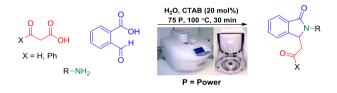
ORIGINAL PAPER

Microwave-assisted green synthesis, antimicrobial activity, and drug-likeness of novel isoindolinone derivatives


Ahmed Majeed Jassem¹ · Adil Muala Dhumad¹

Received: 24 April 2020 / Accepted: 3 July 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020

Abstract

An efficient and green microwave method has been developed for the synthesis of novel isoindolinone derivatives with good yields. The framework of these derivatives was constructed from β -ketocarboxylic acids, various primary amines, and 2-carboxybenzaldehyde via cetrimonium bromide salt-promoted multicomponent cascade of decarboxylation/lactamization reaction. This methodology features a simple, environmentally friendly approach, employing water as a green solvent and using a one-pot, three-component reaction. The synthesized compounds were evaluated for their antimicrobial activity in vitro against six microorganisms, namely *Escherichia coli*, *Serratia*, *Staphylococcus aureus*, *Bacillus subtilis*, *Aspergillus niger*, and *Fusarium oxysporum*. The results revealed that these derivatives have a significant antimicrobial activity. In addition, the drug-likeness of these derivatives has been evaluated.

Graphic abstract

Keywords Microwave-assisted synthesis · Green solvent · Cetrimonium bromide · Isoindolinone derivatives · Antimicrobial activity

Introduction

Isoindolinone skeleton is an important privileged class in exhibiting a broad range of potent therapeutic and pharmacological activities [1, 2]. The isoindolinone moiety is found in natural products and biologically active compounds [3, 4]. Examples of biological activities of isoindolinone derivatives include therapeutic agents such as pagoclone (**A**) and pazinaclone (**B**) which showed anxiolytic and hypnotics

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00706-020-02661-y) contains supplementary material, which is available to authorized users.

Ahmed Majeed Jassem ahmedmajeedhsskia@gmail.com activities [5, 6]. Zopiclone (C) is found to be clinically useful in the treatment of sedative effects [7] and compound **D** exhibited an inhibitory potency toward aldose reductase [8]. Furthermore, compound **E** appears to be an important agent to evaluate the potential therapeutic of ELOVL6 and ELOVL3 inhibitors [9] (Fig. 1).

Several methodologies for the synthesis of isoindolinone derivatives have been reported in the literature, including Mukaiyama/Mannich lactamization [10], Ugi/Diels–Alder reaction [11], Sonogashira coupling, followed by ring closure and redox reactions [12] and cascade reactions [13, 14]. Reportedly, in some methods various catalysts have been explored in the synthesis of isoindolinone derivatives such as camphorsulfonic acid (\pm)-CSA [15], DBU [16], bis(triphenylphosphine)palladium(II) dichloride [17], rhodium(III) [18], L-proline [19], Ru(II) [20], and In(OTf)₃ [21]. Nevertheless, the reported methodologies generally

¹ Department of Chemistry, College of Education for Pure Sciences, University of Basrah, Basrah, Iraq