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ABSTRACT: Academic institutions always looking for tools that improve 

their performance and enhance individuals' outcomes. Due to the huge 

ability of data mining to explore hidden patterns and trends in the data, 

many researchers paid attention to Educational Data Mining (EDM) in the 

last decade. This field explores different types of data using different 

algorithms to extract knowledge that supports decision-making and 

academic sector development. The researchers in the field of EDM have 

proposed and adopted different algorithms in various directions. In this 

review, we have explored the published papers between 2010-2020 in the 

libraries (IEEE, ACM, Science Direct, and Springer) in the field of EDM 

are to answer review questions. We aimed to find the most used algorithm 

by researchers in the field of supervised machine learning in the period of 

2010-2020. Additionally, we explored the most direction in the EDM and 

the interest of the researchers. During our research and analysis, many 

limitations have been examined and in addition to answering the review 

questions, some future works have been presented. 

 

1. INTRODUCTION 

Due to growth in the produced electronic data in the 

universities and the huge improvements in the 

algorithms that discover and extract patterns and 

information from the large electronic data, it has been a 

necessity to adopt and apply those algorithms to obtain 

meaningful information from the produced data in the 

universities. Educational Data Mining (EDM) can be 
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defined as one of the academic fields that focuses on 

exploring new and useful information in data that is 

stored in educational settings. The explored information 

is used to support and develop cognitive theories of 

teaching and learning [1]. In fact, it can be defined as 

the application of techniques or methods of data mining 

to educational data that come from schools universities, 

or any educational environment to address important 

educational questions [2]. EDM focuses specifically on 

methods that explore the distinct or unique types of data 

obtained from educational data repositories to use these 

methods to better understand students and the settings 

in which they learn [3]. The process of EDM converts 

preliminary data coming from educational 

environments to valuable information that could be very 

effective in practice and educational research [4]. 

However, the data mining applications in the 

educational field are limited [5]. 

EDM exploits different data mining algorithms, 

statistical analysis, and machine learning algorithms 

over different types of data sets with a different number 

of dimensions in the educational sector. In this field, the 

data is taken from different systems and turned into 

information that has a great impact on educational 

practice and research. The main goal is to resolve issues 

related to education by analyzing these data. This 

process does not differ from other data mining 

approaches in following and applying key steps of 

implementing the data mining model [4]. Stakeholders 

in the field of EDM may be affected by or affect the 

EDM outcome. Stakeholders include all the persons 

involved in the academic sector from students, pupils, 

learners to teachers, educators, and instructors. 

Educational researchers, course developers, academic 

administrators are also involved in this field besides 

academic companies, and organizations [6]. There are 

many objectives and tasks in EDM [7-9], among those 

are increasing the organization’s profitability, reducing 

learners’ failure, improving academic learning progress, 

finding the factors that affect learners’ progress, 

improving understanding of learners’ behavior, 

understanding the learners’ methods of learning, 

improving both students and domain model, 

implementing assessment of learning system 

performance, implementing recommendation systems 

for course adaptation, predicting students’ performance 

student/teacher skills modeling and 

discovering/predicting learners’ dropouts. Many other 

objectives can be involved as well, such as grouping 

similar students based on their characteristics similarity, 

enhancing learning process time, resources, curriculum, 

and schedule. EDM systems differ from each other in 

the ways they present/receive the knowledge and give 

access to the learners. The system types may be offline, 

online, and intelligent systems. Data mining algorithms 

have been examined and proved their accuracy in the 

field of EDM. Time-series forecasting, clustering, 

regression, classification, association rules mining, and 

machine learning have been quietly used and provide 

good predictions based on educational data. The 

machine learning field where the algorithm learns from 

the data, also widely used in this field. Many other 

approaches such as data warehouse [10-13], OLAP 

[14], fuzzy inference system over the internet of things 

[15-18], and cloud computing [19] can be adapted in the 

field of EDM. The integration of DM algorithms with 

machine learning and other fields may produce and 

powerful platform that presents fast accurate answers to 

stakeholders’ questions [9]. 

There are several basic categories of methods or 

procedures that are suggested in EDM: clustering, 

prediction, discovery within models, relationship 

mining, and distillation of data for human judgment 

[20]. The primary goal of a prediction procedure is to 

name the data object and predicting a class. Predicting 

the educational outcomes for students is one of the main 

application areas of prediction [21]. There are several 

types of research in the area of prediction that have been 

conducted on different levels: at the level of the degree, 

at the level of course, or the level of the teaching system. 

