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ABSTRACT Staphylococcus aureus remains a causative agent for morbidity and mor-
tality worldwide. This is in part a result of antimicrobial resistance, highlighting the
need to uncover novel antibiotic targets and to discover new therapeutic agents. In
the present study, we explored the possibility that iron-sulfur (Fe-S) cluster synthesis
is a viable antimicrobial target. RNA interference studies established that Suf (sulfur
mobilization)-dependent Fe-S cluster synthesis is essential in S. aureus. We found
that sufCDSUB were cotranscribed and that suf transcription was positively influ-
enced by sigma factor B. We characterized an S. aureus strain that contained a trans-
poson inserted in the intergenic space between sufC and sufD (sufD*), resulting in
decreased transcription of sufSUB. Consistent with the transcriptional data, the sufD*
strain had multiple phenotypes associated with impaired Fe-S protein maturation.
They included decreased activities of Fe-S cluster-dependent enzymes, decreased
growth in media lacking metabolites that require Fe-S proteins for synthesis, and de-
creased flux through the tricarboxylic acid (TCA) cycle. Decreased Fe-S cluster syn-
thesis resulted in sensitivity to reactive oxygen and reactive nitrogen species, as well
as increased DNA damage and impaired DNA repair. The sufD* strain also exhibited
perturbed intracellular nonchelated Fe pools. Importantly, the sufD* strain did not
exhibit altered exoprotein production or altered biofilm formation, but it was attenu-
ated for survival upon challenge by human polymorphonuclear leukocytes. The re-
sults presented are consistent with the hypothesis that Fe-S cluster synthesis is a vi-
able target for antimicrobial development.

KEYWORDS iron, sulfur, cluster, Staphylococcus aureus, Suf, neutrophil

Staphylococcus aureus is a human commensal that causes morbidity and mortality
worldwide. While it is responsible for low-morbidity maladies, such as folliculitis, it

is also capable of causing fatal afflictions, such as endocarditis, bacteremia, and toxic
shock syndrome (1, 2). Bacterial antibiotic resistance continues to increase and to be
problematic. Infections caused by antibiotic-resistant S. aureus result in increased
mortality, increased stress on the health care system, and an increased financial burden
(3, 4). Current FDA-approved antibacterials target a limited number of metabolic
processes (5). Developing antibacterials that target alternate processes would expand
treatment options and aid in multidrug therapy. These facts highlight the need for
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(i) continued investigations into novel antimicrobial targets and (ii) the discovery of
new antimicrobials.

Iron (Fe) is a required nutrient for human bacterial pathogens. Not surprisingly, S.
aureus strains defective in acquiring or processing intracellular Fe have decreased
virulence (6, 7). Upon acquisition, S. aureus uses Fe to metalate proteins, produce heme,
and synthesize inorganic iron-sulfur (Fe-S) cluster prosthetic groups. Three Fe-S cluster
synthesis machineries (Suf [sulfur mobilization], Isc, and Nif) that are, for the most part,
functionally redundant but biochemically distinct have been described in bacteria
(8–10). S. aureus utilizes the SufCDSUB machinery to synthesize Fe-S clusters from
monoatomic Fe2�, S0, and electrons (7). SufBCD acts as a molecular scaffold for Fe-S
cluster synthesis (11). SufC is an ATPase that has homology with membrane-associated
ATPases, SufD participates in Fe acquisition, and SufB is thought to be the site of Fe-S
cluster synthesis (12–14). SufS is a cysteine desulfurase that catalyzes the removal of
elemental sulfur from cysteine, producing alanine and a SufS-bound persulfide (15). The
persulfide is transferred to SufU, which is a sulfur transfer protein that provides the
sulfur to SufBCD (16). After synthesis, the Fe-S cluster is transferred directly to either an
apoprotein or an Fe-S cluster carrier that traffics the cofactor to the target apoprotein
(11, 17). SufA and Nfu function as Fe-S cluster carriers in S. aureus (7, 18). Genetic
evidence suggests that SufT and bacillithiol also have roles in the maturation of Fe-S
proteins (18–20).

The SufCDSUB Fe-S cluster synthesis machinery is fundamentally different from the
synthesis machinery used by mammals. Mammals synthesize Fe-S clusters in two
cellular locations (reviewed in reference 21). In mammals, Fe-S clusters are synthesized
in mitochondria using machinery that is similar to the bacterial Isc system, as well as in
the cytosol using the cytosolic iron-sulfur cluster assembly (CIA) machinery, which does
not share homology with described bacterial synthetic systems. Therefore, if a thera-
peutic agent that inhibits SufCDSUB is developed, it is unlikely that the agent would
affect the essential process of Fe-S cluster synthesis in humans.

Proteins containing Fe-S prosthetic groups are widely distributed throughout the
proteomes of most organisms and are necessary for diverse cellular processes. Because
of the substantial reliance on Fe-S proteins, we hypothesize that disruption of Fe-S
cluster synthesis in S. aureus will result in metabolic standstill and eventual cell death.
This hypothesis is supported by results from high-density transposon mutant screens
showing that the sufCDSUB gene products are important for S. aureus fitness and
possibly survival (22–24).

This study was initiated to determine if Fe-S cluster biogenesis is a viable antimi-
crobial target in S. aureus. RNA interference studies confirmed that the Suf Fe-S cluster
biosynthetic system is essential for S. aureus viability. An S. aureus strain with decreased
sufSUB transcription had a decreased capability to mature Fe-S proteins. Decreased Suf
function resulted in global metabolic defects and reduced survival in human polymor-
phonuclear neutrophils (PMNs), but it did not alter biofilm formation or exoprotein
production.

RESULTS
Expression of antisense RNAs to the sufC or sufU transcripts decreases S. aureus

viability. The conditional expression of an antisense RNA targeted to a corresponding
mRNA is an effective means to deplete cells of a specific gene product (25). The
essentiality of Suf was examined using mRNA depletion. DNA fragments corresponding
to sufC or sufUB were shotgun cloned into a plasmid under the transcriptional control
of an anhydrotetracycline (Atet)-inducible promoter. Two clones corresponding to sufC
and two clones corresponding to sufU that resulted in decreased growth in tryptic soy
broth (TSB) medium upon expression of the plasmid insert were isolated. The plasmids
contained fragments that expressed an RNA that was antisense to the 3= coding region
of either the sufC or sufU mRNA. sufC is 762 nucleotides in length, and the psufCKD
plasmids contained fragments corresponding to bases 515 to 762 (psufCKD1) and 572
to 750 (psufCKD2). sufU is 465 nucleotides in length, and one clone contained a
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fragment corresponding to bases 216 to 465 plus 32 bp of intergenic sufUB DNA
(psufUKD1) while the second clone corresponded to bases 353 to 465 plus 32 bp of
intergenic sufUB DNA (psufUKD2). S. aureus strain RN4220 containing the empty vector
or the psufKD plasmids did not exhibit growth abnormalities when cultured on solid
medium lacking inducer (Fig. 1). As the concentration of Atet was increased, viability
decreased in the cells containing psufKD plasmids, but not in cells containing the
empty vector. The efficiency of the knockdown plasmids was decreased in S. aureus
strain LAC, and this effect was independent of SigB or Agr, which are known to be
defective in RN4220 (data not shown) (26, 27). It is currently unknown why the plasmids
behave differently in these two genetic backgrounds.

