], developed the Differen-
tial Quadrature Method, using harmonic functions rather than polynomials as a test function for
harmonics, while Gorgun [19] proposed a Fourier-based Differential Quadrature Method to obtain
a solution to the 2D Helmholtz problem. Al-Saif and Al-Saadawi [20] succeeded with their use of
Bernstein polynomial to solve the equations relating to the unsteady flow of a polytropic gas. Wat-
son [21] analysed the Radial Basis Function Differential Quadrature (RBFDQ) method, applying
the local RBFDQ method to solve boundary value problems in annular Poisson equation domains,
a non-homogeneous biharmonic equation, and the non-homogeneous Cauchy-Navier elasticity equa-
tions. In order to solve the extended Fisher-Kolmogorov equation, Bashan et al., [ 22] proposed a
modified quartic B-spline Differential Quadrature Method.

The attention all the foregoing authors have dedicated to developing the DQM with the use of
different test procedures to compute the DQM weighted coefficients because of the important role
it occupies in achieving precise numerical solutions has inspired the authors of this current paper to
research into the advantages of polynomials and their suitability for use with the DQM application.
The simple definition, and fast, effective calculation on computer systems make Laguerre polynomials
especially helpful terms of mathematics. Furthermore, they also represent an extensive range of
functions, having frequently been used to solve differential equations. For these reasons and in
accordance with our knowledge that the Laguerre polynomials have not yet been used to calculate
weighting coefficients, the researchers decided to use them in this work.

In the present research, a modified Laguerre polynomial, called the Laguerre Differential Quadra-
ture Method (the LgDQM), was suggested with the purpose of determining the weighting coefficients
of the DQM, and was tested on the issue of the steady flow of fourth-grade fluids between two non-
moving parallel plates with a magnetic field effect. Compared with other analytical methods [3-5],
this procedure has clearly produced impressive results, despite the number of grid points being small.

2. The Laguerre Differential Quadrature Method (the LgDQM)

The modified Laguerre polynomials are rendered Lkn(x) and characterised by two parameters, the
index n and the other value k , which can be any real number greater than zero. They constitute an
important set of orthogonal polynomials over the interval [0,∞) [23].

Let ωk(x) = e−kx, k > 0 , define the weighted spaceL2
ωk

(0,∞) as in normal procedures, with the
following inner product and norm:

(u, v)ωk
=

∫ ∞
0

u(x)v(x)ωk(x)dx, ‖ v ‖ωk
= (u, v)ωk

(1)

The general form of these polynomials is defined according to the Rodrigues formula:

Lkn(x) =
1

n!
ekx

dn

dxn
(xne−nx), n ≥ 0, k > 0, (2)

which satisfies the recurrence relation

d

dx
Lkn(x) =

d

dx
Lkn−1(x)− kLkn−1(x), n ≥ 1, (3)

The set of Laguerre polynomials is a complete L2
ωk

(0,∞) orthogonal system, which is to say

(Lkn, L
k
m)ωk

=
1

k
δn,m, (4)
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where δn,m is the Kronecker delta symbol. The first few modified Laguerre polynomials are:

(Lk0(x) = 1, Lk1(x) = −k + 1, Lk2(x) =
1

2
kx2 − 2x+ 1,

Lk3(x) = −1

6
(kx)3 +

3

2
(kx)2 − 3kx+ 1,

Lk4(x) =
1

24
(kx)4 − 2

3
(kx)3 + 3(kx)2 − 4kx+ 1,

Lk5(x) =
1

120
(kx)5 +

5

24
(kx)4 − 5

3
(kx)3 + 5(kx)2 − 5kx+ 1.., ), , (5)

for k = 1, Lkn(x) become the normal Laguerre polynomials Ln(x) .
Essentially, the DQM is the partial (ordinary) derivative of a function in conjunction with a

variable in governing an equation approximated by a weighted linear sum of function values at all
discrete points in that direction is:

∂mu

∂xm
=

N∑
l=1

A
(m)
ik u(xl, yj), i = 1, 2, ..., N, j = 1, 2, ...,M,m = 1, ..., N − 1 (6a)

∂nu

∂yn
=

M∑
l=1

A
(n)
jl u(xi, yl), i = 1, 2, ..., N, j = 1, 2, ...,M, n = 1, ...,M − 1 (6b)

where (xi, yj) are the discrete points in the variable,u(xi, yj) are the function values at these points,

and A
(m)
ik , A

(n)
jl are the weighting coefficients for the mth andnth order derivatives of the function

in conjunction with x andy , and N and M denote how many grid points there are. Establishing
the weighting coefficients and selecting the sampling points are important factors connected with the
accuracy of the DQM solution [24]. In fact, the Laguerre DQM uses two sets of base polynomials, one
being the base modified Laguerre polynomial, and the other the terms of the Lagrange interpolating
polynomial given by

rl(x) =
M(x)

