
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Hybrid Approach for Intrusion Detection System

Hussam A. Al-Ameen

University of Basrah / College of Education for Pure Science, Computer Science Department

Abstract: Buffer Overflow (BOF) have become the most common target for network-based attacks and on the other side many

detection and prevention techniques have been developed to secure the systems and networks known Intrusion Detection Systems (IDS).

The paper deals with the problem of BOF and proposes an IDS which is a combination of Host Intrusion Detection System (HIDS) and

Network Intrusion Detection System (NIDS). It is designed to detect any attempt of BOF attack that use the Call/Jump Register

technique depending on the use of set of available memory addresses of Call/Jump instructions for loaded DLL files uses them as a

return addresses that point to the attacker malicious code being used to exploit the system. The proposed system generates two signature

files, one for HIDS and the other for NIDS. The Monitoring and Detection Engine in the HIDS depend on On-Access-Scan technique to

capture any file that contains the attack signature as they open and log them to a log file. Besides that, the Monitoring and Detection

Engine in the NIDS depends on Snort system to sniff and capture any data packets in the network traffic that contain the attack

signature and log them to another log file. An Analysis Engine applies a set of statistical operations and a Fuzzy Analysis System on log

files in order to produce a set of reports in the form of PHP web sites that represent the analysis output that give the degree of BOF

attack risk.

Keywords: HIDS, NIDS, Buffer Overflow

1. Introduction

Computer Security is the property of computer systems and

networks that specifies that the systems in question and their

elements can be trusted to act as expected in safeguarding

their owners’ and users’ information [1]. Security is a big

issue for all networks in today's enterprise environment.

Hackers and intruders have made many successful attempts

to bring down important company networks and web

services. Many methods have been developed to secure the

network infrastructure and communication over the Internet,

among them the use of firewalls, encryption, and virtual

private networks.

Intrusion detection represents an important part of such

techniques. Using intrusion detection methods, information

from known types of attacks can be collected and used and

find out if someone is trying to attack the network

orparticular hosts. The information collected by this way can

be used to strengthen the network security [2].

Buffer overflow attacks are one of the most serious security

threats. Nearly 50% of today’s widely exploited

vulnerabilities are caused by buffer overflow and the ratio is

increasing over time. Buffer overflow attacks may cause

serious security problems to special purpose embedded

systems as well as general purpose systems. With more

embedded systems networked, it becomes an important

research problem to defend embedded systems against buffer

over-flow attacks [3].

To have a secure network, companies must realize that there

are two important issues: prevention and detection. Most

companies focus their efforts on prevention and forget about

detection. For example, more than 90 percent of large

companies have firewalls installed, which are meant to

address the prevention issue. The problem is double,first, a

company cannot prevent all traffic, so some will get through,

possibly an attack. Second, most prevention mechanisms that

companies put in are either not designed or not configured

correctly, which means that they are providing minimal

protection if any.

An intrusion can be defined as “any set of actions that

attempt to compromise the integrity, confidentiality or

availability of resources” [4]. The main categories of parties

that could attack a computer system and compromise its

security must be identified. Nowadays both commercial and

open source products are available to defense network

security. Many vulnerability assessment tools are also

available in the market that can be used to assess different

types of security holes present in a network.

A comprehensive security system consists of multiple tools,

including:

 Firewalls that are used to block unwanted incoming as

well as outgoing traffic of data. There are many firewall

products available in the market both in open source and

commercial products.

 Intrusion detection systems (IDS) that are used to find out

if someone has gotten into or is trying to get into the

network.

 Vulnerability assessment tools that are used to find and

plug security holes present in the network. Information

collected from vulnerability assessment tools is used to set

rules on firewalls so that these security holes are

safeguarded from malicious Internet users. These tools can

work together and exchange information with each other.

Some products provide complete systems consisting of all

of these products pack together.

This paper presents an Intrusion Detection System which is a

combination of two Intrusion Detection Systems, Host and

Network Intrusion Detection Systems.

The proposed system is employed to catch and report any

BOF attack attempt that depend on Call/Jump Register

Technique as they occur providing the system administrator

with the degree of risk in order to make the necessary

actions. The proposed system with its two parts (HIDS and

NDIS) is working in two main stages. The first stage is the

Monitoring and Detection stage which detects any existence

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1149

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

of Call/Jump Register BOF attack signature in both of

opened files and network traffic then it logs the generated

alerts to log files stored in a database. The second stage is the

Analysis stage which is working on the log files and produce

statistical tables that contain information about the degree of

risk for each attack’s alert. All outputs will be in the form of

web pages.