A transposon insertion between sufC and sufD results in decreased transcrip-
tion of downstream suf genes. Two strains that contain bursa aurealis mariner-based
transposons inserted into the sufCDSUB operon between annotated genes were ob-
tained (28). The transposons were located 62 and 63 bp upstream of sufD (sufD*) or sufS
(sufS*), respectively (Fig. 2A). We were able to reconstruct the sufD* strain in the S.
aureus LAC background, but we were unable to reconstruct the sufS* strain. Therefore,
the sufS* strain is not discussed further in this study. We assessed the effects of the
sufD* transposon on transcription of sufCDSUB. The transcripts corresponding to the
gene upstream of the sufD* transposon were increased (Fig. 2B). In contrast, there was
no effect on the sufD transcript, but the transcripts corresponding to sufSUB were
decreased.

sufCDSUB are cotranscribed, and transcription is modulated by sigma factor B
(�B). A previously published transcriptome sequencing (RNA-seq) data set (29) was
analyzed to further understand how the sufD* transposon decreased transcription of
sufSUB. The reads that mapped to sufCDSUB were relatively evenly distributed (Fig. 3A),
leading to the hypothesis that sufCDSUB are transcribed as an operon using a common
promoter. To test this, a cDNA library was generated from DNase-treated wild-type (WT)
RNA. We used oligonucleotides that bridged various suf genes to test whether multiple
genes existed on the same cDNA (Fig. 3B). The resulting amplicons suggested that
sufCDSUB are cotranscribed. As a control, we included a condition under which reverse
transcriptase was not added to rule out possible DNA contamination. Reaction mixtures
lacking reverse transcriptase did not generate any detectable product, indicating that
the amplicons were not the result of contaminating genomic DNA (Fig. 3B).

The reads from the RNA-seq experiment (29) were further analyzed to ascertain the
transcription start site and to determine the extent of the suf 5= untranslated region
(UTR). The distal reads started at an adenine located 82 bp upstream from the predicted
translation start site (Fig. 3C). This analysis allowed us to identify putative �A and �B

recognition sequences 14 and 28 bp upstream from the proposed transcription start
site, respectively (30).

Sigma factor B is a general stress response transcriptional regulator in S. aureus (31).
The transcriptional activity of sufC was monitored in the WT and ΔsigB strains during

FIG 1 sufC or sufU depletion decreases S. aureus viability. S. aureus RN4220 containing pML100 (empty
vector), psufUKD1, psufUKD2, psufCKD1, or psufCKD2 was serially diluted and spot plated on TSA-
chloramphenicol medium with and without Atet (inducer). Images from a representative experiment are
shown.
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growth. The transcriptional activity of sufC was decreased in the ΔsigB strain (Fig. 3D),
confirming that SigB positively influences sufC transcription.

Decreased suf transcription results in lower activities of Fe-S cluster-requiring
enzymes. Aconitase (AcnA) requires an Fe-S cluster for function (32). The AcnA activity
in the sufD* strain was �20% of that in the WT (Fig. 4A). Returning sufCDSUB to the
chromosome of the sufD* strain at a secondary location via episome (sufD* suf�) fully
restored AcnA activity.

S. aureus increases the transcription of genes necessary to metabolize reactive
oxygen species (ROS) when cultured under high aeration, suggesting that endogenous
ROS accumulates under these growth conditions (33). Consequently, S. aureus strains
deficient in the maturation of Fe-S proteins or scavenging endogenously produced ROS
display severe defects in AcnA activity when the dioxygen tension is increased (19). The
effect of dioxygen tension on AcnA activity in the WT, ΔacnA, and sufD* strains was
assessed. A sodA::Tn mutant that lacks the major superoxide dismutase was included as
an experimental control. To modulate the concentration of dioxygen in the culture
medium, we varied the ratio of liquid medium volume to culture vessel to gaseous
headspace (HV ratio). The higher the HV ratio, the higher the concentration of dissolved
dioxygen (34). The sodA::Tn mutant had decreased AcnA activity when cultured at an
HV ratio of 20, but the AcnA activity was comparable to that of the WT when cultured
at an HV ratio of 2.5 (Fig. 4B). AcnA activity was greatly decreased in the sufD* strain,
and AcnA activity was not significantly altered as the culture HV ratio was varied.

Like AcnA, the enzyme glutamate synthase (GOGAT, or GltBD) requires Fe-S clusters
for function (35). The sufD* strain displayed �25% of the GOGAT activity of the WT (Fig.
4C). Taken together, these findings suggest the sufD* strain has decreased Fe-S enzyme

FIG 2 A transposon insertion between sufC and sufD decreases transcription of sufSUB. (A) Locations of
the individual sufS* and sufD* transposon insertion sites. The sufS* transposon insertion is located
between sufD and sufS, and the sufD* transposon insertion is located between sufC and sufD. (B) The
sufD* insertion decreases transcription of sufSUB. Total RNA was isolated from the WT and sufD* strains,
and the transcription of the individual sufCDSUB genes was quantified. The data represent average mRNA
abundances from cells cultured in biological triplicates; cDNA libraries were analyzed in duplicate. The
error bars represent standard deviations; *, P � 0.5 relative to the WT strain using a two-tailed Student
t test.
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activity and that the Suf system is the dominant Fe-S cluster synthetic system under
multiple culture conditions.

Decreased Suf function results in a reduced rate of carbon flux through the
TCA cycle. AcnA catalyzes the first committed step in the tricarboxylic acid (TCA) cycle
and therefore acts as a gatekeeper for flux through the TCA cycle. We tested the
hypothesis that TCA cycle function would also be decreased in the sufD* strain.

The WT, ΔacnA, and sufD* strains were cultured in TSB, and growth was monitored
over time. The growth rates of the WT, sufD*, and ΔacnA strains were similar during the
exponential growth phase (�6 h) (Fig. 5A). During the postexponential growth phase
(�6 h), the WT and sufD* strains displayed slower growth, but the sufD* strain displayed
an extended lag phase before postexponential growth commenced. The ΔacnA strain
did not grow after this time, confirming that growth beyond this inflection point
requires TCA cycle function. The sufD* suf� strain did not display growth abnormalities
in TSB (data not shown).

