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ABSTRACT 
Bridges are one of the most important structures that must be protected from failure by safe design and continuous monitoring. In 

the present study artificial neural network (ANN) model with feed-forward back-propagation algorithm is developed to 

investigate the local scour depth around circular bridge piers using laboratory data of several researchers in addition to the 

laboratory data of this study under clear water conditions. Pier diameter (D), flow velocity (�), flow depth (y) and mean particle 

size (���) were selected to be input to the neural network. The results show that the artificial neural network is a good tool to 

predict the maximum local scour depth at bridge piers. Comparison the results with twelve predictive formulas showed an 

improved performance by using the artificial neural network model. Also it was found that pier diameter has the major effect on 

the scouring process, followed by flow velocity. 

 

KEYWORDS:  Artificial neural network, back-propagation, bridge pier, local scour. 
 

INTRODUCTION 
 

Bridges are one of the principle components of the transportation systems and their failure will result in 
economic losses as well as human life threat, therefore, there is need to protect them by continuing maintenance 
through proposing the required repair procedures. Bridges might fail due to three main reasons: collision, 
excessive loading and scour. Bridge scour has been reported all over the world as the most common factor for 
bridges failure, particularly in countries that are subject to floods induced by annual typhoons. 

Arneson et al. [1] suggested that, the total scour at bridges can be divided into long-term degradation of the 
river bed, contraction scour at the bridge and local scour at the piers or abutments. Local scour can be defined as 
the removal of materials from around piers, abutments, spurs, and embankments. It is caused by an acceleration 
of flow and resulting vortices induced by obstructions to the flow. 

The presence of the bridge piers in the river will alter flow patterns in the vicinity of the piers results in an 
increase in the sediments movement causing the phenomenon of scour. To avoid a failure of the bridges, the 
foundations depth (piers and abutments) should be deeper than the maximum scour depth in its life time, and the 
old bridges should be checked from time to time to evaluate the maximum scour depth around the bridge 
foundation to avoid bridge collapse. 

Over the past decades many researchers studying the local scour (��) at bridge piers and variety predictive 
formulas was developed based on laboratory and field observations, such as Laursen and Toch [2], Jain and 
Fischer [3], Melville [4], Rui et al. and many other researchers, as shown in Table (1). 

In the recent years, the application of Artificial Neural Networks (ANNs) is proposed to predict the local 
scour depth as an alternative to the predictive formulas, Kambekar and Deo [14] used ANNs to predict the scour 
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depth as well as scour width for  group of piles. Lee et al. [15] developed ANN model with five inputs in 
normalized form to predict the local scour depth around bridge pier, the measured data of thirteen states in USA 
used to test the performance of the ANN model. Bateni et al. [16] showed that, ANN model with multi-layer 
perceptron using back-propagation algorithm (MLP/BP) provides a better prediction of scour depth than radial 
basis using orthogonal least-squares algorithm (RBF/OLS) and adaptive neuro-fuzzy inference system (ANFIS). 
Kaya [17] investigated different input variables with various ANNs models, the sensitivity analysis indicated 
that pier scour depth can be estimated using four variables: pier shape, pier skew, flow depth and flow velocity. 

 
Table 1: Scour Depth Formulas Proposed from Previous Studies. 

Author Formula 
Laursen and Toch (1956) �� = 1.35 ��.�	�.
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Where, � = Pier width, D = Pier diameter, �� = Maximum local scour depth, ��� = Mean sediment size,Fr = 

Froude number, Fr$ = Critical Froude number, F5�� = Densimetric Froude number, 8 = Gravitational 
acceleration, �� = Correction factor for pier nose shape, �� = Correction factor for the angle of attack of the 
flow, �
 = Correction factor for bed conditions, �&=Correction factor for armoring by bed material size, 
�� = Sediment size factor, �*  = Factor of channel geometry effect, �9 = Shallowness factor, �( = Flow 
intensity factor, �� = Pier shape factor, � ' = Flow depth-pier size factor, �) = Pier alignment factor, Re = 
Reynolds number for the pier , � = Flow velocity, �# = Critical flow velocity, y = Flow depth,∆8 = Reduced 
gravitational acceleration, : = Water density, :� = Sand density, ; = Dynamic viscosity of the water. 

In this research, feed-forward neural network with back-propagation algorithm will be used to predict the 
maximum local scour depth around single cylindrical bridge pier under clear water conditions and comparison 
of the results with twelve of the most common predictive formulas, listed in Table (1). 

 
Experimental Work: 

Experimental measurements were conducted at the university of Basrah, college of engineering, to analyze 
and observe the local scour around bridge piers experimentally. All laboratory experiments were conducted 
under clear water conditions. Flume with a total length of 5.72 m, width 0.615 m and 0.2 m height was used in 
the experiments. At the entrance of the flume there is a mesh screen to establish steady flow conditions. 
Discharge was measured by sharp crested rectangular weir. Depth of flow was controlled by an adjustable tail 
gate at end of the flume and measured by point gauge ( ± 0.1 mm accuracy ). 