The rest of the paper is organized as follow. Section 2

describes the main concepts of the intrusion detection

system. The buffer overflow attack is then discussed in

Section 3. The proposed IDS is presented in Section 4. The

discussion of the results is given in Section 5 and Section 6

concludes the paper.

2. Intrusion Detection System

An Intrusion Detection System (IDS) is the high-technology

equivalent of a burglar alarm, a burglar alarm configured to

monitor access points, hostile activities, and known

intruders. The simplest definition of IDS is a specialized tool

that knows how to read and interpret the contents of log files

from routers, firewalls, servers, and other network devices

[4].

2.1 Intrusion Detection Systems Classification

IDS systems vary according to a number of criteria. First, it

is possible to distinguish IDSs by the kinds of activities,

traffic, transactions, or systems they monitor. IDSs can be

divided into network-based, host-based, and distributed.

IDSs that monitor network backbones and look for attack

signatures are called network-based IDSs, whereas those that

operate on hosts defend and monitor the operating and file

systems for signs of intrusion are called host-based IDSs.

Some of IDSs functioning as remote sensors and reporting to

a central management station are known as Distributed IDS

(DIDS) [5]. Figure 1 shows number of IDS classification

concepts.

Figure 1: IDS classification concepts

In practice, most commercial environments use some

combination of network, host, and/or application-based IDS

systems to see what is happening on the network while also

monitoring key hosts and applications more closely. IDSs

can also be distinguished by their way of event analysis.

Some IDSs primarily use a technique called signature

detection [5]. This look like the way many antivirus

programs use virus signatures to recognize and block

infected files, programs, or active web content from entering

a computer system, except that, it uses a database of traffic

or activity patterns related to known attacks, called attack

signatures. Signature detection is the most widely used

approach in commercial IDS technology today.

Another approach is called anomaly detection. It uses rules

or predefined concepts about “normal” and “abnormal”

system activity (called heuristics) to distinguish anomalies

from normal system behavior and to monitor, report on, or

block anomalies as they occur. Some anomaly detection

IDSs use user profiles. These profiles represent the baselines

of normal activity and can be build using statistical sampling,

rule base approach or neural networks [6].

Hundreds of vendors offer various forms of commercial IDS

implementations as well as an advanced method for

interpreting IDS output. Most effective solutions combine

network and host-based IDS implementations. The majority

of implementations are primarily signature based, with only

limited anomaly-based detection capabilities present in

specific products or solutions.

Most modern IDSs include some limited automatic response

capabilities, but these usually focus on automated traffic

filtering, blocking, or disconnects as a response. Although

some systems claim to be able to provide effective action

against attacks, best practices indicate that automated

identification and back trace facilities are the most useful

aspects that such facilities provide and then most likely to be

used.

2.2 Network-Based Intrusion Detection System (NIDS)

The NIDS derives its name from the fact that it monitors the

entire network or network segment. Normally, a computer

Network Interface Card (NIC) operates in nonpromiscuous

mode. In this mode of operation, only packets destined for

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1150

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the NICs specific Media Access Control (MAC) address are

forwarded up the stack for analysis. TheNIDS must operate

in promiscuous mode to monitor network traffic not destined

for its own MAC address. In promiscuous mode, the NIDS

can eavesdrop on all communications on the network

segment. Operation in promiscuous mode is necessary to

protect the network. However, according to the privacy

regulations, monitoring network communications is a

responsibility that must be considered carefully.

In Figure 2, there is a network using three NIDS. The units

have been placed on strategic network segments and can

monitor network traffic for all devices on the segment. This

configuration represents a standard security network

topology where the subnets housing the public servers are

protected by NIDSs. When a public server is compromised

on a subnet, the server can become a launching platform for

additional exploits. Careful monitoring is necessary to

prevent further damage.

The internal host systems are protected by an additional

NIDS to reduce exposure to internal compromise. The use of

multiple NIDS within a network is an example of a defense-

in-depth security architecture [6].

Figure 2: NIDS

2.3 Host-Based Intrusion Detection System (HIDS)

HIDS differ from NIDS in two ways. HIDS protects only the

host system on which it resides, and its network card

operates in nonpromiscuous mode. Nonpromiscuous mode of

operation can be an advantage in some cases, because not all

NICs are capable of promiscuous mode. In addition,

promiscuous mode can be CPU intensive for a slow host

machine.