The activity of AcnA was also monitored at specific time points throughout
growth. AcnA activity was decreased in the sufD* strain throughout growth (Fig. 5B).
The largest difference in AcnA activity between the WT and sufD* strains occurred
at the start of postexponential outgrowth (�8 h). Acetate accumulation in culture
media from all strains was examined. Consistent with decreased TCA cycle function,
acetate uptake was decreased and was nonexistent in the sufD* and ΔacnA strains,
respectively (Fig. 5C). All the strains acidified the culture medium at similar rates

FIG 3 The sufCDSUB genes are cotranscribed, and transcription is positively influenced by sigma factor B.
(A) Analysis of a previously published RNA-seq data set (29) indicating that sufCDSUB are cotranscribed. (B)
The suf genes are cotranscribed. (Top) Schematic of the suf operon; the locations of the amplicons are
shown as black bars, and the predicted sizes of the amplicons (generated using the following primer pairs:
lanes 2 and 3, sufCRT5 and sufDrevRT; lanes 4 and 5, sufDfwdRT and sufinternal3; lanes 6 and 7, sufinternal5
and sufSrevRT; lanes 8 and 9, sufSfwdRT and sufBrevRT) are shown. (Bottom) Amplicons were generated
from cDNA libraries using RNAs isolated from the WT and separated using agarose gel electrophoresis. The
samples analyzed in lanes 3, 5, 7, and 9 were generated using a template that was not treated with reverse
transcriptase. (C) The promoter of the suf operon contains potential sigma factor A (green) and sigma factor
B (red) recognition sites. The predicted transcriptional start site is shown in blue and was determined by
analyzing previously published RNA-seq data (29). The annotated sufC translational start site is in purple
and underlined. (D) The transcriptional activity of the sufC promoter is modulated by sigma factor B (SigB).
The transcriptional activity of sufC was monitored in the WT and ΔsigB strains containing pCM11_suf. The
data shown represent the averages of biological triplicates with standard deviations. *, P � 0.5 relative to
the WT strain, using a two-tailed Student t test.
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during the initial growth period. After �6 h, the WT and sufD* strains basified the
medium, but the rate of basification was lower in the sufD* strain (Fig. 5D). The pH
of the medium used to culture the ΔacnA strain did not increase after the initial
acidification. Taken together, these findings are consistent with the hypothesis that

FIG 4 Iron-sulfur cluster-requiring proteins have decreased activity in S. aureus strains with decreased suf
transcription. (A) AcnA activity was assessed in the WT, sufD*, and sufD* suf� strains. (B) AcnA activity is
decreased in the sufD* strain irrespective of culture aeration. The AcnA assays were conducted in cell
lysates from the WT, sufD*, sodA::Tn, and ΔacnA strains cultured in TSB with altered HV ratios. (C)
Glutamate dehydrogenase activities were assessed in the WT and sufD* strains. The data shown represent
the averages of biological triplicates with standard deviations. *, P � 0.5 relative to the WT strain using
a two-tailed Student t test.

FIG 5 Decreased Suf function results in a reduced rate of carbon flux through the TCA cycle. (A) Growth profiles
of the WT, sufD*, and ΔacnA strains. (B) AcnA activity throughout growth. (C) Concentrations of acetate in culture
supernatants throughout growth. (D) Spent medium pH throughout growth. The data represent averages of
biological triplicates with standard deviations.
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the decreased AcnA activity of the sufD* strain resulted in decreased flux through
the TCA cycle.

Decreased Fe-S cluster synthesis results in decreased growth in media lacking
specific amino acids or lipoic acid. We assayed the growth of the WT, sufD*, and sufD*
suf� strains on chemically defined solid media. The sufD* strain grew poorly on
chemically defined media supplemented with the 20 canonical amino acids (20 aa
medium), whereas the sufD* suf� strain grew like the WT. The enzyme lipoyl synthase
requires Fe-S clusters (36). Supplementing the 20 aa growth medium with lipoic acid
alleviated this growth defect of the sufD* strain. Isoleucine, leucine, and glutamate/
glutamine synthesis also requires Fe-S enzymes (37–39). Compared to the WT, the sufD*
strain displayed poor to no growth on chemically defined solid medium containing
lipoic acid but lacking isoleucine, leucine, or glutamate and glutamine (Fig. 6). These
phenotypes could be genetically complemented.

Decreased Suf function results in increased DNA damage and a decreased
ability to repair damaged DNA. The DNA repair enzymes MutY (40), Nth (41), and
AddAB (42) require an Fe-S cluster for function. Mutations in rpoB, which encodes RNA
polymerase, provide resistance to rifampin (Rif) (43). The rate of spontaneous Rif
resistance was determined for the WT and sufD* strains by plating upon tryptic soy agar
(TSA) with or without rifampin. The sufD* strain had an �20-fold increase in rifampin-
resistant cells compared to the WT strain (Fig. 7A).

We next examined if one or more of the described Fe-S cluster-requiring DNA repair
enzymes had a role in preventing rpoB mutations when cultured under standard
laboratory conditions. The rate of rifampin resistance was determined in the WT,
mutY::Tn, nth::Tn, and addB::Tn mutant strains. The mutY::Tn, nth::Tn, and addB::Tn
strains had increased rates of rifampin resistance (Fig. 7B).

We next assayed the susceptibility of the WT, sufD*, and sufD* suf� strains to
chemical mutagens. The sufD* strain had increased sensitivity to methyl methanesul-
fonate (MMS) (Fig. 7C) and diethyl sulfate (DES) (Fig. 7D) compared to the WT and sufD*
suf� strains. We also examined the necessity for Fe-S cluster-requiring DNA repair
proteins for growth in the presence of MMS or DES. The nth::Tn and mutY::Tn strains
showed resistance to MMS and DES similar to that of the WT (Fig. 7E and F), but the
addB::Tn strain displayed greatly increased sensitivity to both mutagens.

FIG 6 Decreased Fe-S cluster synthesis causes decreased growth in media lacking specific amino acids
or lipoic acid. Auxotrophic analyses were conducted using the WT, sufD*, and sufD* suf� strains. The
strains were grown in TSB before plating on solid chemically defined medium containing the 20
canonical amino acids (A), 20 aa with lipoic acid (B), 19 aa minus isoleucine with lipoic acid (C), 19 aa
minus leucine with lipoic acid (D), and 18 aa minus glutamate and glutamine with lipoic acid (E). Images
from a representative experiment are shown.
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We sought genetic evidence to lend support to the hypothesis that decreased Fe-S
cluster assembly resulted in decreased AddAB activity and increased sensitivity to
DNA-damaging agents. Despite multiple attempts, we were unsuccessful in construct-
ing the sufD* addB::Tn double-mutant strain, suggesting that the strain may not be

FIG 7 Effect of decreased Suf function on DNA metabolism. (A) The frequency of spontaneous rifampin
resistance was measured in the WT and sufD* strains. (B) The frequency of spontaneous rifampin resistance
was measured in the WT, mutY::Tn, nth::Tn, and addB::Tn strains. (C) Sensitivity to MMS was assessed in the WT,
sufD*, and sufD* suf� strains. (D) Sensitivity to DES was assessed in the WT, sufD*, and sufD* suf� strains. (E)
Sensitivity to MMS was assessed in the WT, mutY::Tn, nth::Tn, addB::Tn, Δnfu, and Δnfu addB::Tn strains. (F)
Sensitivity to DES was assessed in the WT, mutY::Tn, nth::Tn, addB::Tn, Δnfu, and Δnfu addB::Tn strains. The
data presented in panels A and B represent the averages of 10 biological replicates with standard
deviations. The data presented in panels C, D, E, and F represent the averages of biological triplicates
with standard deviations. Student t tests (two tailed) were performed on the data; *, P � 0.05 relative to
the WT strain unless otherwise indicated; N.S., not significant (P � 0.05).
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viable. However, we were able to create a Δnfu addB::Tn double mutant. Like the sufD*
strain, the Δnfu strain displayed increased sensitivity to MMS and DES (Fig. 7E and F).
The phenotypic effects of the Δnfu and addB::Tn mutations were not additive. Although
not conclusive, these data are consistent with the hypothesis that defects in Fe-S cluster
assembly result in diminished ability to repair damaged DNA because of decreased
functionality of Fe-S clusters requiring DNA repair enzymes.