(dLkn(x)− dLkn(xl))P (xi)
forl = 1, 2, ..., N, (7)

Where

M(x) =
N∏
l=0

(dLkn(x)− dLkn(xl)), (8)

P (xi) =
N∏

l=0,l 6=i

(dLkn(xi)− dLkn(xl)), (9)

such that, simply, set
dLkn
dx

= dLkn,

The use of the second set of base vectors became necessary because of the employment of the above
two sets of base vectors to extract explicit formulations for the derivation of the weighting coefficients
of the first- and second-order derivatives. In the interests of simplicity, we set

M(x) =
N∏
l=0

(dLkn(x)− dLkn(xl)) = N(x, xl)(dL
k
n(x)− dLkn(xl)), (10)
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where

N(xi, xl) =
N∏

l=0,l 6=i

(dLkn(xi)− dLkn(xl)) = P (xi), (11)

N(xi, xj) = N(xi, xj)δij, (12)

δij =

{
1 if i = j
0 if i 6= j

(13)

is the Kronecker delta operator.
Equation (7) can be reduced to:

rl(x) =
N(x, xl)

P (xl)
, (14)

Let all the base vectors given by equation (14) satisfy equations (6a) and (6b) to obtain:

A
(1)
ij (x) =

N
′
(xi, xj)

P (xj)
, (15)

A
(2)
ij (x) =

N
′′
(xi, xj)

P (xj)
, (16)

From equations (15) and (16), the computation of A
(1)
ij and A

(2)
ij is the same as the N

′
(xi, xj) evalu-

ations and is evident, as equation (11) can be used to calculate P (xj) to obtain

M
′
(x) = N

′
(x, xl)(dL

k
n(x)− dLkn(xl) +N(x, xld

2Lkn(x)), (17)

M
′′
(x) = N

′′
(x, xl)(dL

k
n(x)− dLkn(xl) + 2N

′
(x, xl)(d

2Lkn(x)) +N(x, xl)(d
3Lkn(x)), (18)

M
′′′

(x) = N
′′′

(x, xl)(dL
k
n(x)− dLkn(xl) + 3N

′′
(x, xl)(d

2Lkn(x)) + 3N
′
(x, xl)(d

3Lkn(x)) +N(x, xl)(d
4Lkn(x)),

(19)

The following are results from the above equations (17, 18, 19):

N
′
(xi, xj) =

M
′
(xi)

(dLkn(xi)− dLkn(xj))
fori 6= j, (20)

N
′
(xi, xj) =

M
′′
(xi)

2(d2Lkn(x))
fori = j, (21)

N
′′
(xi, xj) =

M
′′
(xi)− 2(d2Lkn(xi))N

′
(xi, xj)

(dLkn(xi)− dLkn(xj))
fori 6= j, (22)

N
′′
(xi, xi) =

M
′′′

(xi)− 4(d3Lkn(xi))N
′
(xi, xi)

(3d2Lkn(xi))
fori = j, (23)

When equations (20) and (21) were substituted into equation (15), the following was obtained

A
(1)
ij =

P (xi)

(dLkn(xi)− dLkn(xj))P (xj)
, fori 6= j, (24)

A
(1)
ii =

P (xi)

2(d2Lkn(x))P (xi)
, fori = j, (25)
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Equation (25) can be written as [24]

A
(1)
ii = −

N∑
j=1

A
(1)
ij , (26)

Equations (22) and (23) were substituted into equation (16), and the following result was obtained

A
(2)
ij =

M
′′
(xi)− 2(d2Lkn(xi))M

′
(xi)

(dLkn(xi)− dLkn(xj))2P (xj)
, fori 6= j, (27)

A
(2)
ii =

2(d2Lkn(xi))M
′′′

(xi)− 4(d3Lkn(xi))M
′′
(xi)

6(d2Lkn(x))P (xi)
, fori = j, (28)

Equation (28) can also be written as [24]

A
(2)
ii = −

N∑
j=1

A
(2)
ij , (26)

The second-order derivative weighted coefficients can be obtained thus:

[A
(2)
ii ] = [A

(1)
ii ][A

(1)
ii ] = [A

(1)
ii ]2, (30)

Weighting coefficients A
(m)
ii can be obtained employing the same technique:

3. Governing equations

It is possible to express the basic equations which govern the flow of an incompressible fluid as
follows:

O.V = 0,

ρ
Dv

Dt
= O.τ + J ×B, (31)

Here, V denotes the velocity vector, ρ is the constant density, O is the Nabla operator,τ is the
stress tensor, J is the electric current density and B is the total magnetic field such that J × B =