Another advantage of HIDS is the ability to adjust the rule

set to a specific need. For example, there is no need to

examine multiple rules designed to detect Domain Name

Services (DNS) exploits on a host that is not running. The

reduction in the number of relevant rules enhances

performance and reduces processor overhead.

Figure 3 shows a network using HIDS on specific servers

and host computers. As previously mentioned, the rule set

for the HIDS on the mail server is customized to protect it

from mail server exploits, while the web server rules are

customized for web exploits. During installation, individual

host machines can be configured with a common set of rules.

New rules can be loaded periodically to be used for new

vulnerabilities [6].

Figure 3: HIDS

3. Buffer Overflow Attack

Buffers are data storage areas, which generally hold a

predefined amount of finite data. A buffer overflow occurs

when a program attempts to store data into a buffer, and the

data is larger than the size of the buffer. For example, an

empty 50 ml. glass, this is similar to a buffer. This buffer

(empty glass) can store 50 ml. of liquid (data). Now, a bottle,

which is about 75 ml, of water wished to be transferred into

the empty 50 ml. glass. As begin to fill the glass (buffer)

with water (data), everything is fine until the end when water

begins to spill over the glass and onto the table. This is an

example of an overflow. Such an overflow is bad for water

and unfortunately, even worse if such vulnerabilities exist in

computer programs [7].

When the data exceeds the size of the buffer, the extra data

can overflow into adjacent memory locations, corrupting

valid data and possibly changing the execution path and

instructions. The ability to exploit a buffer overflow allows

one to possibly inject arbitrary code into the execution path.

This arbitrary code could allow remote, system-level access,

giving unauthorized access to not only malicious hackers,

but also to replicating malware.

The majority of buffer overflow attacks involve corruption of

procedure return addresses in the memory stack. During the

execution of a procedure call instruction, the processor

transfers control to code that implements the target

procedure. Upon completing the procedure, control is

returned to the instruction following the call instruction. This

transfer of control occurs in a LIFO (Last In First Out)

nested fashion. A procedure call stack, which is a LIFO data

structure, is used to save the state between procedure calls

and returns [8] [9].

3.1 Memory Organization and the Stack

Each process has its own private address space. The address

space is initially divided into three logical segments: text,

data, and stack as shown in Figure 4.

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1151

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Process memory regions

The Text region is fixed by the program and includes code

(instructions) and read-only data. This region corresponds to

the text section of the executable file. This region is normally

marked read-only and any attempt to write to it will result in

a segmentation violation. The Data region contains

initialized and uninitialized data. Static variables are stored

in this region. In the Stack region, modern computers are

designed with the need of high-level languages in mind. The

most important technique for structuring programs

introduced by high-level languages is the procedure or

function. A procedure call alters the flow of control just as a

jump does, but unlike a jump, when finished performing its

task, a function returns control to the statement or instruction

following the call. This high-level abstraction is

implemented with the help of the stack [8].

The stack is also used to dynamically allocate the local

variables used in functions, to pass parameters to the

functions, and to return values from the function. A stack is a

contiguous block of memory containing data. A register

called the Stack Pointer (SP) points to the top of the stack.

The bottom of the stack is at a fixed address. Its size is

dynamically adjusted by the kernel at run time. The CPU

implements instructions to PUSH onto and POP off of the

stack.

The stack consists of logical stack frames that are pushed

when calling a function and popped when returning. A stack

frame contains the parameters to a function, its local

variables, and the data necessary to recover the previous

stack frame, including the value of the instruction pointer at

the time of the function call.

Depending on the implementation, the stack will either grow

down (towards lower memory addresses), or up. On many

computers including the Intel, Motorola, SPARC and MIPS

processors, a stack grows down. The stack pointer (SP) is

also implementation dependent. It may point to the last

address on the stack or to the next free available address after

the stack. In this paper, we'll assume it points to the last

address on the stack [10].

In addition to the stack pointer, it is often convenient to have

a Frame Pointer (FP) which points to a fixed location within

a frame. Also it can be called a local base pointer (LB). In

principle, local variables can be referenced by giving their

offsets from LB. As words are pushed onto the stack and

popped from the stack, these offsets change. Although in

some cases the compiler can keep track of the number of

words on the stack and thus correct the offsets, in some cases

it cannot, and in all cases considerable administration is

required. Furthermore, on some machines, such as Intel-

based processors, accessing a variable at a known distance

from SP requires multiple instructions [8].