Decreased Suf function increases sensitivity to reactive oxygen and reactive
nitrogen species. Oxidation of solvent-accessible Fe-S clusters can result in cluster
disintegration and impaired protein function. Proteins requiring Fe-S cluster cofactors
are targets for ROS and reactive nitrogen species (RNS) (44, 45).

The growth of the sufD* strain in the presence of methyl viologen was monitored.
Methyl viologen is a redox cycling agent that produces superoxide. The sufD* strain had
decreased growth when plated upon solid medium containing methyl viologen (Fig.
8A), and the phenotype could be genetically complemented. A strain lacking the major
superoxide dismutase (sodA::Tn) displayed decreased growth, verifying superoxide
generation. The sufD* strain also displayed decreased survival after challenge with a
bolus of hydrogen peroxide (H2O2), and the phenotype could be genetically comple-
mented (Fig. 8B). A katA::Tn strain that is unable to produce functional catalase also
displayed decreased survival upon H2O2 challenge.

Next, we examined the effects of RNS on the sufD* strain. We examined the growth
profiles of WT, sufD*, and sufD* suf� strains in chemically defined medium in the
presence and absence of nitroprusside, which interacts with intracellular thiols, result-
ing in the release of RNS (46). The sufD* mutant had a severe growth defect when
exposed to nitrosative stress, and the phenotype could be genetically complemented
(Fig. 8C).

The sufD* strain has altered Fe homeostasis. An S. aureus strain lacking the Fe-S
cluster maturation factor Nfu is perturbed in intracellular Fe homeostasis. We examined
whether defective Fe-S cluster synthesis also results in perturbed intracellular Fe
homeostasis. Growth of the WT, sufD*, and sufD* suf� strains was monitored in the
presence of 2,2-dipyridyl (DIP), which is a cell-permeable divalent metal chelator with
specificity for Fe (47). An fhuC::Tn mutant that is defective in Fe scavenging was
included as an experimental control (48). The sufD* and fhuC::Tn strains displayed

FIG 8 Decreased Suf function results in increased sensitivity to RNS and ROS. (A) Methyl viologen sensitivity was
monitored in the WT, sufD*, sufD* suf�, and sodA::Tn strains. The cells were cultured in TSB before serial dilution
and spot plating on solid TSA supplemented with 40 mM methyl viologen or vehicle control. (B) H2O2 sensitivity
was assessed in the WT, sufD*, sufD* suf�, and katA::Tn strains. The cells were challenged with 500 mM H2O2 before
the reaction was quenched, and the cells were serially diluted and spot plated on solid TSA medium. (C)
Nitroprusside (NP) sensitivity was assessed in the WT, sufD*, and sufD* suf� strains. Representative growth profiles
in the presence and absence of 15 mM nitroprusside in TSB medium are shown. The data are from representative
experiments.
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decreased growth compared to the WT when cultured in the presence of DIP, and the
phenotype of the sufD* mutation could be genetically complemented (Fig. 9A).

The antibiotic streptonigrin, in combination with Fe and an intracellular electron
donor, causes DNA damage resulting in cell death (49). Higher incidences of cell death
are correlated with an increased concentration of nonchelated intracellular Fe (50). The
sufD* strain displayed increased sensitivity to growth in the presence of streptonigrin,
and the phenotype could be genetically complemented (Fig. 9B).

Streptonigrin, in conjunction with Fe, can catalyze double-stranded DNA breaks (51).
Strains defective in Fe-S cluster assembly were defective in repairing damaged DNA
(Fig. 7). We examined whether the increased streptonigrin sensitivity of strains defec-
tive in maturing Fe-S proteins was the result of defective DNA repair. The streptonigrin
sensitivities of the nth::Tn, mutY::Tn, and addB::Tn strains were determined. The nth::Tn
and mutY::Tn mutants had streptonigrin sensitivities similar to that of the WT, but the
addB::Tn mutant displayed increased sensitivity to streptonigrin (Fig. 9C). The strep-
tonigrin sensitivities of the Δnfu and Δnfu addB::Tn mutants were also assessed. The
streptonigrin sensitivity phenotypes attributed to the Δnfu and addB::Tn mutations
were additive. These findings suggested that the streptonigrin sensitivity phenotype of
strains defective in Fe-S cluster assembly was not exclusively due to defective AddAB
function.

Exoprotein production and biofilm formation are not significantly altered in
the sufD* mutant. S. aureus produces and secretes a number of exoproteins, including
toxins, adhesins, proteases, and invasins that are crucial for pathogenesis (52). The total
abundance of exoproteins was quantified in the spent culture medium obtained from
the WT and sufD* strains. S. aureus strains lacking a functional Agr system are deficient
in exoprotein production, and therefore, an agrA::Tn strain was included as a control
(53). The agrA::Tn strain had decreased exoprotein production, and the phenotype of
the sufD* strain was not statistically significant (P � 0.049) (Fig. 10A).

The activities of hemolytic toxins present in the spent media from WT and sufD*
strains were assessed by examining the ability of spent culture medium to lyse rabbit
erythrocytes. An agrA mutant has decreased production of hemolytic toxins and was
included as a control (53). The WT and sufD* strains showed similar hemolytic activities
(Fig. 10B), whereas exoproteins from the agrA::Tn mutant did not cause detectable lysis.

FIG 9 Decreased Suf function destabilizes intracellular Fe homeostasis. (A) The WT, sufD*, sufD* suf�, and fhuC::Tn strains were spot plated
on solid TSA medium with and without 900 mM 2,2-dipyridyl. (B) The WT, sufD*, and sufD* suf� strains were plated as top agar overlays
on solid TSA, and the zones of growth inhibition resulting from streptonigrin intoxication were measured. (C) The WT, nth::Tn, mutY::Tn,
addB::Tn, Δnfu, and Δnfu addB::Tn strains were plated as top agar overlays on solid TSA, and the zones of growth inhibition resulting from
streptonigrin intoxication were measured. The data presented in panels B and C represent the averages of biological triplicates with
standard deviations. Student t tests (two tailed) were performed on the data; *, P � 0.05 compared to the WT unless otherwise indicated.
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S. aureus forms surface-associated communities referred to as biofilms. Biofilm-
associated cells serve as the etiologic agents of recurrent staphylococcal infections (54).
Biofilm formation was monitored aerobically using the WT and sufD* strains. The
agrA::Tn and ΔsigB strains were included as experimental controls for increased and
decreased biofilm formation, respectively (55, 56). The WT and sufD* strains formed
similar amounts of biofilm, whereas the agrA::Tn and ΔsigB strains formed more and less
biofilm than the WT, respectively (Fig. 10C).