In this systematic literature review, the authors focus on 

the studies that have been used supervised learning 

algorithms in EDM in the category of prediction. 

Recently, supervised learning has received a lot of 

attention for its ability to accurately predict a variety of 

complex areas. One of the most important areas for 

accurately predicting outcomes is educational data. 

Supervised learning is also called supervised machine 

learning and is part of artificial intelligence and machine 

learning. It is defined by using a classified dataset to 

train approaches that accurately predict results or 

classify data.  

The rest of the research is organized in the following 

order: the second section presents the previous studies 

in our field of research while the details of the 

methodology followed in the paper. The fourth section 

states our findings from the literature review. The fifth 

section discusses the results in the previous step. The 

final section provides a summary of the research, 

conclusion, and future work. 

2. LITERATURE REVIEW 

Data mining has been applied for several different 

purposes, including the prospecting of educational 

environments in the field of prediction. For instance, 
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Fernandes, Holanda, Victorino, Borges, Carvalho, and 

Van Erven in [22] and during the 2015 and 2016 school 

terms conducted a predictive analysis of the academic 

performance of students in public schools of the Federal 

District of Brazil. The proposed technique is based on 

the conventional Cross-Industry Data Mining Standard 

Process (CRISP-DM) and uses a dataset collected from 

the Federal District of Brazil's State Department of 

Education repository. Initially, we performed a 

descriptive statistical analysis to gain insight into the 

data. Subsequently, two datasets were collected. The 

first dataset includes variables that were collected 

before the beginning of the school year, and the second 

includes academic variables that were collected two 

months after the start of the semester. Gradient Boosting 

Machine (GBM) classification models were developed 

to predict the academic results of student success for 

each dataset at the end of the school year. Results 

revealed that while the attributes' grades 'and absences 

were the most significant to predict student performance 

academic results at the end of the year, the analysis of 

the demographic attributes shows that neighborhood, 

school, and age are also possible measures of academic 

success or failure of a student. 

Asif, Merceron, Ali, and Haider in [21], listed that they 

used data mining techniques to research graduate 

students' results, concentrating on two facets of their 

performance. First, predict the academic achievements 

of students at the end of a four-year program of study. 

Second, study the standard progress and integrate them 

with the outcomes of the forecasts. Two significant 

groups of students have been identified: low 

performance and high performance. Results suggest that 

by concentrating on a limited number of courses that 

measure especially good or bad success, prompt alerts 

and encouragement for low-profile students and 

guidance and opportunities for high-performing 

students may be offered. 

In [23], a quantitative analysis on the usefulness of 

EDM methods is provided to show the effectiveness of 

the early prediction of the students that are likely to fail 

in the introductory programming courses. This research 

was differentiated as follows: first, examining the 

efficacy of such techniques in detecting students who 

are likely to fail early enough to take steps to minimize 

the rate of failure; second, evaluating the effects of pre-

processing data and fine-tuning algorithms on the 

effectiveness of these techniques. In their research that 

has been done on two distinct and independent 

databases on introductory programming courses 

accessible from a Brazilian Public University, the 

researchers assessed the efficacy of four estimation 

techniques: one from distance education and the other 

from on-campus. The results have shown that the 

techniques tested in their study are capable of detecting 

students who are likely to fail early, improving the 

effectiveness of some of these techniques after applying 

pre-processing and/or fine-tuning algorithms, and 

statistically substantially outperforming the support 

vector machine technique.   

3. RESEARCH METHOD 

Systematic Literature Review (SLR) is characterized by 

covering a set of previous studies related to a specific 

topic and drawing accurate and comprehensive results 

based on the particular strategy. Systematic reviews 

have become widely used as a method to summarize 

research evidence rather than expert commentaries and 

narrative reviews [24]. A significant difference between 

literature review and other methods of analysis such as 

narrative reviews and meta_analysis) is that it follows a 

rigorous approach in restricting literature to collect 

accurate information [25, 26]. A narrative review is a 

more incidental and less comprehensive method, it is 

describing a group of previous studies arranged 

thematically and eliciting comprehensive results from 

the trends impressions. Meta-analysis is a statistical 

procedure band for merging outcomes from quantitative 

studies to interpret general trends and it often 

concentrates on a single variable relationship. 