Many compilers use a second register, FP, for referencing

both local variables and parameters because their distances

from FP do not change with PUSHs and POPs. On Intel

CPUs, BP (EBP) is used for this purpose. Because the way

the stack grows, actual parameters have positive offsets and

local variables have negative offsets from FP.

The first thing a procedure must do when called is to save the

previous FP or EBP (so it can be restored at procedure exit).

Then it copies SP into FP to create the new FP, and advances

SP to reserve space for the local variables. This code is

called the procedure prolog. Upon procedure exit, the stack

must be cleaned up again, something called the procedure

epilog. The Intel ENTER and LEAVE instructions have been

provided to do most of the procedure prolog and epilog work

efficiently.

3.2 Buffer Overflow

A buffer is simply a contiguous block of computer memory

that holds multiple instances of the same data type. C

programmers normally associate with the word buffer arrays.

Most commonly, character arrays. Arrays, like all variables

in C, can be declared either static or dynamic. Static

variables are allocated at load time on the data segment.

Dynamic variables are allocated at run time on the stack

[11].

A buffer overflows when too much data is put into it. C

language (and its derivatives, like C++), offer many ways to

cause more to be put into a buffer than was expected.As local

variables can be allocated on the stack. This means that there

is a buffer of a set size sitting on the stack somewhere. Since

the stack grows down and there are very important pieces of

information stored there, when more data are put into the

stack allocated buffer than it can handle then like the glass of

water, it overflows.

Figure 5 represents a simple example of an uncontrolled

overflow. This is not really exploitable. This demonstrates a

more commonly made programming error, and the bad

effects it can have on the stability of the program. The

program simply calls the myfunc function. In the myfunc

function, a string of 20 A's is copied into a buffer that can

hold 8 bytes. What results is a buffer overflow. The printf in

the main function will never be called.

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1152

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Uncontrolled Buffer Overflow

3.3 General Exploit Concepts [10]

To perform exploitation, a bit of planning and explanation

are needed in order to take the overflows to the stage where

EIP (Extended Instruction Pointer) can be controlled and

then the advantage of this situation can be taken to gain

control of the machine.

After processor control is gained, and thetransfer control of

the code has been chosen, the EIP will be pointed to the code

that had been written, either directly or indirectly. This is

known as payload.

The Buffer Injection Vector is the custom operational code

needed to actually control the instruction pointer EIP on the

remote machine. The main role of the injection vector is to

get the payload to execute. The payload, on the other hand, is

like a virus: it should work anywhere, anytime, regardless of

how it was injected into the remote machine.

The payload does not have to be located in the same place as

the injection vector, it is just easier to use the stack for both.

When using the stack for payload and injection vector,

considerations should be taken about the size of payload and

how the injection vector interacts with the payload. If these

problems become too complex, then the payload should be

put somewhere else.

All programs will accept user input and store it somewhere.

Any location in the program a buffer can be stored becomes

a candidate for storing a payload. The trick is to get the

processor to start executing that buffer.

Some common places to store payloads include:

1- Files on disk which are then loaded into memory.

2- Environment variables controlled by a local user.

3- Environment variables passed within a Web request.

4- User-controlled fields within a network protocol.

After injecting the payload, the task is simply to get the

instruction pointer to load the address of the payload. The

advantage of storing the payload somewhere other than the

stack is that it makes the attacker free from constraints on the

size of the payload.

3.3.1 Call Register Technique to Execute Payload

There are some techniques used to decide what to put into

the saved EIP on the stack to make it finally point to the

desired code. One of these techniques is called Call Register

Technique. In this technique, if a register is already loaded

with an address that points to the payload, the attacker

simply needs to load the EIP to an instruction that performs a

“call <register>” depending on the desired register. For

example:

- call EAX FF D0

- call EBX FF D3

- call ECX FF D1

- call EDX FF D2

- call ESI FF D6

- call EDI FF D7

- call ESP FF D4

The usable addresses for these useful pairs can be found by

searching the DLL files like (KERNEL32.DLL).These pairs

can be used from almost any normal process.

Since these are part of the kernel interface DLL, they will

normally be at fixed addresses. They will likely differ

between Windows versions, and possibly depending on

which Service Pack is applied.

4. The proposed IDS

The proposed Intrusion Detection System is used to detect

any attempt to perform BOF attack on the host system

connected to the network using Call-Jump-Ret technique

discussed in previous section. (This attack will be called as

Call Register BOF attack or CR-BOF).