Effective Fe-S cluster biosynthesis is necessary for survival in human PMNs.
PMNs phagocytize invading bacteria and subject them to toxic chemical species,
including ROS (57). The finding that strains defective in Fe-S cluster synthesis have
global metabolic defects, including increased sensitivity to ROS and increased nonche-
lated Fe, led us to hypothesize that decreased Fe-S cluster synthesis would result in
decreased survival in human PMNs.

We examined the abilities of the WT, sufD*, and lacB::Tn strains to survive challenge
by human PMNs. The lacB::Tn strain was included to evaluate the contribution of the
bursa aurealis transposon to bacterial survival. The strains were individually combined
with human PMNs, and bacterial survival was monitored at various time points. The
sufD* strain had decreased survival compared to that of the WT upon challenge with
PMNs (Fig. 11). The survival of the lacB::Tn strain was indistinguishable from that of the
WT. Moreover, while the WT and lacB::Tn strains were able to rebound (120 and 180
min), minimal growth rebound was observed with the sufD* strain.

DISCUSSION

The present study confirmed that the Suf Fe-S cluster synthesis system is essential
for S. aureus under standard laboratory growth conditions. These findings imply that
Suf is the only Fe-S cluster synthesis system required for growth under these conditions
(7). Therefore, if a therapeutic agent is developed that inhibits SufCDSUB, there may not
be an alternate synthesis system that can compensate for its loss. Similar to S. aureus,
a majority of bacterial species are predicted to utilize only one Fe-S cluster biosynthetic
system, and the Suf system is the most widely distributed (58). Data from genetic
screens suggest that Fe-S cluster synthesis is also required for fitness or survival of a
number of additional human bacterial pathogens during routine laboratory growth
(see Table 4), including Mycobacterium tuberculosis and the ESKAPE pathogens Entero-
coccus faecalis, Pseudomonas aeruginosa, and Acinetobacter baumannii. Not surprisingly,
bioinformatics analysis suggests that the individual genomes of these organisms
encode only one described Fe-S cluster synthetic system.

Unlike S. aureus, some bacteria utilize multiple Fe-S cluster assembly machineries

FIG 10 Decreased Suf function does not significantly affect exoprotein production or biofilm formation.
Total exoprotein production (A), hemolysin activity (B), and biofilm formation (C) were assessed in the WT,
sufD*, agrA::Tn, and ΔsigB strains. The data presented in panels A and B represent the averages of spent
medium supernatants from three biological replicates, and the data in panel C represent averages of eight
wells with standard deviations. Student t tests (two tailed) were performed on the data; *, P � 0.05; N.S.,
P � 0.05 relative to the WT (not significant); ND, not detectable.
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(e.g., Suf and Isc) that are biochemically dissimilar but, for the most part, functionally
redundant (reviewed in reference 59). Lesions in genes necessary for the function of an
individual Fe-S cluster synthesis system are not lethal in these organisms (Escherichia
coli and Klebsiella pneumoniae [see Table 4]) (60, 61); therefore, therapeutic agents
targeting a single Fe-S cluster synthesis system would be less effective in preventing
the growth or survival of these bacteria.

Iron-sulfur cluster synthesis is also essential in mammals, but importantly, mammals
use Fe-S cluster synthesis machinery that is fundamentally different from the Suf
system (reviewed in reference 21). This decreases the likelihood that a potential
therapeutic agent that inhibits Suf function would have adverse effects on Fe-S cluster
synthesis in mammals.

We utilized an S. aureus strain (sufD*) with decreased transcription of sufSUB to
examine the effects of decreased Suf function on S. aureus physiology. Not surprisingly,
the strain had decreased activities of Fe-S cluster-dependent enzymes and global
metabolic defects. Decreased Fe-S cluster synthesis reduced growth on media lacking
metabolites that require Fe-S proteins for synthesis. Protein-associated and solvent-
exposed Fe-S clusters are a primary target of ROS and RNS damage (44, 45, 62), and the
sufD* strain displayed increased sensitivity to H2O2, methyl viologen, and nitroprusside.
Decreased Suf function also resulted in reduced flux through the TCA cycle and a
destabilized nonchelated Fe pool. The sufD* strain had increased mutagenesis and
decreased ability to repair DNA, which were likely the result of decreased AddAB and
Nth activities.

Two scenarios could explain the essentiality of SufCDSUB for S. aureus survival
during standard laboratory growth. There may be a described or unidentified essential
Fe-S protein(s). To exmine this, we analyzed the results from high-density transposon

FIG 11 A strain with decreased Suf function has decreased survival in neutrophils. The WT, sufD*, and
lacB::Tn strains were opsonized with 20% human serum, washed, and then diluted to 2.5 � 107 CFU/ml
and used to infect 250,000 PMNs per well in a 96-well plate. The neutrophils were lysed upon addition
of 1% saponin, and CFU were determined at various time points by plating. The data presented represent
the averages of biological triplicates, with error bars representing standard errors of the mean. Student
t tests (two tailed) were performed on the data, and P values are shown for the sufD* strain relative to
the WT.
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screens in hopes of determining why Suf is essential in S. aureus (22–24). With the
exception of Fe-S cluster synthesis proteins, the only described Fe-S proteins predicted
to be essential are those encoded by fdx (ferredoxin), hemH (ferrochelatase), and addB
(DNA helicase/exonuclease). Fdx and AddB were reported to be essential in one of the
three studies, whereas HemH was reported to be essential in two of the studies. Here,
we report that the LAC addB::Tn mutant is viable. Alternatively, the wide variety of
metabolic defects resulting from defective Fe-S protein maturation may result in
metabolic standstill and cell death. The numerous metabolic defects of the sufD* strain
support this argument. If the inhibition of numerous metabolic functions leads to the
death of cells lacking Suf function, it lowers the probability that a mutation will arise,
other than mutations that affect SufCDUSB function, which would provide metabolic
bypass to these processes.

Decreased Fe-S cluster synthesis did not alter exoprotein accumulation, alpha-toxin
production, or biofilm formation. However, the sufD* strain displayed decreased sur-
vival in human PMNs. Further emphasizing the importance of Fe-S protein maturation
for pathogenesis, an S. aureus strain lacking the Fe-S cluster carrier Nfu also displayed
decreased survival in PMNs and decreased tissue colonization in a mouse model of
infection (7). A recent study used transposon sequencing (Tn-seq) to identify S. aureus
genes that are necessary for fitness in various models of infection (22). A number of
described Fe-S proteins were required for fitness, including AddAB, Nth (DNA repair),
MiaB (RNA modification), AcnA, Fdx, SdaA (central metabolism), HemN, and HemH
(heme synthesis). The Nfu, SufA, and SufT Fe-S protein assembly factors were also
required for fitness during infection (22).