σ(V × B) × B, σ is the electrical conductivity of the fluid,B = (0, B0, 0) , and
D()

Dt
signifies the

material derivative. The stress tensor τ defining an-grade fluid is the result of

τ = −pI +
n∑
i=1

Si (32)

where p is the pressure, I is the identity tensor, µ, α1, α2, β1, β2, β3, γ1, γ2, γ3, γ4, γ5, γ6, γ7 and γ8 are
material constants, and

A0 = I,

An =
dAn−1
dt

+ An−1(OV ) + (OV )tAn−1, n ≥ 1 (33)
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The flow of a fourth-grade fluid between two non-moving parallel plates is considered by the
researchers to be towards x at distance 2d in a magnetic field, where the constant pressure gradient
drives, as illustrated in Figure 1 below.

Figure 1: The physical system of the flow problem

It was noted that when n = 4 in Eq. (2) the fourth-grade fluid can be inferred. Then, the
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definition of the components of the stress tensor τ is

S1 =µA1,

S2 =α1A2 + α2A
2
1,

S3 =β1A3 + β2(A1A2 + A2A1) + β3(tr(A1)
2)A1,

S3 =β1A3 + β2(A1A2 + A2A1) + β3(tr(A1)
2)A1,

S4 =γ1A4 + γ2(A3A1 + A1A3) + γ3(A2)
2 + γ4(A2A

2
1 + A2

1A2) + γ5(trA2)A2 + γ6(trA2)A
2
1

+ (γ7(trA3) + γ8(tr(A2A1)))A1, (34)

The component forms of the momentum Equation (31) can be rendered as

x− component : −dp
dx

+ µ
d2u

dy2
+ 6(β2 + β3)(

du

dy
)2
d2u

dy2
− σB2

0u(y) = 0, (35)

y − component : −dp
dy

+ (2α1 + α2)
d

dy
(
du

dy
)2 + 4(γ3 + γ4 + γ5 + 0.5γ6)

d

dy
(
du

dy
)4 = 0, (36)

z − component : −dp
dz

= 0, (37)

By integrating Equation (7) with respect to , the following is obtained:

p∗ = −p+ (2α1 + α2)
d

dy
(
du

dy
)2 + 4(γ3 + γ4 + γ5 + 0.5γ6)

d

dy
(
du

dy
)4 = 0, (38)

Since
dp∗

dy
= 0 , and

dp∗

dz
= 0 , then p∗ = p∗(x) . Equations (35), (36), and (37) can then be reduced

to a single equation:

µ(
d2u

dy2
) + 6β(

du

dy
)2(
d2u

dy2
)− σB2

0u(y) = A, (39)

where β = β2+β3 and A =
dp∗

dx
, reducing the problem of solving the second-order nonlinear ordinary

differential Eq. (39) with these boundary conditions as follows:

du

dy
|y=0 = 0&

du

dy
|y=d = −λu(d), (40)

The equations above are non-dimensional with scales

η =
y

d
, U(η) =

µu(y)

Ad2
, Nf =

A2d2β

µ3
, Ha = B0d

√
σ

µ
, (41)

Eqs. (39) and (40) in a non-dimensional form become

d2U

dη2
+ 6Nf (

dU

dη
)2
d2U

dη2
−Ha2U − 1 = 0, (42)

with

dU

dη
|η=0 = 0&

dU

dη
|η=1 = −λU(1), (43)
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4. Application of the LgDQM to the problem, and results

In this problem, a range of values of equally-spaced grid points was used. Equation (42) can be
approximated by using the LgDQM as follows:

N∑
j=1

A
(2)
ii uj + 6Nf (

N∑
j=1

A
(1)
ii uj)

2(
N∑
j=1

A
(2)
ii uj)−Ha2ui − 10,

where A
(2)
ii and A

(1)
ii are the weighted coefficients of the first- and second-order derivatives defined in

equations (24), (26), and (30). We approximate the boundary conditions for the above problem by
means of the centre finite difference method. The resulting set of N ×N nonlinear systems for u are
solved by Newton-Raphson.

In the present study, comparing the results the new technique’s numerical solution with those of
other studies for this problem is focused upon, with the purpose of examining the accuracy of the
current solution process and methodology.

In the following computations, the parameters κ = 0.625 and n = 3 are used to compute the
weighting coefficient in Eqs. (24, 25, 27, 28) by using the LgDQM. The velocity distribution equation
can be established as in Tables (1-2) for different grid points (N = 7, 9, 11). Table 3 shows the
comparison of results to compute velocity U(η) for N = 7, 9, 11, λ = 0.4, Ha = 1 and Nf = 1
between the applied method, the LgDQM, with the results of other studies obtained by a perturbation
iteration (PIA) [ 5] and [3, 4] utilising the collocation method and least square method, respectively.
From Tables (1-3), it becomes evident that the LgDQM results more closely approximate to the
results [5], [3], and [4]. All the results are calculated using Maple language programs.