The proposed system will protect the host system and the

network from this type of attack by implementing two

intrusion detection modules at the same time. The first one is

HIDS that will work to monitor any file access operation and

scan this file searching for the attack signature. On-Access

scan operation will be simulated by using

FileSystemWatcher [12] class in the proposed system

program. The second module is NIDS that is monitoring the

network traffic and capture any packet that contains the

attack signature and produce alerts. This part depends on

Snort system [13] which is configured to work as NIDS for

this type of attack by building a suitable set of detection

rules.

Both of HIDS and NIDS will work together to detect the CR-

BOF attack in what will be called the Monitoring and

Detection Engine. This can be any computer with good

capabilities (called sensor) or can be a server.

During the monitoring and detection session the system log

any alert related to finding animus activity into a data base or

equivalent means of storing alert data. After a period of

monitoring and detection session which is determined by

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1153

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

system administrator, the role of Analyses Engine will start.

Analyses Engine works on the data logged into the Data

Base tables and apply number of SQL queries and statistical

operation to produce a set of statistical values and then apply

a fuzzy system to produce a set of information that will be

useful for system administrator to evaluate any anomalous

activity in the host computer or through the network traffic.

These information reflect the degree of the dangerous and

can be used to make a decision in order to protect the host

computer and the network. Figure 6 shows the main parts of

the proposed system.

Figure 6: The proposed IDS main parts

The following figure (Figure 8) shows the User Interface of

the proposed system:

Figure 8: The Proposed IDS user interface

4.1 Monitoring and Detection Engine

The proposed system works to detect the anomalous

intrusion from both of host and network side. This part

consists of the following two sub parts:

4.1.1 NIDS Part
Network Intrusion Detection Part will play important role in

the proposed system because most of intrusion attacks come

from remote computers through the network as e-mails, files

or websites etc. The main function of this part is to monitor

and scan data flowing on the network and apply some

predefined filters on network traffic packets in order to catch

any packet that contains one of the CR-BOF attack

signatures and then generate the desired alerts. For that, a

means that is able to sniff, capture and apply filters on

network data traffic is needed. Snort is the best choice to do

all that. It is used as a tool to build a user defined NIDS by

providing deferent working modes and a powerful set of

commands and keywords.

Snort uses rules stored in text files that can be modified by a

text editor. Rules are grouped in categories and the rules

belonging to each category are stored in separate files. These

files are then included in a main configuration file called

Snort.conf. Snort reads these rules at the start-up time and

builds internal data structures or chains to apply these rules

to captured data. Snort comes with a rich set of pre-defined

rules to detect intrusion activity and we are free to use these

built-in rules or remove some of them to avoid false alarms

and avoid the need of more processing power that is required

to process the captured activity [14] [15].

In the proposed system, one of C++ program will generate

Snort rules file which will be applied on captured data. This

part works as the following:

 Generating Rules file and place it in Snort\Rules

Directory.

 Starting Snort in NID Mode by running this command

from the proposed system.

Snort –dev –l c:\IDS\Log –c c:\Snort\etc\Snort.conf –i1
According to this command, Snort will start working in

Network Intrusion Detection Mode (by –c option) [14] [16]

in which Snort Detection Engine applies rules given in

generated rules file on all captured packets and log the

matched packet (by –l option) in the specified log directory

and generate alerts. The result log file will be used later in

the analysis part of the proposed system to make the

decisions.

 Each rule in the generated rule file has the following

format:

alerttcp 10.30.0.112 any -> 10.30.0.85 any (content: "|7B

1A 80 7C|"; msg: "7C801A7B";)

The following is the meaning of each part of the rule [14]

[16]:

 alertis the action part in Snort rule header.

 tcpis the protocol part that shows on which type of packet

the rule will be applied.

 10.30.0.112 is the source IP address part in Snort rule

header.

 anyis the source port number part in Snort rule header

that can be a port number or 'any'.

 represent the direction of the packet so the IP address and

port number to the right of it will be the destination IP

address and destination port number.

 contentis one of Snort keywords that can be used in the

options part of Snort rules to find a data pattern inside a

packet.

As can be seen, the parameter of the content keyword is one

of the found addresses (useful jump point) that we are

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1154

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

looking for as a CR-BOF attack signature. Also, the

parameter of msgkeyword is the same address used in

content part of the rule and this means that the alert message

will give the address when it is found in one of captured

packet.