Uniform sand with ��� = 0.348 mm used as a bed sediments. Single vertical cylindrical piers were made of 
wood used in the experiments, place in the middle sand area. before each experiment, the sand bed is perfectly 
leveled, Then the flume is filled with water gradually and the pump starts with low velocities until the desired 
value is reached. At the end of each run the flume is drainage and the scour depth is measured with a point 
gauge. The experimental data is presented in Table (2). 

 
Table 2: Experimental Data. 

Run No. ��� 
mm 

D 
mm 

� 
m/s 

	 
mm 

�� 
mm 

1 0.348 19 0.172 45 26.3 
2 0.348 24.4 0.172 45 36.6 
3 0.348 35.2 0.172 45 42.2 
4 0.348 40.5 0.172 45 47 
5 0.348 49 0.172 45 53.4 
6 0.348 24.4 0.141 40 24 
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7 0.348 24.4 0.16 40 30 
8 0.348 24.4 0.18 40 34.8 
9 0.348 24.4 0.2 40 42 
10 0.348 24.4 0.2162 40 46 
11 0.348 49 0.1768 35 47.5 
12 0.348 49 0.1768 40 51 
13 0.348 49 0.1768 44 53 
14 0.348 49 0.1768 48 57 
15 0.348 49 0.1768 51 61 

 
Artificial Neural Network: 

Artificial neural network is type of artificial intelligence (computer system) that attempt to simulate and 
mimic the way of the human brain in processing and storage information. ANN composed of collection of 
interconnected processing elements called neurons or nodes, it works by creating connections between the nodes 
and the strength of these connections called weights. neurons grouped in layers and most of ANN models 
consist of three or more layers (input layer, hidden layers, output layer) as shown in Figure 1, The ANN system 
learns by determine the appropriate number of neurons in the hidden layer or hidden layers and adjusting the 
weights of the connections based upon the training data. Trial and error are the best way to determine the 
appropriate number of hidden neurons and the number of the hidden layers [18]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Schematic diagram for ANN model. 

 
Where, Wji is the weight of the connection between the ith input layer neuron and jth hidden layer neuron, 

WKj  is the weight of the connection between the jth hidden layer neuron and the kth output layer neuron. 
The input data is first fed directly to the network through the input layer, and subsequently to the hidden 

layer to produce an expected result through the output layer. each node multiplies every input by corresponding 
weight and sums them together in addition to the bias to form the net input to the neuron, and then passes the net 
input through the transfer function to produce the node output. The transfer function for the hidden nodes is 
usually a sigmoid transfer function. 

The ANN are trained with a set of input and known output data, and the procedure to know the performance 
of the network is based on the mean square error (mse) and the regression value (R), they can be calculated as 
below [19,20]: 
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Where, >? is the actual target, A? is the network output, n is the number of data, >F is the mean value of the 

targets, AF is the mean value of the network output. 
One is the best condition for the regression value and Zero is the best condition for the mean square error. 
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presented in the training data and in the range of the training data. Sometimes neural network give a perfect 
performance for the training data but it fails to produce a good results when applied to a new examples (over 
fitting), [21]. Therefore, it is necessary  to test the network and check if it memorizing the relation between the 
inputs and outputs when applying to a new data in the future. And the network with best testing performance 
will be choose as the proposed network. 

 
RESULTS AND DISCUSSIONS 

 
A. Experimental Results: 

The laboratory experiments addressed three cases, the effect of pier size, flow velocity and flow depth on 
the local scour, as show in Figures (2, 3 and 4) respectively. It is found that the larger pier diameter gives deeper 
local scour upstream of the pier. This is because the strength of the horseshoe vortex which is proportional to the 
diameter of the pier. Flow velocity increment leads to increase the flow intensity under the same conditions of 
flow depth and pier diameter, in turn, this will lead to more scour depth as velocity is increased under clear 
water conditions. Flow depth has a proportional effect on the local scour depth. The results have shown that the 
local scour depth increases as the depth of flow increases under the range of the flow depth during the 
experiments. this conforms with the previous researches in that: the scour depth is proportional to flow depth up 
to limiting value where this effect is vanished. 

 

 
 

Fig. 2: Effect of pier diameter on the scour depth 
 

 
 
Fig. 3: Effect of flow velocity on the scour depth 

 

 
 

Fig. 4: Effect of flow depth on the scour depth 
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B. Artificial Neural Network Results: 
Feed-forward neural network with back-propagation algorithm was used in this research to predict the 

maximum local scour depth around bridge pier. Trial and error process was used to configure the neural 
networks parameter such as the training functions, number of the hidden layers and the number of the neurons in 
the hidden layers. Logsig transfer function was used in the hidden layer(s) and Purelin transfer function in the 
output layer. The network was trained with laboratory data from previous researchers shown in Table 3. The 
laboratory data of Yanmaz and Altinbilek [22] was used to test the network performance. Table 4, shows the  
input and output variables for the training and testing and the range of  each one of them. 