In summary, the data presented in the present study confirm that Suf-dependent
Fe-S cluster biosynthesis is essential for S. aureus survival under standard laboratory
conditions. We show that an S. aureus strain with decreased Suf function has broad
metabolic defects and reduced survival upon challenge with human PMNs. The mutant
strains and genetic constructs described comprise a valuable toolbox for the identifi-
cation of potential Suf inhibitors and for further characterization of Fe-S cluster assem-
bly in S. aureus.

MATERIALS AND METHODS
Materials. Phusion DNA polymerase, deoxynucleoside triphosphates, the quick DNA ligase kit, and

restriction enzymes were purchased from New England BioLabs. The plasmid miniprep kit, gel extraction
kit, and RNA Protect were purchased from Qiagen. TRIzol and High-Capacity cDNA reverse transcription
kits were purchased from Life Technologies. Oligonucleotides, obtained from Integrated DNA Technol-
ogies, are listed in Table 1. DNase I was purchased from Ambion. Lysostaphin was purchased from Ambi
Products. TSB was purchased from MP Biomedical. Difco BiTek agar was added (15 g liter�1) for solid
medium. Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich and were of the
highest purity obtainable.

Bacterial growth and media. The chemically defined minimal medium was described previously
(63) and where noted was supplemented with 0.5 �g ml�1 lipoic acid. S. aureus strains cultured in TSB
were grown at 37°C with shaking at 200 rpm in 10-ml culture tubes containing 1 ml of liquid medium
unless otherwise stated. Top agar overlays were made by diluting overnight cultures grown in TSB (1:100
in phosphate-buffered saline [PBS]) and then adding 100 �l to 4 ml of 3.5% TSA before pouring it on top
of TSA plates. Where noted, 1 �l of 2.5-mg ml�1 streptonigrin dissolved in dimethyl sulfoxide (DMSO),
4 �l of neat diethyl sulfate, or 2 �l of neat methyl methanesulfonate was spotted in the centers of the
plates. Antibiotics were added to TSB at the following concentrations: 3 to 5 ng ml�1 Atet, 30 �g ml�1

chloramphenicol (Cm), 1.25 �g ml�1 Rif, and 10 �g ml�1 erythromycin (Erm). To maintain plasmids, the
medium was supplemented with 15 �g ml�1 or 5 �g ml�1 Cm or Erm, respectively. Methyl viologen and
2,2-dypyridyl were added to solid media at 40 mM and 900 mM, respectively.

Liquid phenotypic analysis was conducted in 96-well microtiter plates containing 200 �l of medium
per well using a BioTek 808E visible absorption spectrophotometer, and culture densities were read at
600 nm. The cells used for inoculation were cultured for 18 h in TSB medium, and the cells were washed
with PBS. The optical densities (OD) of the cell suspensions were adjusted to 2.5 (A600) with PBS. Two
microliters of the washed cells was added to 198 �l of medium. Where noted, sodium nitroprusside was
added to liquid media at 15 mM.

Genetic and recombinant DNA techniques. The bacterial strains and plasmids used in this study
are listed in Tables 2 and 3. Unless otherwise noted, these strains, including the sufD* strain, were
constructed in the community-associated methicillin-resistant S. aureus (MRSA) USA300 strain LAC (JMB
strains) that had been cured of the plasmid conferring resistance to erythromycin (pUSA03) (64). All
transductions were conducted using phage 80� (65). All the S. aureus mutant strains and plasmids were
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verified using PCR or by sequencing PCR products or plasmids. All DNA sequencing was performed by
Genewiz (South Plainfield, NJ).

The Suf depletion plasmids were created as described previously (66). Briefly, the sufC gene and its
5= untranslated region were amplified using the sufCup and sufCdwn primers. The sufUB amplicon was
created using the sufUBup and sufUBdwn primers. The resulting amplicons were gel purified and treated
with 0.03 U DNase I (Ambion, Carlsbad, CA) for 5 min. The digested DNAs were separated using agarose
gel chromatography, and DNAs of approximately 250 bp were purified. The purified fragments were
treated with T4 DNA polymerase (NEB, Ipswich, MA) and subsequently treated with Taq DNA polymerase
(NEB). The DNA fragments were cloned into pCR2.1_TOPO (Thermo-Fisher). After transformation and
selection, the colonies were pooled and the plasmids were purified. The plasmids were digested with
EcoRI, and the insert fragments were gel purified and subsequently subcloned into pML100 (67). After
transformation and selection, colonies containing pML100 were pooled, and plasmids were purified and
transformed into S. aureus RN4220 and plated on TSA-Cm. Individual chloramphenicol-resistant RN4220
colonies were inoculated into 200 �l of TSB-Cm medium in 96-well microtiter plates and cultured
overnight. The cells were subcultured into liquid TSB media with and without Atet, and strains with
decreased growth in the presence of Atet were retained. Four positive clones were identified, and the
inserts were confirmed by DNA sequencing.

The pLL39_sufCDUSB plasmid was created using yeast recombinational cloning as previously de-
scribed (68, 69). The amplicons for pLL39_sufCDSUB were created using the following primer pairs:

TABLE 1 Primers used in this study

Name Sequence

sufDfwdRT CAAGTTGATGATAATGCATCGAAAG
sufDrevRT ATGGTTCATAAGAGCGTCTGCTAA
sufSfwdRT AACCATTGCAGAAATAGCTCATCA
sufSrevRT GCTTGCGCCCCATCAAC
sufUfwdRT AATGGCAAGTGCATCGATGA
sufUrevRT GCATTGCTTCTCCAAGTGAATG
sufBfwdRT CTGTTGTGGAAATCATTGTGCAT
sufBrevRT GTTCGCCCAGTTTTGAATCG
sufCRT5 GATGAAATCGATTCAGGGTTAGACA
sufCRT3 TTCCCCACGCATTTGGTTA
sufCup TTATTCAGCTGAACCGAACTCTTC
sufCdwn CTCGTTCCCATAGCAAAACCT
sufUBup GTATTTGTGTTGTCGCTTTATCCACC
sufUBdwn CGGGTCTATGACAGTAGATATG
pML100rev GCCTGCAGGTCGACTCTAGAGG
pML100for GGCGTATCACGAGGCCCTTTCG
sufinternal5 GACGTTAATGAAGTAATCAAGGATTTTCCGATATTAGA
sufinternal3 TCTAATATCGGAAAATCCTTGATTACTTCATTAACGTC
pLLYCC5 CTGTAATGGGCCCAATCACTAGTGAATTCCCGAAGCGGTGGCACTTTTCGGGGAAA
sufYCC3 TCTCACGACGTTTTTGGCCGGTACCACGCGTTCCGGACTATATTACCCTGTTATCCCTA
YccSuf TAGGGATAACAGGGTAATATAGTCCGGAACGCGTGGTACCGGCCAAAAACGTCGTGAGA
sufpLL39 GTGCTAAAGAAGTTGTAGGTAATAAAAAAGCTTGCTAGCCGGAAGTCAAGAATGGCTTA