The systematic literature review should always have a 

protocol [27]. Consequently, the researchers in this 

paper relied on a protocol that was accomplished 

depending on a series of steps located by Kitchenham 

and Charters [28]. Systematic review steps are shown in 

figure 1. 

 

Figure 1: Systematic literature review steps 

3.1 Formulating the systematic review questions 

The first step in a systematic literature review is the 

formulation of research questions that the study strives 

to answer. In this research to identify the most important 

algorithms that are based on supervised machine 

learning and particularly are used in prediction, the 

researchers identified the first question:  
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What are the most algorithms of supervised machine 

learning that widely used in prediction? 

The main objective of the systematic literature review is 

to answer the definite research question, instead of 

mentioning summaries about the field in which the 

researchers are interested in general [29]. The first 

research question was formulated to summarize the 

literature and create research on all algorithms used in 

the field of prediction. Certainly, the previous studies 

used many algorithms in the prediction field, that led 

researchers to formulate other research question:  

What is the supervised learning algorithm most 

commonly used in the field of prediction? 

Based on exploring the EDM field, a lot of sectors will 

be presented. This will led us to find and explore the 

different sectors of EDM which took the researcher's 

interest. Accordingly, the next question will be:  

What is the sector that faced a lot of attention in the field 

of EDM? 

3.2 Constructing the search  

To search for previous studies, it is necessary to specify 

a set of relevant keywords that will be adopted in the 

research, in addition to specifying the digital libraries 

available to researchers used to search to answer the 

research questions. 

3.2.1 Search process 

The researchers focused on the group of digital libraries 

that can be accessed for research, as follows: IEEE 

electronic library [30-62], ACM digital library [63-82], 

Science Direct [21, 22, 83-104], Springer Link, and 

Wiley online library [105-116]. The choice of digital 

libraries was made according to the available libraries 

to the researchers. 

 

Figure 2: Search strategy of systematic literature review 

3.2.2 Terminology 

Terminology is a keyword or a set of words that will be 

used to get related studies on a specific topic. Therefore, 

researchers defined a set of research terms to define 

previous studies to obtain the required answers to the 

research questions. The basic search strings include the 

following terms: “supervised machine learning”, 

“supervised learning algorithm”, “Educational data 

mining”, “students’ success prediction” and “prediction 

system”. 

3.3 Study selection 

To determine which studies will be included and others 

to be excluded, a set of criteria will be applied to 

exclude some previous studies. These criteria include: 

All studies unrelated to the research topic will be 

excluded, all studies within the study period will be 

included, all studies outside the period (from 2010 to 

2020) will be excluded, studies that do not include an 

algorithm related to the supervised learning will be 

excluded, one study will be selected if the study is 

duplicated in more than one digital library, concentrate 

on studies written in English only, and other studies that 

do not include prediction in EDM will also be excluded. 

Figure 2 illustrates the search strategy of systematic 

literature review. 

3.4 Data Extraction 

This step includes a detailed table for each study that 

was included according to the criteria in the systematic 

review [117]. The purpose of this table is to document 

the information obtained from preliminary studies 

accurately and transparently by researchers. This study 

will rely on the strategy presented by Salvado, 

Nakasone, and  Pow-Sang in data extraction [118]. The 

strategy form includes the following details: (1) Title of 

study, (2) Author(s), (3) Publication type, (4) Date of 

extraction, and (5) Name of the digital library in which 

the study was found, and extra information related to the 

accuracy of algorithms and scope of research. The 

numerical data that will be produced from this form is 

of utmost importance to summarize the results of the 

previous set of studies. 

3.5 Synthesis of the extracted data 

It is the last stage of the systematic review steps that 

includes collecting and summarizing the results 

obtained from the included studies. It consists of three 

rounds: In the first round, all studies relevant to the field 

of research will be included. In the second round, 

studies that include supervised algorithms with 

educational prediction systems, in general, will be 

determined. Finally, in the third round the studies that 

meet all the inclusion criteria, in addition to the ability 

to summarize their results to answer the research 

question accurately will be determined. There are 90 

studies extracted in the methodology stages that meet all 

criteria. Figure 3 shows details regarding the selected 
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studies that were found during the search process, and 

all the extract information is detailed in the below link: 

https://drive.google.com/file/d/1mju2nVlh4aKsDP-

BwApJ52KF5icuiTXY/view?usp=sharing 

 

