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Abstract
The principles of green chemistry aim to minimize the consumption of energy with the
application of green solvents from renewable resources, without compromising the quality of
the final product. Bio-based solvents can be derived from biomass such as forest products,
wood, lignocellulosic wastes, energy crops, or aquatic biomass, and are produced in
biorefineries through biomass conversion methods in combination with power generation,
chemicals, and fuels production. Alkylphenols are an important class of aromatic compounds
produced by depolymerization of lignin (biopolymer of phenylpropanoid that gives
mechanical strength to the structure of plants). Alkylphenols are generally in solid form at
258 °C, and the properties are influenced by the configuration and size of the alkyl group, the
position on the ring, and the purity. The combination of hydrogenolysis and the second step
of hydrodeoxygenation for lignin depolymerization has been successful to produce phenolic-
based compounds. Catalytic hydrogenolysis is effective to achieve the ether bonds cleavage
and enhance the hydrogen content. Catalyst-based hydrodeoxygenation could produce the
products that possess low oxygen content, less amount of functional groups, and high
chemical stability. Alkylphenolic solvent has great potential as an alternative to other
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nondegradable solvent. However, excessive use of alkylphenols could lead to serious health
issues and also affect the environment. Alkylphenols have been found to accumulate in
aquatic organisms and more research is needed on the uptake and decomposition in humans,
animals, and plants.
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1. Introduction
Green chemistry necessitates the invention, planning, and implementation of chemical
substances and procedure to minimize or eliminate the application and creation of harmful
substances. Green extraction relies on the protocols which will minimize the consumption of
energy, allow the application of substitute solvents from renewable resources, while
guaranteeing a high level of final product quality [1], [2]. The six principles of Green
Chemistry are: Principle 1: Innovation by selecting diversity and applying plant recyclable
resources; Principle 2: Application of substitute solvents, mainly agro-solvents or water.
Principle 3: Reduction of energy usage by recovery of energy and utilizing innovative high-
tech; Principle 4: Formation of coproducts in place of residual waste to encompass agro and
biorefineries; Principle 5: Reduction of unit operation to provide secure, strong, and managed
processes; and Principle 6: Aims toward a nondenatured and recyclable (biodegradable)
product having no pollutant. The principles 1, 2, 4, and 6 emphasize on meeting the agenda of
Global Sustainable Development goals, while the principles 3 and 5 address the issues of
economics and emission for substantial decrease of energy and time [3]. To meet the
requirements of the regulations and market, the product has to achieve certain quality criteria
such as being harmless to consumers and the environment, well-determined physiochemical
characteristics, and ability for long-term storage [2].

Current methods of product extraction are replete with environmental concerns due to the
utilization of hazardous solvent, the requirement for energy reduction, and minimizing the
CO  release. Conventional solvents derived from fossil fuel in traditional refineries have now
been met with alternatives from environmentally friendly plant-derived solvents (bio-based
solvents). Bio-based solvents can be derived from biomass such as forest products,
lignocellulosic waste materials, energy crops such as corn, and aquatic biomass such as
microalgae. The solvents are recyclable and biodegradable, and are produced in biorefineries
where biomass conversion methods are combined with power generation, chemicals
production, and fuels from biomass [4], [5]. The potential applications are in pharmaceuticals,
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paints and coatings, household care, printing inks, adhesives, and cosmetics [6] (Fig. 1). The
selection of a suitable bio-based solvent depends on parameters such as solubility or reaction
rate, but the major considerations will be because of the environmental merits. The
challenges will be to develop a specific solvent for specific utilization or in particular
separation or extraction methods [4].

Download : Download full-size image

Fig. 1. Average of use of solvents in different fields.

(Modified from reference J.H. Clark, T.J. Farmer, A.J. Hunt, J. Sherwood, Opportunities for
bio-based solvents created as petrochemical and fuel products transition towards renewable
resources, Int. J. Mol. Sci. 16 (2015) 17101–17159.)