TABLE 2 Strains used in this study

Strain name Genotype Source/reference

WT USA300_LAC A. R. Horswill (79)
JMB1102 ΔsigB (SAUSA300_2022) 55
JMB1163 ΔacnA::tetM (SAUSA300_1246) 80
JMB1165 Δnfu (SAUSA300_0839) 7
JMB2078 kat::Tn (ermB) (SAUSA300_1232) V. Torres
JMB2763 nth::Tn (ermB) (SAUSA300_1343) BEI (28)
JMB2726 mutY::Tn (ermB) (SAUSA300_1849) BEI (28)
JMB2950 agrA::Tn (ermB) (SAUSA300_1992) BEI (28)
JMB3298 addB::Tn (ermB) (SAUSA300_0869) BEI (28)
JMB5853 sodA::Tn (ermB) (SAUSA300_1513) BEI (28)
None sufD*::Tn (ermB) (Fig. 2A) P. Fey
None sufS*::Tn (ermB) (Fig. 2A) P. Fey
JMB8464 sufD*::Tn (ermB) This study
JMB8472 sufD*::Tn (ermB), pLL39_sufCDSUB This study
JMB7237 lacB::Tn (ermB) (SAUSA300_2154) BEI (28)
JMB7525 fhuC::Tn (ermB) (SAUSA300_0633) BEI (28)
JMB7592 Δnfu addB::Tn (ermB) This study
RN4220 Restriction minus 81
E. coli PX5 Used for gene cloning Protein Express
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pLLYCC5 and sufYCC3, YccSuf and Sufinternal3, and Sufinternal5 and sufpLL39. pLL39 was linearized
using SalI.

RNA-seq analysis of the suf operon. RNA-seq data were downloaded from the Gene Expression
Omnibus (GEO) (accession number GSE48896), corresponding to NCTC8325-4 (29). The downloaded
Sequence Read Archive (SRA) files were converted to fastq format using the SRA toolkit and then
mapped to the S. aureus genome using Tophat (70, 71). The resulting bam files were sorted and indexed
using SAMtools (72) and then converted to tdf format using Integrative Genomics Viewer (IGV) tools (73).
The image of the suf operon was acquired using IGV (73).

Protein analysis and GOGAT assays. GOGAT assays were conducted as previously described with
slight modifications (18). Briefly, strains were cultured overnight in TSB, and the cells were pelleted by
centrifugation and resuspended in PBS (1:1). The resuspended cells were used to inoculate 5 ml (in a
30-ml tube) of chemically defined medium containing 20 aa and lipoic acid to an OD of 0.1 (A600). Strains
were cultured at 37°C with shaking to an OD of 0.8 (A600), and the cells were harvested by centrifugation
and resuspended in lysis buffer (50 mM Tris-HCl, pH 7.7). The cells were lysed anaerobically by the
addition of 4 �g lysostaphin and 8 �g DNase. The cells were incubated at 37°C until full lysis was
observed (�1 h). The cell debris was removed by centrifugation. GOGAT was assayed by the addition of
60 �l of 50 mM glutamine (pH 7.7), 60 �l of 5 mM �-ketoglutarate (pH 7.7), 60 �l of cell extract, and 60
�l of 0.75 mM NADP (NADPH) to 600 �l of lysis buffer. GOGAT activity was determined by monitoring
the rate of NADPH oxidation at 340 nm for 5 min (extinction coefficient at 340 nm [�340] � 6.22 mM�1

cm�1 [74]).
Aconitase assays. AcnA assays were conducted as previously described with slight modifications

(19). Strains were cultured overnight in TSB before diluting them in fresh TSB to an optical density of 0.1
(A600). The cultures were diluted in 0.5 ml or 4 ml of TSB in 10-ml culture tubes. The cells were cultured
for 8 h (Fig. 4), or samples were removed throughout growth (Fig. 5) before they were harvested by
centrifugation, and the cell pellets were stored at �80°C. The cells were thawed anaerobically, resus-
pended with 200 �l of AcnA buffer (50 mM Tris, 150 mM NaCl, pH 7.4), and lysed by the addition of 4
�g lysostaphin and 8 �g DNase. The cells were incubated at 37°C until full lysis was observed (�1 h). The
cell debris was removed by centrifugation, and AcnA activity was assessed as previously described (32).

Protein concentration determination. The protein concentration was determined using a copper-
bicinchoninic acid-based colorimetric assay modified for a 96-well plate (75).

RNA isolation and quantification of mRNA transcripts. Bacterial strains were cultured overnight in
TSB (�18 h) and diluted in 80 ml of fresh TSB to a final OD of 0.05 (A600) in 300-ml flasks in order to mimic
the growth conditions used for the growth and acetate accumulation experiments shown in Fig. 5. The
cells were cultured for 8 h before harvesting by centrifugation. The cells were treated with RNAProtect
(Qiagen) for 10 min at room temperature and pelleted by centrifugation, and the cell pellets were stored
at �80°C. The pellets were thawed and washed twice with 0.5 ml of lysis buffer (50 mM RNase-free Tris,
pH 8). The cells were lysed by the addition of 20 �g of lysostaphin and incubated for 30 min at 37°C. RNA
was isolated using TRIzol reagent (Ambion-Life Technologies) according to the manufacturer’s instruc-
tions. DNA was digested with the Turbo DNA-free kit (Ambion-Life Technologies). The cDNA libraries
were constructed using isolated RNA as a template and a High Capacity RNA-to-cDNA kit (Applied
Biosysytems). An Applied Biosystems StepOnePlus thermocycler and Power SYBR green PCR master mix
(Applied Biosystems) were used to quantify DNA abundance. The primers for quantitative real-time PCR
of the sufC, sufD, sufS, sufU, and sufB transcripts, designed using Primer Express 3.0 software from Applied
Biosystems, are listed in Table 1.

H2O2 killing assays. Bacterial strains were cultured for 12 h in TSB. The cells were pelleted by
centrifugation and resuspended in an equal volume of PBS. The optical densities of the strains were
adjusted to an OD of 0.7 (A600) in a total volume of 1 ml of PBS. The cells were subsequently challenged
with a bolus of H2O2 (500 mM) and incubated for 1 h at room temperature. Fifty microliters of the
reaction mixture was diluted 1:20 in PBS buffer containing catalase (1,300 units ml�1) and incubated for
5 min. Cell viability was visualized by serial dilution of cells and spot plating upon TSA.