Figure 3: The total number of studies selected 

4. RESULTS AND DISCUSSION 

To understand the supervised learning algorithms used 

in the field of prediction that is used in educational data 

mining, systematic review questions were established to 

define the relevant algorithms for supervised learning in 

the field of prediction. The research questions were 

answered by examining or reviewing the literature on 

educational data mining. The first research question was 

answered by exploring research related to prediction 

within educational data containers and finding the 

algorithms used for this purpose. The results extracted 

during the application of the steps of a systematic 

review of the literature found that there was a set of 

algorithms used for prediction, the algorithms are as 

follows: decision tree, artificial neural network, support 

vector machine, logistic regression, ZeroR, k-nearest 

neighborhood, linear classifier, ensemble model, 

genetic programming, conditional random fields, Naive 

Bayes, association rules mining as depicted in Figure 4.
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Figure 4: Supervised learning algorithms used in prediction field 

The data attributes can be divided into two types: 

Continuous and categorical. The continuous variables 

hold the data with numeric values, and some 

mathematical operations such as integer, interval-

scaled, and ratio-scaled variables can be performed on 

them. The categorical variables hold the data with 

nominal values where the mathematical operations and 

ordering such as nominal, binary, and ordinal variables 

cannot be performed on them [119, 120]. 

Regression is a data mining technique for predicting the 

numeric values in the class label. The regression 

analysis is one of the used statistical methods with 

numeric class prediction. It also includes the 

identification process of distribution trends in the 

training dataset [121]. A simple form of regression is 

the linear regression in which given two variables, it 

predicts the relationship between those two variables. 

Classification is a process of dividing objects and 

assigning them into exclusive and exhaustive categories 

called classes [120]. While both regression and 

classification are used in the prediction, but they differ 

in the method of prediction as the first is used to predict 

continuous values while the latter is used to assign the 

objects into discrete categories. In classification, each 

object should be assigned to one and only one class. The 

problems where the goal is to find a specific value in a 

particular feature (class label) in the data can be solved 

by classification. The approaches of solving such data 

mining problems are supervised where there is a 

relationship between the class label and the remaining 

features [119]. The model in the classification is built 

based on analyzing the train data set (a set of objects 

where the class labels are previously known) to find and 

predict the unknown class label of objects. The 

conducted model can be presented in different forms 

such as mathematical forms, decision trees, (IF Then) 

classification rules, and neural networks [121, 122]. 

Below some used algorithms in regression and 

classification are discussed.   

Decision Tree (DT) algorithms are used for 

classification where the algorithms construct a flow-

chart-like tree structure. Each non-leaf internal node in 

the tree refers to a test on a variable and each branch is 

the test outcome(s). The external terminal node 

represents the class label prediction. The algorithm used 

to build the tree selects the best variable to perform 

http://scjournal.ius.edu.ba/
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splitting into classes [123]. Different algorithms are 

developed and examined to handle categorical and 

numeric attributes in different sectors such as ID3, C4.5, 

RepTree, Random Forest, Hoeffding Tree, Decision 

Stump, LMT, Random Tree [124, 125].  

Naïve Bayes (NB) is one of the classification algorithms 

that perform quite well in different domains. Naïve 

assumption comes from assuming the conditional 

independencies among variables. Bayes comes from 

using the Bayesian theorem a mathematical probability 

theory to find the possible classification [126]. 

The Bayesian theorem is stated as follows [127]: 

P(A|B) =
P(B|A) ∗ P(A)

P(B)
 

Where the P(A) is a probability of an event (A), P(B) is 

a probability of an event (B) and P(A|B) is a probability 

of an event (A) conditional to the probability of the 

event (B). With NB algorithm, the prior probability is 

combined with conditional probabilities in a formula 

that can be used to calculate the possible probabilities to 

get classifications of a large dataset. Despite the 

assumption that the effect of a value of one feature or 

attribute on a given probability of class label is 

independent of the values of other features, the NB 

algorithm, in general, gives acceptable results [120]. 

Support Vector Machine (SVM) is developed by 

Vapink based on the principle of theoretical learning. 

This algorithm is used in many regression and 

classification fields besides outlier detection. It 

represents the base concept of risk minimization. In 

SVM, the kernel is used to map the original input space 

into a high-dimensional dot space. This space represents 

the feature space that defines the optimal hyperplane. 