 
Table 3: Training Data 

The Researcher Number of  Data set 
Chabert and Engeldinger  12 
Dey et al. [24] 18 
Maatooq J.S.  82 
Mia and Nago 5 

 
Table 4: Training and Testing Variables and the Range of them 

Item Variables 
Range of Data 
Training Testing 

Input  
variables 

��� (cm) 0.026 – 0.3 0.084 – 0.107 
D  (m) 0.01 – 0.15 0.047 – 0.067 
�  (m/s) 0.128 – 0.522 0.166 – 0.362 
	  (m) 0.02 – 0.35 0.045 – 0.165 

Output 
variables �� (m) 0.0113 – 0.175 0.032 – 0.107 

 
ANN was trained and tested with one and two hidden layers with different number of nodes (1–20) in each 

hidden layer, as shown in Table (5). Several training functions was examined to reach the best approximations. 
 

Table 5: ANN Performance with One Hidden Layer and Two Hidden Layers 

Training 
function 

One Hidden Layer Two Hidden Layers 
Nodes 
No. 

mse (test)  
× 10E& 

R 
(test) 

Epoch 
Nodes 
No. 

mse (test)  
× 10E& 

R 
(test) 

Epoch 

trainlm 19 0.29363 0.95924 17 12-3 0.26916 0.96873 46 
trainrp 9 0.37733 0.94761 100 2-5 0.39655 0.94623 473 
traingda 19 0.52304 0.94109 669 5-9 0.74826 0.92518 193 
traingdx 19 0.45525 0.93719 316 8-20 0.49918 0.94346 2121 
traincgf 3 0.39637 0.94624 79 7-20 0.59609 0.91539 48 
traincgp 19 0.55217 0.92923 8 18-18 1.5486 0.76494 17 
traincgb 16 0.41094 0.95476 137 7-20 0.58251 0.91807 32 
trainscg 3 0.41031 0.94644 184 3-14 0.36133 0.95046 198 
trainbfg 2 0.37213 0.94882 163 11-19 0.61022 0.9132 30 
trainoss 16 0.36099 0.95173 1600 3-6 0.37339 0.95157 12000 
traingda 4 6.3467 0.81467 100000 9-17 4.5898 0.73305 30000 
traingdm 4 6.3467 0.81465 100000 9-17 4.5875 0.73322 30000 

 
As can be seen in Table 5, (trainlm) training function gave the best testing performance with one and two 

hidden layers. There is no big difference between the results but using two hidden layers gave the best 
performance with mse = 0.26916 × 10E& and R = 0.96873, therefore, it can be chosen as the proposed network 
to predict the local scour depth. Figures 5 and 6, show the regression and mse of the proposed network 
respectively. Table 6, shows the specifications of the proposed network. 
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Fig. 5: Regression of the Proposed Network 
 

 
 
Fig. 6: Performance of the proposed network 

 
Table 6: Specifications of the Proposed Network 

Item Description 
No. of nodes in the input layer 4 
No. of hidden layers 2 

No. of nodes in the hidden layers 
First layer 12 
Second layer 3 

Type of activation function 
First hidden layer logsig 
Second hidden layer logsig 
Output layer purelin 

Training function Levenberg-marquardt (trainlm) 
No. Nodes in the output layer 1 

 
C. Importance of the Input Variables: 

Artificial neural network can be used to find the significant input variables that have the most effect on the 
scouring process and the prediction of the neural network. Test runs were conducted without containing a 
particular one input variable among the four inputs. The results are shown in Table (7). It is showed that the pier 
diameter has the most effect on the local scour, followed by the flow velocity. 
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Table 7: Input variables importance 

Case mse× 10E& 
(Test) 

R 
(Test) 

All inputs 0.26916 0.96873 
No ��� 1.0032 0.86557 
No D 3.1935 0.77783 
No � 2.4934 0.68938 
No 	 0.66757 0.94003 

 
D. Comparison with Previous Formulas: 

Experimental data of this study in addition to the test data of yanmaz and altinbilek [22] were applied to the 
proposed neural network and the previous formulas in Table 1, to show their performance. Figure (7) shows the 
performance of ANN and the predictive formulas. 

 

 
 

Fig. 7: mse of the ANN and the predictive formulas 
 
From Figure 7, it is found that the ANN model gave the best approximation to the actual values from the 

previous formulas with mse = 0.216239× 10E&. Also, it can be seen that, shen et al. [6] and CSU [10] formulas 
gave a good approximation among the twelve formulas. 

 
Conclusions: 

In this paper, the application of Artificial Neural Network is used to predict the maximum local scour depth 
at cylindrical bridge piers. it is found that Feed-forward neural network with back-propagation algorithm has 
proved to be a good tool for predicting the local scour depth at bridge piers and much more accurate than the 
predictive formulas used in this study. By making the sensitivity analysis to the input variables, it is found that 
pier diameter has the significant effect on the local scour depth prediction followed by flow velocity. Form 
Figure 7, it can be found that Shen et al. [6] and CSU [10] formulas are the best among the twelve formulas. The 
laboratory experiments show that both pier diameter and flow velocity are directly proportional with the local 
scour depth. Also, it is shown that the local scour depth is increased as the flow depth increased under the 
limitation of the experiments. 
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