Alkylphenols are an important class of aromatic compounds produced by depolymerization of
lignin [7]. The common structure of general alkylphenol and the structures of some
alkylphenols are shown in Fig. 2, and the names according to the Chemical Abstract Service
(CAS) numbers, abbreviations, types, and nature are given in Table 1. Alkylphenols are organic
subtances and can be produced by, for example, corn lignin which is made to undergo
solvolysis to generate 24 wt% alkylated monolignins, of which 46% is 4-ethylphenol generated
from H-subunits [8]. Alkylphenol can be utilized in the making of lubricant (oil) additives,
dish and laundry soaps or detergent, solubilizers, and emulsifiers [9]. The production
principally involves catalyst-based alkylation of cresols, xylenols; or phenols with easily
available olefins such as cyclohexanol applied as an alkylating agent; or phenols with
methanol or benzyl chloride if the desired olefin is not available. Other methods for
alkylphenols production are less significant than the alkylation method [10].

https://ars.els-cdn.com/content/image/3-s2.0-B9780128218860000117-f14-01-9780128218860.jpg
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Fig. 2. General structures of (A) alkylphenol, (B) alkyl ethoxylate, (C) nonylphenol (mixture), (D)
4-tert-octylphenol, and (E) polyethoxylate-4-nonylphenol.

(Modified from reference A. Priac, N. Morin-Crini, C. Druart, S. Gavoille, C. Bradu, C.
Lagarrigue, G. Torri, P. Winterton, G. Crini, Alkylphenol and alkylphenol polyethoxylates in
water and wastewater: a review of options for their elimination, Arab. J. Chem. 10 (2017) 3749–
3773.)

Table 1. Chemical Abstract Service (CAS) numbers, names, abbreviations, structure, and nature
of common alkylphenols.

Nonylphenol n-NP Linear Mixture C H O

4-Nonylphenol 4-NP Linear or

branched

Mixture C H O

CAS

number Name Abbreviation Structure Substance Formula

25154-52-3 15 24

84852-15-3 15 24

https://ars.els-cdn.com/content/image/3-s2.0-B9780128218860000117-f14-02-9780128218860.jpg
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4-n-Nonylphenol 4-n-NP Linear One

isomer

C H O

Polyethoxylate 4-

nonylphenol

4-NPnEOs Linear Mixture (C H O) C H O

Nonylphenol

monethoxylate

NP1EO Linear Mixture C H O

Nonylphenol diethoxylate NP2EO Linear Mixture C H O

4-Nonylphenol

monethoxylate

n-4-NP1EO Linear – C H O

4-n-Nonylphenol

diethoxylate

n-4-NP2EO Linear – C H O

4-Octylphenol t-4-OP Branched One

isomer

C H O

4-n-Octylphenol n-4-OP Linear One

isomer

C H O

Octylphenol

monethoxylate

t-4-OP1EO Branched – C H O

Octylphenol diethoxylate t-4-OP2EO Branched – C H O

Data from reference Z. Mahmood, M. Yameen, M. Jahangeer, M. Riaz, A. Ghaffar, I. Javid, Lignin as natural

antioxidant capacity, in: M. Poletto (Eds.), Lignin—Trends and Applications, Elesevier, 2018, pp. 181–205.

2. Properties, stability, and toxicity of alkylphenols

2.1. Physical properties

The physical characteristics of alkylphenols are comparable to those of phenols. The
properties can be affected by the type of alkyl substituent and the location of substituent on
the ring. Like phenols, alkylphenols are generally in solid form at 258°C, and the physical
form is influenced by the configuration and size of the alkyl group, the position on the ring,
and the purity. In their pure form, these are colorless, pale yellow, or white. The physical
properties are listed in Table 2. The para substituted alkyl phenols possess greater boiling and
melting points as compared to the ortho-alkylphenols where the para-alkylphenols reach a
maximum melting point limit and then reduce for the ter-butyl structure. For a low melting
point, the alkylphenols are produced from an alkene brook comprising a mixture of isomers.
Alkylphenols possess a waxy texture in which the carbon chain of alkyl groups exceeds 20