In Snort configuration file (snort.conf), the Output Module

can be defined to control the output from Snort Detection

Engine. Snort has the following output modules [15]:

1) The Database Output Module: This module is used to

store Snort output data in databases.

2) The SNMP Output Module: This module can be used to

send Snort alerts in the form of traps to a management

server.

3) The SMB alerts Output Module: This module can send

alerts to Microsoft Windows machines in the form of

pop-up SMB alert windows.

4) The syslog Output Module: This module logs messages

to the syslog utility. Using this module, messages can be

logged to a centralized logging server.

5) The XML Output Module: This Module is used to save

data in XML so they can be read and interpreted by any

XML-based interpreter or browser.

6) The CSV Output Module: This Module is used to save

data in Comma Separated Value files. The CSV files can

then be imported into databases or spreadsheet software

for further processing or analysis.

In the proposed system, CSV Output Module is used. This

module was chosen for the following reasons:

 It is easy to define what information (fields) should be

stored in the CSV file and in what order.

 It is useful when someone wants to import data into other

software packages like databases and spreadsheets, e.g.,

Microsoft Excel. To configure Snort to use the CSV

output format, the following line should be added in the

Snort configuration file (Snort.conf):

output csv: <filename><formatting_options>

This configures Snort to create a CSV log file named

<filename> in the configured logs directory using the

formatting options that specify what output fields we want to

store in the CSV file . One can use only a few of these

options in the CSV file as required. In the NIDS part of the

proposed system, the following line in Snort.conf file will be

used that will record only timestamp, msg, srcand dst fields

in CSV file called (Snortalert.csv)

outputalert_csv: Snortalert.csv timestamp,msg,src,dst

where:

• timestamp= Time stamp including date and time.

• msg= Message which is taken from the msg option of the

rule.

• src= Source IP address.

• dst= Destination IP address.

At this point, the role of NIDS is finished giving the log file

that will be used as an input to the Analysis Engine.

4.1.2 HIDS Part

This part will function as a second protection level in the

proposed system. If the intruder succeed in putting his

payload code in the victim computer through the network (by

different available means) or putting the payload directly in

the computer or by using a payload that is already available

in the victim computer, then, this part will play a good role to

detect the using of this payload. The proposed system will

work on the case in which the payload is in the form of file

that will be used by the target program as an input file, then

the proposed HIDS part should monitor the access process to

any file in real time and check this file for the CR-BOF

attack signature. This process is being used by most of Anti

Virus programs and it is called On-Access Scan. In the

proposed system, a simulation of this On-Access Scan

process was programmed by using the FileSystemWatcher

Class provided by Microsoft Visual Studio.NET

programming languages.

FileSystemWatcher is a very powerful component, which

allows programmer to connect to the directories and watch

for specific changes within them, such as creation of new

files, addition of subdirectories and renaming of files or

subdirectories. This makes it possible to easily detect when

certain files or directories are created, modified or deleted. It

is one of the members of System.IO Namespace. The

component can watch files on a local computer, network

drive or a remote machine [12] [17] [18].

In the proposed system's program, the change in File Access

Time is monitored as a notification filter in order to catch the

file when any program attempt to open it, and then, the On-

Access Scan process is simulated. In the proposed system's

program, we have to determine the folder or the drive we

want to monitor its contents and the type of files we want to

watch by specifying the extension .The proposed system

interface enables the administrator to specify the directory or

drive we want to watch. After catching the file, the path of

this file can be got and the file can be opened and scanned

for the desired signature. In this part of the proposed system,

the first signature file that contains the addresses only will be

used. Also, more than one type of files can be monitored by

creating more than one FileSystemWatcher object and

making each one use deferent file extension.

The output of this part will be a log file that contains the

name and path of the files that contains one or more of the

CR-BOF attack signature and the found addresses

(signatures). This log file will be used later as an input of the

analysis part of the system.

4.2 Data Base

This part is used to store the information that logged from

the Monitoring and Detection Engine. This Database can be

in different forms according to the mode being used in

Monitoring and Detection Engine and according to the type

of analysis operations and results required from the Analysis

Engine and finally according to system administrator needs.

In the proposed system, the CSV files represents the

Database part .We have two CSV log files ,the first one

stores HIDS log data as a table that contains Address and

Path/File Name fields. The second one stores NIDS log data

as a table that contains Date/Time, Signature, Source IP

Address and Destination IP Address fields. MySQL

Database is another type of Database that can be used in this

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1155

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

part. MySQL Database can be used to store the logged data.