The hyperplane is determined by data points (support 

vectors). Although SVM is not often used in problem-

domain, it can provide a very strong generalized output 

for problems of classification [128, 129]. The output of 

the linear form of SVM is computed as: 

𝑜 = �⃗� .  �⃗� −𝑏 

Where �⃗� is the input vector and �⃗� is the normal vector 

to the hyperplane. Sequential Minimal Optimization 

(SMO) proposes a fast and easy method to solve the 

problem of quadratic optimization by optimizing the 

minimum subset through each iteration. The overall 

problem is separated into small collections of problems 

to be solved analytically. Small subsets of the training 

dataset are managed where a linear memory is needed. 

SMO performs faster than SVM due to regular chunking 

of the SVM algorithm to scale between cubic and linear 

[130]. 

Artificial Neural Networks (ANN) is one of the most 

important algorithms where a neuron has constructed 

the network to perform deep learning. Three layers 

represent the overall network (input, hidden, and 

output) layers where these layers consist of many units 

(represent neurons) to simulate the human brain work. 

The neurons in the layers are connected and the 

direction of data can determine the ANN algorithm. 

These units can detect the interactions amongst features. 

These units can perform feature detection even if they 

are independent. Many algorithms are developed in this 

field, the most used algorithms are feed-forward and 

recurrent neural networks [124]. 

K-nearest neighbors (KNN) algorithm is one of the 

simplest machine learning algorithms where each object 

will have a grade based on the majority vote of its 

neighbors. First, the object is assigned to the closest 

class amongst all its neighbors. K is a small positive 

number where if it sets to 1, then the object is assigned 

to the closest class from its neighbors. When K is an odd 

number in the binary classification (two final classes), 

the tied votes elimination will be easy [131]. 

Association Rules Mining (ARM) is used to measure 

the association amongst items in the dataset. The result 

association rules take the form of IF Then where the left 

part of the rule is called antecedent while the right part 

is called consequent [132, 133]. There are two important 

measurements (support and confidence) used to 

measures the accuracy of the resulting rules. The 

support value measures the appearance of the items 

while the confidence measures the accuracy of the rule.  

Support({X}→{Y}) =  
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑋 𝑎𝑛𝑑 𝑌

𝑇𝑜𝑡𝑎𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

Confidence({X}→{Y}) =  
𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑏𝑜𝑡ℎ 𝑋 𝑎𝑛𝑑 𝑌

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑋
 

These factors may be predefined by minimal values 

called thresholds. Generally, association rules and 

classification rules do not differ, except that the 

association rules can be used to predict any attribute or 

a combination of attributes. The second difference is 

classification rules intend to be used together while 

association rules are not. The rules in ARM can express 

many regularities in the dataset which represent the 

prediction of many different classes. The most 

important algorithm in this field is the Apriori algorithm 

[134]. 

Linear and Logistic regression are determined by the 

class label. When the class label and all attributes are 

numeric values, then the linear is the natural regression 

technique to consider. Linear is a stable technique in 
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statistics where the idea is to define the class as a 

combination of weighted attributes:  

x= w0+a1w1+ a1w2+ a3w3+….+ akwk 

Where a represent the attribute, w represents the weight, 

and x represents the class.  

The result set from the calculating values from the 

training dataset is a numeric weighted set that can be 

used to measure the class label of new predicted 

instances. For decades, linear regression is widely used 

and proved its accuracy, simplicity, and easiness in 

statistical applications. However, linearity is the 

disadvantage of this algorithm. When a non-linear 

dependency is exhibited in the data, it can found the best 

fitting line which is represented by the mean square 

difference. Linear regression is widely used in the 

classification of data sets with numeric attributes. 

Linear or nonlinear regression can be used for 

classification. When a regression is performed for each 

class, the output for the training instances is set to 1 

where the instance belongs to the class and the output is 

set to 0 for the instances that do not belong to the class. 

This outputs a class that is the linear regression. 

However, the value may be improper and take an 

observation out of range [0, and 1]. Logistic regression 

is another statistical technique that overcomes the 

problems of restricted values and least square 

regression. Instead of the approximate value, the value 

will be approximated when the value is exceeded, and 

hence the logistic regression model builds a model 

based on linear regression of the transformed target 

feature [135]. 