CAS

number Name Abbreviation Structure Substance Formula

104-40-5 15 24

26027-38-3 2 4 n 15 24

28679-36-3 17 28 2

27176-93-8 19 32 3

104-35-8 17 28 2

20427-84-3 19 32 3

140-66-9 14 22

1806-26-4 14 22

2315-67-5 16 26 2

2315-61-9 18 30 2
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units. With di- and tri- substituents attached, the alkylphenols are apt to supercool. Like
phenols, alkylphenols have high sensitivity toward oxidation, where a minute quantity of
alkaline or metal impurities could alter the oxidation, resulting in discoloration caused by the
oxidation products.

Table 2. Physical properties of common alkylphenols.

C H O 164 Solid 249 90 0.915 121

C H O 150.2 Solid 237 97 0.890 117

C H O 150.2 Liquid 224 20 0.938 > 93

C H O 212 Solid 335 70 1.029 188

C H O 262 Liquid 334 – 0.914 > 100

C H O 220.3 Liquid 310 – 0.933 146

C H O 220.3 Solid 290 81 0.940 132

C H O 234.4 Liquid 275 23 0.900 104

C H O 206.3 Solid 263 52 0.867 115

C H O 206.3 Solid 253 36 0.898 > 99

C H O 206.3 Liquid – – 0.902 127

C H O 330 Solid – 65 1.030 462

C H O 108.1 Solid 191 30 1.049 81

C H O 108.1 Liquid 202 10 1.042 86

C H O 108.1 Solid 202 34 1.022 86

Name

Molecular

formula

Molecular

weight

Physical

form at 25°C

Boiling

point (°C)

Freezing

point (°C)

Density

(g/mL)

Flash

point (°C)

4-tert-

Amylphenol
11 16

4-tert-

Butylphenol
10 14

2-Sec-

butylphenol
10 14

4-Cumylphenol 15 16

4-

Dodecylphenol
18 30

4-Nonylphenol 15 24

4-tert-

Octylphenol
14 22

2,4-Di-tert-

amylphenol
16 26

2,4-Di-tert-

butylphenol
14 22

2,6-Di-tert-

butylphenol
14 22

Di-sec-

butylphenol
14 22

2,4-

Dicumylphenol
24 26

2-Methylphenol 7 8

3-Methylphenol 7 8

4-Methylphenol 7 8
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C H O 122.1 Solid 203 48 1.020 88

Data from reference H. Fiege, H.W. Voges, T. Hamamoto, S. Umemura, T. Iwata, H. Miki, Y. Fujita, H.J.

Buysch, D.G.W. Paulus, Phenol derivatives, in: W. Gehartz, G.S.T. Kellersohn, B. Elvers, S. Hawkins, U.

Winter (Eds.), Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000,

pp. 521–582.

Alkylphenols are soluble in basic organic solvents such as alcohols, acetone, toluene, and
hydrocarbons where the solubility in organic solvents such as heptane or alcohol is due to
“like dissolves like.” The higher the polarity of alkylphenols, the higher their solubility in
alcohols, but not in aliphatic hydrocarbons, and similar is the case with xylenols and cresols.
Pure phenols that are para substituted, C3 through C8, can be produced from heptane via
crystallization [11]. Alkylphenols possess acidic characteristics to the hydroxyl group due to
the presence of an aromatic ring having pK  of raw alkylphenols at 10–11 [12]. Unsubstituted
alkylphenols in ortho location solubilize in caustic aqueous solution. When the carbon atoms
attached to the ring grow, the solubility in water drops. The solubility of alkaline phenolatic
salt in water also reduces with the increment in the number of carbon atoms in the alkyl chain
of alkylphenols. However, the increment in the carbon atom number of the carbon (alkyl)
chain in alkylphenols will increase their solubility in hydrocarbons. The extractions (aqueous
caustic) of alkylphenols from an organic medium can be attained at higher temperatures.
Huge substituents at the ortho position minimize the alkali phenolate solubility in water, a
phenomenon known as cryptophenol. Potassium hydroxide solution (35%) in methanol,
which is known as Claisen's alkali, solubilizes these hindered phenols [13].