In this case, we need to use MySQL Database Server which

enable us to use all of MySQL capabilities like Distributed

and Network Database and all the power of SQL Language

[19].

4.3 Analysis Engine

This part of the proposed system works on the logged data

stored in the Database and after one or many sessions of

monitoring and detection done by Monitoring and Detection

Engine. The output of this engine will be a set of statistical

tables in the form of PHP web pages that enable the

administrator to make the necessary decisions according to

the information gained from these tables. the Detection

Engine will log all the alerts into two main log files , the first

one is related to HID part and the second one is related to

NID. The Analysis Engine will take these two files as its

input and perform number of statistical operations in order to

produce a number of statistical values. These result values

will be used as an input to a Fuzzy analysis system [20] in

order to classify the intrusion attempts to the levels of BOF

alerts, each level represents the degree of risk given as a

percentage in the final statistical table that represents the

output of the Analysis Engine (Figure 7).

Figure 7: Analysis Engine part of the proposed IDS

5. Result and Analysis

Intrusion detection is a technique employed to catch and

report attacks as they occur. IDS rely on data sources which

can be drawn from OS audit logs, sniffed network packets,

logs from components such as routers or applications. There

are a number of associated problems such as :

1) How can IDS's be evaluated?

2) Do an IDS produce too many false positives?

3) Can IDS be used to detect unknown attacks?

4) How can reports of multiple IDS's be combined to detect

attacks?

5) How to integrate intrusion detection and automated

response?

The present paper proposed and implement a two parts IDS.

The first is HIDS and the second is a NIDS. The system can

be considered to partially addresses problems 3,4 and 5 listed

above.

 The system may be evaluated (problem 1) if

experimentation is dedicated for problem 2.

 The system is fully entitled to consider problem 3 for BOF

attacks. Its detection criteria is based on "important

addresses" not on base signature.

 The system deals with host attacks and with network

attacks at the same session. Integrating Report on both

channels is a matter of DBMS. MY-SQL solves this easily.

 The mechanism for automated response is API application.

The response of the proposed system is in the form of an

alert to the System Administrator. If the proposed system

is fully evaluated, the response automation is a

programming problem.

6. Conclusion

By understanding the concepts of BOF attack we can find

that the key parameter behind BOF attack is the "Return

Address" and how to change it to be pointed to the exploit

code. The proposed system can be considered as following:

 Host and Network (Hybrid) IDS according to protected

system.

 Almost signature based IDS according to the Intrusion

detection approach.

 Network packets and system state analysis IDS according

to data source.

 Passive IDS according to behavior after attack. That is

because it generates alerts and log files without a real time

response to the attack.

 Interval based IDS according to analysis timing.

Although the proposed IDS considered as a signature based

IDS and this means that it is used to detect known attacks

only and cannot detect new or unknown attacks. The

signatures that it looks for, doesn't represent a signature of

known attack but a signature of call register technique that

can be used to perform any attack depend on BOF

vulnerability.

References

[1] Robert Courtney, James Burrows, F. Lynn McNulty,

Stuart Katzke, Irene Gilbert, and Dennis Steinauer, "An

Introduction to Computer Security". National Institute of

Standards and Technology NIST, 1996.

[2] RebeccaBace , "An Introduction to Intrusion Detection

and Assessment". Infidel, Inc. for ICSA, 2000.

[3] James C. Foster, VitalyOsipov, Nish Bhalla and Niels

Heinen, "Buffer Overflow Attacks: Detect, Exploit,

Prevent". Syngress Publishing, Inc., 2005.

[4] Amrita Anand, Brajesh Patel, “An Overview on

Intrusion Detection System and Types of Attacks It Can

Detect Considering Different Protocols” , International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol. 2, Issue 8, pp. 94-98, 2012.

[5] IndraneelMukhopadhyay, Mohuya Chakraborty,

SatyajitChakrabarti, “A Comparative Study of Related

Technologies of Intrusion Detection & Prevention

Systems”. Journal of Information Security, Vol. 2, No. 1,

pp.28-38, 2011.

[6] KarenScarfone, Peter Mell, “Guide to Intrusion

Detection and Prevention Systems (IDPS)”. National

Institute of Standards and Technology (NIST) Special

Publication 800-94 Revision 1, 2012.