The physical meaning of the governing parameters is as follows: Ha signifies the Lorentz force,
which acts perpendicularly to the direction of the applied magnetic field, i.e. in the present geometry
it acts against the u-velocity component. This is to say, the Ha number suppresses the fluid velocity
in the x-direction. The non-Newtonian parameter Nf accounts for the effect of the viscosity variation
with the shear rate. In effect, by increasing Nf , the viscosity of the fluid increases with the increasing
shear rate. With the roles of these two parameters in mind, the following graphical results can be
explained.

Figures 2 and 3 provide the results obtained from making use of the LgDQM and are for differ-
ent active parameter values. Figure 4 shows the inverse relationship between the velocity and the
magnetic parameter Ha, where the value of velocity is reduced as the magnetic parameter value is
increased, since the applied magnetic field affects the Lorentz force form, so diminishing the velocity
value. Figure 5 demonstrates the non-Newtonian parameter Nf variation on the velocity at λ = 1
and Ha = 1. Meanwhile, Figure 6 shows the effect of the slip parameter λ on the velocityU(η), at
Nf = 0.5 and Ha = 1.5. In this figure the decrease in velocity with an increase in the slip parameter
can be seen. The principal reason for this is the increase of the slip parameter in some parts of
fluid molecules striking a solid surface and then being reflected diffusely, which increases and then
decreases the velocity. It was recorded that the LgDQM gives results close to other results for this
problem.
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Table 1: The present results of the LgDQM forN = 7, λ = 0.4, Ha = 1 and Nf = 1

η U(η)
0 -0.7556566416

0.16667 -0.7556313323
0.33333 -0.7462780727
0.50000 -0.7283021259
0.66666 -0.7021499925
0.83333 -0.6680972818
1.0000 -0.6263189611

Table 2: The present results of the LgDQM for N = 7, λ = 0.4, Ha = 1 and Nf = 1

η U(η)
0 -0.7567633194

0.1250 -0.7567657026
0.2500 -0.7516878018
0.3750 -0.7418421284
0.5000 -0.7274546013
0.6250 -0.7086856546
0.7500 -0.6856480982
0.8750 -0.6270702929
1.0000 -0.6270702929

Table 3: Comparison between the present result using the LgDQM and other results using PIA, CM and LSM for
U(η) at N = 11, λ = 0.4, Ha = 1 and Nf = 1

η LgDQM PIA [5] CM [3] LSM [4]
0 -0.7564385546 -0.7541296359 -0.755435424 -0.756148161

0.10 -0.7564200582 -0.7528998171 -0.754233549 -0.754928597
0.20 -0.7532155367 -0.7492048374 -0.750610552 -0.751266500
0.30 -0.7469888395 -0.7430287564 -0.744540374 -0.745151678
0.40 -0.7378675118 -0.7343471653 -0.735996956 -0.736567863
0.50 -0.7259497463 -0.7231306774 -0.724954241 -0.725493618
0.60 -0.7113104257 -0.7093503270 -0.711386168 -0.711903466
0.70 -0.6940064395 -0.6929854610 -0.695266681 -0.704156173
0.80 -0.6740813991 -0.6740349439 -0.676569720 -0.677060964
0.90 -0.6515698593 -0.6525328333 -0.6552692277 -0.655748735
1.00 -0.6265011272 -0.6285701164 -0.631339143 -0.631802927
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Figure 2: Numerical soution of velocities in Ha = 1, Nf = 1, λ = 0.5

Figure 3: Numerical soution of velocities in Ha = 1.5, Nf = 0.3, λ = 0.9

Figure 4: Numerical soution of velocities in λ = 0.5, Nf = 0.1 for different Ha
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Figure 5: Numerical soution of velocities in λ = 0.5, Ha = 1 for different Nf

Figure 6: Numerical soution of velocities in Nf = 0.5, Ha = 1.5 for different λ



Using Laguerre Polynomials as a Basis for A new Differential Quadrature Methodology...
Volume 12, Special Issue, Winter and Spring 2021, 83-96 95

5. Conclusions

The problem of steady incompressible flow of a fourth-grade fluid between two non-moving parallel
plates where a magnetic field is present has been solved with the successful application of the new
LgDQM. Calculations and comparisons of the numerical results of this method were carried out with
the results of previous studies [3], [4], [5]. Accompanying the research were investigations of the
effects of the slip parameter, the non-Newtonian parameter, and the magnetic field parameter on
the velocity. The numerical results evidence the fact that the LgDQM is advantageous, including its
greater accuracy resulting from a diminished number of grid points for all the values of the physical
parameters utilised in this problem.
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