2.2. Stability and toxicity

Phenol compounds like nonylphenol (NP), octylphenol (OP), and bisphenol A (BPA) are
xenobiotics, toxic and harmful, but quite stable in the environment. The existence of
alkylphenols in the environment is attributable to the alkylphenol ethoxylates (APEs)
degradation [14]. These alkylphenols are the basic extracts in the chemical industry, applicable
as surfactants in the production of nonionic detergents, or in disinfectants and cosmetic
industries [15]. Annual production of alkylphenols in the United States has been reported at
154,000 tons [16]. The most important types are octylphenol ethoxylate and nonylphenol
ethoxylate. The degradation mechanism in the environment and the loose side chains of
ethylene oxide later turn into alkylphenols (4-n-nonylphenol and 4-n-octylphenol). Unlike
many exogenous substances, alkylphenols enhance their toxicity during the biodegradation
process [15]. Phenolic derivatives such as short chain alkylphenols, comprising a minimum
one alkyl group, having a chain length from C1 to C3, are strongly soluble in water. These do
not adsorb easily on the solid particles, thereby increasing the risk of pure drinking water
pollution [17].

Name

Molecular

formula

Molecular

weight

Physical

form at 25°C

Boiling

point (°C)

Freezing

point (°C)

Density

(g/mL)

Flash

point (°C)

2,6-

Dimethylphenol
8 10

a
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Alkylphenols are known as endocrine disrupting compounds and may result in the
development and reproduction disorder in living organisms. A study on the endocrine
disrupting nature of alkylphenols has been conducted on Daphnia magna where exposure to
various amounts of 4-nonylphenol and bisphenol A has resulted in severe developmental
effects on the aquatic organism [18]. Octylphenol has great solubility in lipids and can flow
into the human's internal organs through cell membranes to cause severe harmful health
effects, including endocrine system disruption [19]. The existence of bisphenol A and other
alkylphenols in the environment is due to the anthropogenic activities like landfilling,
recycling of sewage sludge, and treatment of wastewaters [20], [21]. Some phenolic derivatives
are found in sewage sludge, released components from sewage treatment plants, groundwater
and soil, and sediments and river water [22]. While the concentration of these phenolic
derivative compounds in the environment is depleting, they are still discovered in microgram
per liter concentration in water bodies and in milligram to per kilogram in soil and sediments
[9], [23], [24]. The presence of bisphenol A, octylephenol, and nonylphenol at higher amounts
and their toxicity requires strict monitoring and evaluation on all spheres [25].

3. Production and processing

3.1. Oil-derived synthesis

Biomass is a low-cost, low pollution, and renewable bioresource with a high content of
carbon, negligible amount of nitrogen and sulfur, and is therefore capable of substituting
petroleum-derived fuels [26], [27]. However, the huge limitation of biomass is its low density
of energy, and the process such as fast pyrolysis could generate greater high-valued heating
liquid to be extracted continuously, known as bio-oil [28]. More than 300 compounds have
been utilized to produce bio-oil and they include lignin-derived oligomers, phenols, furans,
alcohols, aldehydes, and carboxylic acids [29]. Poor chemical stability and substantial oxygen
content differentiate bio-oil from petroleum fuels, making more refining a requirement to
make bio-oil a suitable alternative [30]. Hydrodeoxygenation is an important step toward
upgrading the low-level products to bio-oil [31], [32], based on the deoxygenation of biofuel
substances with the use of a catalyst and introduction of hydrogen [33]. The approach of
upgrading the biofuel via hydrodeoxygenation stabilizes the final product and eliminates
oxygen [34]. A strongly active catalyst with 2% (w/w) Ru/TiO  dispersion, prepared following a
photochemical process at room temperature, has served effectively in the hydrodeoxygenation
of phenol-based compounds and biofuel production due to greater Ru dispersion. Different
phenol-based compounds such as phenolic dimers and monomers could be converted into
respective hydrocarbons with a maximum yield of almost 100%. The catalyst is also effective
in upgrading the biofuel made from cotton straw pyrolysis which is rich in phenol-based
compounds. A total of 57.6% of alkylphenols and 32.4% of hydrocarbons is obtained at 280°C
from the bio-oil, and the composition of alkylphenols and hydrocarbons has great potential
for usage as chemicals and fuels [31].