The clustering techniques are apart from unsupervised 

machine learning approaches where the class label is 

unknown [136]. The data is considered as objects and 

these objects are grouped into clusters based on 

similarity among these objects. The similarity is 

measured by the distance among objects. Cluster quality 

may be determined by the diameter or centroid distance. 

The maximum distance between two objects represents 

the diameter, while the average distance or the 

Euclidian distance may measure the centroid distance. 

Clustering techniques can also be used in the field of 

supervised machine learning by determining the class 

label. Many clustering algorithms such as K-means and 

hierarchical algorithms are proved their reliability and 

accuracy [137]. 

In this study, researchers also strived to answer the 

second research question related to the most used 

supervised algorithm in the field of prediction. A 

different set of supervised algorithms have been used to 

measure the accuracy of the data in a literature review 

(selected studied). These algorithms were used in the 

selected studies to measure accuracy in many scopes of 

research: predicting student performance, predicting 

student behavior, predicting the probability of students' 

degree completion, predicting a job after graduation, 

predicting future events, predicting to improve students 

final grade…etc. All the papers included in this review 

published in the period 2010-2020 are either journal or 

conference papers. Figure 5 lists these papers with their 

category according to year. 

 

Figure 5: Journal vs conference EDM papers 

Conference papers take a high percentage of the 

published papers. In the year 2010, two conference 

papers are published, while in the year 2011, and 2012 

only one journal paper was published each year. In the 

year 2013, two journal papers and one conference paper 

are published, while in 2014, four journal papers and 

one conference paper are published. In 2015, seven 

conference papers and three papers are published, while 

in 2016  nine conference papers and two journal papers 

are published. In the years 2017, 2018, 2019, and 2020, 

ten conference papers and three journal papers, fourteen 

conference papers and four journal papers, eighteen 

conference papers and seven journal papers, and three 

journal papers along with one conference paper are 

published,  respectively.    

Concerning the second research question, the vast 

majority of studies adopted the use of DT algorithms, as 

they were used more than 100 times in various studies, 

and in some cases, more than one DT algorithm was 

used in the same study. ANN and NB algorithms used 

fewer than DT algorithms, where they were used 33 and 

36 times, respectively. SVM and LR algorithms were 

used 22 and 14 times, respectively. K-nearest 
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Neighborhood algorithm was used 10 times in the 

studies. The use of the rest of the algorithms has been 

varied from one to three times. Figure 6 illustrates the 

use of algorithms in the selected studies. 

 

 

Figure 6: The use of algorithms in the selected studies 

Figure 7 illustrates the usage of data mining algorithms, 

namely DT, LR, SVM, ARM, ANN, NB, and KNN, 

according to the covered years. In the first five years, 

the usage of data mining algorithms was less than the 

next years. In the period 2015-2019, the data mining 

algorithms usage increased proportionally, while this 

usage reduced in 2020. In 2019, the usage of all 

algorithms reached its highest number, and among other 

approaches, DT was the most used one. 

 

Figure 7: Data mining algorithms according to years 

It can be seen that DT is used every year from 2010-

2020 in the EDM comparing with other algorithms that 

are used in some period of the covered years.  

Since the EDM field holds many sectors, it is necessary 

to explore the researches according to the educational 

sector. This step will help to find the most important 

sector which the researchers concentrated on in their 

works. Predicting students’ performance, analyzing and 

predicting students’ dropout, predicting students’ actual 

degrees, student job after graduation, and analyzing and 

identifying students’ activities and background are the 

most important sectors in the educational field. 

Exploring students’ profiles, the response of the 

learners, predicting both educational future events and 

instructors’ performance, enhancing learners adaptation 

system, improving students’ skills and performance are 

the other sectors that the researchers worked on. Table 

1 lists all the educational sectors cited in the studies. 

Table 1: EDM sectors 

Reference Educational Sector 
[22, 30, 31, 35, 37, 42-

46, 48, 49, 51, 52, 54, 

58, 59, 62, 65-71, 74, 

76, 78-81, 83, 85, 86, 

88, 89, 93, 94, 96, 97, 

100, 101, 103-105, 107, 

111, 112, 114-116, 138, 

139] 

Predicting students’ 

performance. 
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[22, 55, 60, 72, 73, 77, 

98, 140] 

Analyzing and predicting 

students’ dropout. 

[33, 34, 53, 57, 82, 109] Predicting student’ degrees. 