Determination of pH profiles and acetic acid concentrations in spent media. Strains cultured
overnight in TSB (�18 h) were diluted in 80 ml of fresh TSB to a final OD of 0.05 (A600) in 300-ml flasks.
At the indicated times, aliquots of the cultures were removed, the culture OD (A600) was determined, and
the cells and culture media were partitioned by centrifugation at 14,000 rpm for 1 min. Two milliliters of
either the culture supernatant or sterile TSB, which served to provide a pH reading for the point of
inoculation, were combined with 8 ml of distilled and deionized water, and the pH was determined using

TABLE 3 Plasmids used in this study

Plasmid name Insert Function Reference

pCM11_sufCp sufC promoter sufC transcriptional activity 19
pML100 None Gene expression 67
psufCKD1 sufC DNA Suf depletion
psufCKD2 sufC DNA Suf depletion
psufUKD1 sufU DNA Suf depletion
psufUKD2 sufU DNA Suf depletion
pLL39 None Genetic complementation 82
pLL39_sufCDSUB sufCDSUB Genetic complementation
pCR2.1_TOPO None Cloning

Iron-Sulfur Cluster Synthesis in S. aureus Infection and Immunity

June 2017 Volume 85 Issue 6 e00100-17 iai.asm.org 15

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48896
http://iai.asm.org


a Fisher Scientific Accumet AB15 pH mV meter. The concentration of acetic acid in the spent medium was
determined using a BioVision acetate colorimetric assay kit (K658) according to the manufacturer’s
instructions.

Static model of biofilm formation. Biofilm formation was examined as described previously, with
minor changes (19, 55). Briefly, overnight cultures were diluted in biofilm medium to a final optical
density of 0.05 (A590), added to the wells of a 96-well microtiter plate, and incubated statically at 37°C for
22 h. Prior to harvesting the biofilms, the optical densities (A590) of the cultures were determined. The
plate was subsequently washed with water, the biofilms were heat fixed at 60°C, and the plates were
allowed to cool to room temperature. The biofilms were stained with 0.1% crystal violet and washed to
remove unbound stain. The plates were dried and subsequently destained by the addition of 33% acetic
acid, and the absorbance at 570 nm of the resulting solution was recorded. The absorbance (A570) was
standardized to an acetic acid blank and subsequently to the optical density of the cells upon harvest.
Finally, the data were normalized with respect to the WT strain to obtain relative biofilm formation.

Total exoprotein analyses. Spent medium supernatants were obtained from overnight cultures,
filter sterilized with a 0.22-�m-pore-size syringe filter, and standardized with respect to culture optical
densities (A600), as previously described (19). Exoproteins were extracted from the spent medium
supernatant using standard trichloroacetic acid precipitation. The resultant protein pellets were resus-
pended, and protein concentrations were determined using a biuret assay. The data were subsequently
normalized with respect to the WT strain.

Hemolysis assays. The hemolytic activities of staphylococcal exoproteins were determined as
previously described (76). The data were subsequently normalized with respect to the WT strain.

Mutagenesis frequency. Overnight cultures (n � 10) were grown in TSB medium before dilution
(1:100) in fresh TSB (A600, �0.1). The cells were cultured with shaking for 48 h at 37°C. One hundred
microliters of culture was spread plated on TSA supplemented with 1.25 �g ml�1 of rifampin, and CFU
were determined after 36 h of incubation. Cultures were also serially diluted and spot plated on TSA to
determine total CFU. The mutagenesis frequency was calculated by dividing the number of rifampin-
resistant colonies by the total number of CFU.

Transcriptional reporter analyses. Strains containing the psufCp (19) transcriptional reporter
plasmid were grown in TSB-Erm medium overnight. The cultures were then diluted (1:100) in 5 ml of
fresh TSB-Erm and allowed to grow for 30 h, during which 200-�l aliquots were removed at various time
points and fluorescence and culture OD (A600) were measured with a PerkinElmer HTS 7000 Bio Assay
reader. Green fluorescent protein (GFP) was excited at 485 nm, and emission was read at 535 nm.
Fluorescence was standardized with respect to the culture OD.

Opsonophagocytic killing assay. Strains were cultured overnight in TSB and subcultured in TSB
(1:100) the following day for 3 h. Human primary PMNs were isolated by dextran gradient as described
previously (77). Prior to infection, 96-well plates were coated with 20% human serum in RPMI 1640 (10
mM HEPES plus 0.1% human serum albumin [HSA]) for 30 min at 37°C. Following subculture of the
bacteria, the strains were opsonized with 20% human serum for 30 min at 37°C, washed, and diluted to
an approximate density of 2.5 � 107 CFU ml�1. Approximately 250,000 PMNs per well in a 96-well plate
were infected with approximately 2.5 � 106 CFU to generate a multiplicity of infection (MOI) of 10. With

TABLE 4 Fe-S biosynthesis systems in select bacterial strains

Bacterial species
Fe-S assembly
machinery

Fe-S biogenesis system
predicted to be
essential Reference

Acinetobacter baumanniia Isc Yes 83
Bacillus subtilis Suf Yes 84
Bacteroides fragilis Suf Yes 85
Burkholderia pseudomallei Suf and Isc Yesc 86
Campylobacter jejuni Nif Yes 87
Clostridium difficile Suf Yes 88
Enterococcus faecalisa Suf Yesb 89
Escherichia coli Suf and Isc No 61
Francisella novicida Suf Yes 90
Haemophilus influenzae Isc Yes 91
Helicobacter pylori Nif Yes 92
Klebsiella pneumoniaea Suf, Nif and Isc No 60
Mycobacterium tuberculosis Suf Yes 93
Porphyromonas gingivalis Suf Yes 94
Pseudomonas aeruginosaa Isc Yes 95
Salmonella enterica Suf and Isc No 96
Staphylococcus aureusa Suf Yes 22
Streptococcus pneumoniae Suf Yes 97
Streptococcus pyogenes Suf Yes 98
Vibrio cholerae Isc Yes 99
aESKAPE pathogen, capable of escaping the biocidal effects of antibiotics.
bLimited data set.
cThe IscS cysteine desulfurase is predicted to be essential.
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the exception of time zero, the infections were centrifuged at 1,500 RPM for 7 min to synchronize the
bacteria with the PMNs. During centrifugation, 1% saponin was added to the time zero infections to lyse
the PMNS, and CFU were then determined by serial dilution and plating on TSA. This procedure was
followed for the remaining time points up to 180 min.

Blood samples were obtained from anonymous healthy donors as buffy coats (New York City Blood
Center). The New York City Blood Center obtained written informed consent from all participants
involved in the study. The research was approved by the New York University School of Medicine
institutional human subjects board.

Bioinformatic and statistical analyses. The analyses presented in Table 4 were generated by first
using BLAST (78) to identify the homologues of S. aureus SufBCD, E. coli IscU, or Azotobacter vinelandii
NifU in the genomes of various bacterial pathogens. The corresponding locus tags were then used to
determine whether the genes were predicted to be essential, using published data sets. The data
presented were analyzed and plotted using SigmaPlot version 12, and statistical analyses were con-
ducted using Microsoft Excel.
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