3.2. Alkylphenols from lignin

2
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Cell walls of plants are made up of lignin which is a biopolymer made up of phenylpropanoid
that gives mechanical strength to the structure of plants. Lignin is the major component of
terrestrial plant cell walls. The lignin structure (Fig. 3) strengthens the plant cell wall,
promotes transport of water, and functions as a physical barrier against different pathogens.
Lignin comprises syringly (S), guaiacyl (G), and p-hydroxyphenyl (H) units which are derived
from the polymerization of sinapyl alcohol, confieryl alcohol, p-coumaryl alcohol, and
hydroxycinnamyl alcohol. Lignin is also derived from many monomers of aromatic
compounds [35], and is used in the production of binding agents, sequestrant agents,
emulsifying or dispersing agents, and as a raw material for different types of synthetic
polymers like formaldehyde-phenol resin, polyurethane resin, polyester, and epoxy resin.
Lignin is a potential source of different chemicals and aromatic products, while chemically
modified lignin can be utilized as a reinforcing material or filler in the polymer blends and
composite materials [36].

Download : Download full-size image

Fig. 3. Structure of lignin.

(Modified from reference Z. Mahmood, M. Yameen, M. Jahangeer, M. Riaz, A. Ghaffar, I. Javid,
Lignin as natural antioxidant capacity, in: M. Poletto (Eds.), Lignin—Trends and Applications,
Elesevier, 2018, pp. 181–205.)

Depolymerization of lignin to phenolic compounds or monomers (Fig. 4) can be achieved by a
different liquid acid and base catalyst. Homogenous catalysts include sulfuric acid,
phosphoric acid, and hydrochloric acid, while heterogeneous catalysts include carbonaceous
solid acids prepared via the hydrothermal operation of cellulose, lignin, and glucose. A solvent
mixture of ethanol/1,4-dioxane/formic acid (FA) has been tested where ethanol acts as a
solvent or reactant for an in situ hydrogen donor, 1,4-dioxane as a lignin solvent, and formic
acid as an in situ hydrogen donor and catalyst. At a composition of ethanol/1,4-dioane/formic
acid at the ratio of 10:10:2 (v/v), the lignin conversion has resulted in a 22.4% yield of phenolic
monomers and 6.57% residual yield at 300°C [37]. However, these homogenous and base

https://ars.els-cdn.com/content/image/3-s2.0-B9780128218860000117-f14-03-9780128218860.jpg
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catalysts may corrode the equipment in which highly efficient catalysts are required. Solid
acid catalysts are eco-friendly, noncorrosive in nature, relatively safer, much more convenient
to be isolated and recovered as compared to the homogenous catalysts, and highly effective to
depolymerize lignin into much higher valued products/extracts [38], [39]. The
depolymerization of lignin separated via the organosolv fractionation of bagasse with the aid
of different homogenous and heterogeneous catalysts has shown maximum phenolic
monomers attained from carbonaceous solid acids which are active and efficient catalysts with
the highest stability even after five continuous cycles [40]. The product separation after the
depolymerization reaction is shown in Fig. 5.

Download : Download full-size image

Fig. 4. Conversion of Kraft lignin into bio-phenolic products.

(Modified from reference W. Wang, M. Wang, J. Huang, X. Zhao, Y. Su, Y. Wang, X. Li, Formate-
assisted analytical pyrolysis of kraft lignin to phenols, Bioresour. Technol. 278 (2019) 464–
467.)
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Fig. 5. Illustration of products derived from depolymerization of a lignin biomass.