[36] 
Predicting of a job after 

graduation. 

[38, 50, 56, 90, 91, 95] 
Analyzing students’ activities 

and background. 

[39] Identifying students’ profiles. 

[40] 
Identifying the fast response 

learners. 

[42] 
Predicting educational future 

events. 

[61, 87, 102] 
Enhancing learners adaptation 

system. 

[21, 63, 64, 84] 
Improving students’ skills and 

performance. 

[91] 
Predicting instructors’ 

performance. 

[99, 106, 108, 113] 
Predicting course selection 

and completion. 

[110] Prediction graduation rate. 

 

The most sector that got the researchers' interest was 

predicting students' performance followed by analyzing 

and predicting students’ dropout, predicting students’ 

degrees, analyzing students’ activities and background, 

predicting course selection and completion, and 

improving students’ skills and performance. The other 

sectors such as predicting job after graduation, 

identifying students’ profiles, identifying the fast 

response learners, predicting educational future events, 

enhancing learners adaptation system, predicting 

instructors’ performance, and predicting graduation rate 

took less attention of the researchers. 

In this study, researchers sought to answer SLR 

questions related to supervised machine learning 

algorithms used in prediction in the educational field, in 

addition to clarifying which algorithms are mostly used. 

The period of conducting the study was 10 years for the 

published papers from 2010 to 2020 according to 

specific criteria for selecting studies. The first question 

was answered by reviewing all the algorithms used in 

prediction. As for the second methodology question, the 

study found that algorithms of DT, ANN, and NB are 

the most popular algorithms among supervised learning 

algorithms in the field of prediction. 

5. CONCLUSION AND DISCUSSION 

EDM is one of the most important disciplines that 

explores and discovers hidden patterns in educational 

data. This field exploits different data mining 

algorithms, statistical analysis, and machine learning 

algorithms over different types of data sets with a 

different number of dimensions in the educational 

sector. The main goal behind implementing systems for 

predicting students’ performance is to get highly 

accurate results with high responsive speed based on 

educational data. The nature and size of source data, 

number of features, size of noise within data, outliers, 

and dirty data are the most important factors that affect 

the classifier accuracy. Besides, choosing the right 

algorithm to handle the data also affects the accuracy. 

The nature of data enforce the analysts to perform data 

preprocessing to improve the data quality and then the 

knowledge conduced. Since the EDM field holds many 

sectors, it is necessary to explore the researches 

according to the educational sector. 

The vast majority of studies adopted the use of DT 

algorithms, as they were used more than 100 times in 

various studies. In several studies, more than one DT 

algorithm was used in the same study. ANN and NB 

algorithms used fewer than DT algorithms. These two 

algorithms were used 33 and 36 times, respectively. As 

for the SVM and LR algorithms, they were used 22 and 

14 times, respectively. The  K-nearest Neighborhood 

algorithm was used 10 times in the studies. 

As a comparison between journal and conference 

papers, the conference papers are the most published 

category. In the period 2015 to 2019, the conference 

papers increased proportionally, where this period 

reached its highest number in 2019. In 2019, the usage 

of all algorithms reached the peak where the DT was the 

most used algorithm among all other algorithms. It has 

been noticed that in the EDM, DT is used by different 

researchers in all years during the ten years of the 

studied period comparing to other algorithms that have 

been used in some years during the studied period. 

EDM holds many sectors and disciplines, the sector of 

predicting students' performance toke the researchers' 

interest followed by analyzing and predicting students’ 

dropout, predicting student’ degrees, analyzing 

students’ activities and background, predicting course 

selection and completion, and improving students’ 

skills and performance. The other sectors such as 

predicting job after graduation, identifying students’ 

profiles, identifying the fast response learners, 

predicting educational future events, enhancing learners 

adaptation system, predicting instructors’ performance, 

and predicting graduation rate took less attention of the 

researchers. 

The field of EDM is very important as it answers an 

urgent need to explore the variables that affect the 

learners' progress and present that in their works. This 

effect can be measured according to some features, data 

set size and number of instances in each work. Many 

researchers did not clarify the basic information about 
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the educational data used in implementing their models. 

The relationship among size, data type, and the number 

of features of the educational dataset affects the 

accuracy of the model. In the future, a study can be 

made to explore the relationship between educational 

data type, size, features with the model accuracy. 
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