[7] EricChien and PéterSzör, "Blended Attacks Exploits,

Vulnerabilities and Buffer-Overflow Techniques in

Computer Viruses". Symantec Corporation ,Virus

Bulletin Conference ,USA , 2002.

[8] MartinVuagnoux, "An Intruduction to Buffer overflow

Attacks". Swiss Federal Institute of Technology,

Computer Security and Cryptography Laboratory, 2005.

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1156

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391

Volume 6 Issue 7, July 2017

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[9] Sahel Alouneh, HebaBsoul, MazenKharbutli,

“Protecting Binary Files from Stack-Based Buffer

Overflow”, Springer-Verlag Berlin Heidelberg,

Information Science and Applications chapter, Lecture

Notes in Electrical Engineering series, Vol. 339, pp 415-

422, 2015.

[10] Ryan Russell, Dan Kaminsky, Rain Forest Puppy, Joe

Grand, K2, David Ahmad, Hal Flynn, IdoDubrawsky,

Steve W. Manzuik, Ryan Permeh, "Hack Proofing Your

Network Second Edition". Syngress Publishing, Inc.,

2002.

[11] Tzi-ckerChiueh and Fu-Hau Hsu, "RAD: A Compile-

Time Solution to Buffer Overflow Attacks". Proceedings

of the 21st IEEE International Conference on

Distributed Computing Systems (ICDCS), 2001.

[12] JulianTempleman,"Microsoft Visual C++/CLI Step by

Step" , Microsoft Press, 2013.

[13] G. D. Kurundkar, N. A. Naik and S. D. Khamitkar,

"Network Intrusion Detection using SNORT",

International Journal of Engineering Research and

Applications (IJERA), Vol. 2, Issue 2, pp. 1288-1296,

2012.

[14] Jay Beale and James C. Foster, "Snort 2.0 Intrusion

Detection, Second Edition". Syngress Publishing, Inc.,

2004.

[15] Rafeeq Ur Rehman, "Intrusion Detection Systems with

Snort, advanced IDS Techniques Using Snort, Apache,

MySQL, PHP, and ACID". Pearson Education,

Inc.,2003.

[16] Mukta Garg, "Intrusion Detection System in Campus

Network: SNORT – the most powerful Open Source

Network Security Tool", International Journal of

Advancement in Engineering Technology, Management

& Applied Science, Vol.1, Issue 5, 2014.

[17] Bruce Johnson, "Professional Visual Studio 2013" , John

Wiley & Sons, Inc. , 2013.

[18] Michael Halvorson, "Microsoft Visual Basic 2013 Step

by Step (Step by Step Developer)", Microsoft Press,

2013.

[19] Michael Steele, "Snort 1.8.7 for Windows NT Server /

2000/ XP using Apache Webserver, MySQL and Acid to

view and alerts".http://www.forum-

intrusion.com/snort/snort2.html, 2002.

[20] Mostaque Md., Morshedur Hassan, "Current Studies On

Intrusion Detection System, Genetic Algorithm And

Fuzzy Logic", International Journal of Distributed and

Parallel Systems (IJDPS) Vol.4, No.2, 2013.

Paper ID: ART20175385 DOI: 10.21275/ART20175385 1157

http://www.abebooks.com/servlet/SearchResults?an=Ryan+Russell%2C+Dan+Kaminsky%2C+Rain+Forest+Puppy%2C+Joe+Grand%2C+K2%2C+David+Ahmad%2C+Hal+Flynn%2C+Ido+Dubrawsky%2C+Steve+W.+Manzuik%2C+Ryan+Permeh&cm_sp=det-_-bdp-_-author
http://www.abebooks.com/servlet/SearchResults?an=Ryan+Russell%2C+Dan+Kaminsky%2C+Rain+Forest+Puppy%2C+Joe+Grand%2C+K2%2C+David+Ahmad%2C+Hal+Flynn%2C+Ido+Dubrawsky%2C+Steve+W.+Manzuik%2C+Ryan+Permeh&cm_sp=det-_-bdp-_-author
http://www.abebooks.com/servlet/SearchResults?an=Ryan+Russell%2C+Dan+Kaminsky%2C+Rain+Forest+Puppy%2C+Joe+Grand%2C+K2%2C+David+Ahmad%2C+Hal+Flynn%2C+Ido+Dubrawsky%2C+Steve+W.+Manzuik%2C+Ryan+Permeh&cm_sp=det-_-bdp-_-author