(Modified from reference P. Asawaworarit, P. Daorattanachai, W. Laosiripojana, C.
Sakdaronnarong, A. Shotipruk, N. Laosiripojana, Catalytic depolymerization of organosolv
lignin from bagasse by carbonaceous solid acids derived from hydrothermal of lignocellulosic
compounds, Chem. Eng. J. 356 (2019) 461–471.)

Zeolites have been widely applied as solid acid catalysts because of their significant topological
morphology, changeable pore structures, large surface area, and adjustable acidity of BrØnsted
and Lewis acid sites. Zeolites possess great hydrothermal stability, limiting effects in pores,
electric field properties, and high adsorption capacity which are all attractive features for
applications in laboratories and industries. These are advantageous as the metallic support
system to upgrade lignin from lignin derivatives [39]. The valorization of lignin has been
achieved via fast pyrolysis with the utilization of ZSM-5 zeolites with variable acidic properties
and porosity. The mesoporous ZSM-5 (9 nm), nano-sized ZSM-5 (< 20 nm), and conventional
microporous ZSM-5 are evaluated as catalysts in a fixed-bed reactor at 400–600°C to
depolymerize lignin into high-valued phenolic components. The conventional ZSM-5 zeolites
show higher selectivity toward mono-aromatics, while the nano-sized and mesoporous ZSM-5
zeolites show high selectivity for alkylphenols [41]. A WO /γAl O  catalyst made by the3 2 3

https://ars.els-cdn.com/content/image/3-s2.0-B9780128218860000117-f14-05-9780128218860.jpg
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incipient wet impregnation process achieves considerable conversion of enzymatically
hydrolyzed lignin into different alkylphenols (Fig. 6) in the presence of supercritical ethanol.
Lignin is fully dissolved and transformed into aromatic and aliphatic products at 320°C with
363.4 mg/g total yield where the aromatic products are 315.8 mg/g lignin, representing 86.9%
of the total products yield, and 67.5% selectivity of alkylphenols [42].

Download : Download full-size image

Fig. 6. Conversion of enzymatic hydrolysis lignin into different alkylphenols using a catalyst.

(Modified from reference F. Mai, Z. Wen, Y. Bai, Z. Ma, K. Cui, K. Wu, F. Yan, H. Chen, Y. Li,
Selective conversion of enzymatic hydrolysis lignin into alkylphenols in supercritical ethanol
over a WO /γ-Al O  catalyst, Ind. Eng. Chem. Res. 58 (2019) 10255–10263.)

3.3. Bio-based phenols from lignocelluloses

Lignocellulosic biomass is an abundant recyclable carbon resource from which lignin as a
significant component can be derived. Chemically, the lignocellulosic biomass comprises 5%–
25% lignin, 10%–40% hemicellulose, and 40%–80% cellulose. Hemicellulose and cellulose
comprise polymers based on sugar monomers that are galactose, glucose, xylose, mannose,
rhamnose, and arabinose, whereas lignin is made up of different units of methoxylated
phenylpropanoid, which therefore could provide alternative resources of aromatic compounds
[43]. The fibrous nature of lignocelluloses from biorefineries as agricultural by-products,
grasses, municipal solid waste, and wood residue ensures sustainable supply for long-term
utilization [43], [44]. The alkylmethoxyphenols that are derived from the phenylpropane units,

3 2 3
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which are connected in a random manner via C O C and C C bonds in lignin, are
generally functionalized phenols at the para position with an alkyl group such as propyl and
methoxy groups at both or one of the ring ortho positions. Their excessive functionalization
characteristics have limited their applications in different fields. These alkylmethoxyphenols
could be selectively transformed into phenols involving demethoxylation and dealkylation.
The demethoxylation route is difficult to prevent aromatic ring hydrogenation and
elimination of the hydroxyl group of the phenolic parts. Dealkylation usually forms olefins on
the acid catalysts that are resistant to oligomerization. Another approach involves the
conversion of alkylmethoxyphenols to phenols aimed at combining demethoxylation with
transalkylation of the alkyl groups into a benzene feedstock that produces propylbenzene,
cumene, and toluene as coproducts (Fig. 7). Cumene and toluene can be upgraded to highly
efficient xylenes using advanced technologies.

Download : Download full-size image

Fig. 7. Routes for the production of phenols from the lignin part of a lignocellulosic biomass.

(Modified from reference X. Huang, J.M. Ludenhoff, M. Dirks, X. Ouyang, M.D. Boot, E.J.M.
Hensen, Selective production of biobased phenol from lignocellulose-derived
alkylmethoxyphenols, ACS Catal. 8 (2018) 11184–11190.)

Lignin-derived phenols are usually substituted by mixtures of different functional groups that
require more catalytic reactions to generate phenol. A close contact between a
demethoxylating catalyst based on gold nanoparticles, assisted by titanium oxide, and a
transalkylating catalyst based on HZSM-5 has produced 60% phenolic yield from 4-
propylgluaiacol in one step [45]. A batch type reactor has been used to investigate the
transalkylation of para-propylphenol, a lignin-derived compound, with MFI-type zeolite
catalysts and benzene solvent. The three-dimensional nonfunctionalized catalyst exhibits high
activity for para-propylphenol transalkylation producing phenol along with C3-benzene
which includes cumene and propylbenzene as major products. The time for reaction is more
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than 2 h at 400°C with continuous reactions after C3-benzene and phenol formation, resulting
in lower product selectivity, and no heavy components formed from the polymerization
processes. Benzene plays an important role in suppressing the coke formation on the zeolite
catalyst under critical conditions. The method can therefore be used for the co-production of
alkylated benzene and phenols from lignin-derived phenols [46].

Transalkylation is an innovative technique to produce phenol from alkylphenols. Alkylated
benzene is coproduced when benzene is applied as an alkyl group recipient, which can further
be used as gasoline additives or fuels for jet because of the high octane number and high
calorific value [46]. The major challenge is to process the alkylated phenols which will account
as a major process in the coal-fuel and wood biorefineries. An effective zeolite-based method
could transform mixtures of ethyl and propylphenols into high-valued phenols and related
olefins, propylene, and ethylene, with the potential to attain a tenfold higher phenol yield
relative to the one-step method consolidated with lignin depolymerization. However, the
issue with zeolites (H-USY) having large pore sizes is that they are not selective and deactivate
quickly. A medium pore size H-ZSM-5 zeolite enables higher selectivity with a longer catalyst
life, and water as a medium plays a crucial role. Dealkylation with high efficiency and
robustness has been achieved utilizing bare metal free zeolite ZSM-5 catalysts along with the
water medium. The catalysis studies explore the origin of the selection of shape in nature and
the competitive adsorption of phenols and water and provide understanding on the
functionality existing within the biomass [47].

3.4. Bio-based chemicals from integrated biorefineries

Lignocellulosic biomass-based feedstocks, which include the agro waste wood chips, are a low-
cost and recyclable resource for large-scale commercial biorefineries due to their abundance
and availability, apart from their role in carbon sequestration [48]. The possible pathway for
biorefinery chemo-catalysis is shown in Fig. 8. The generation of fuels and potential chemicals
from a lignocellulosic biomass is illustrated in Fig. 9. Structurally, cellulose is composed of
anhydrous units of glucose, whereas hemicellulose is composed of various sugar (C5) units.
Lignin has a complex structure in three dimensions and is basically a connective biopolymer
which has phenylpropanoid monomers with aromatic and hydrophobic properties. With
structural and chemical composition differences, cellulose, hemicellulose, and lignin have
different chemical reactivities. In these complexities, coupled with their inert chemical form
and the compositional ratio of oxygen, hydrogen, and carbon in the biomolecules, there are
inherent difficulties for chemo-catalytic transformation from the bio-based feedstock into
different chemicals and fuels. The development of highly energetic and active catalysts for the
chemo-catalytic conversion of lignocellulosic biomass into desirable products is still
challenging [48]. The targeted compounds include organic acid like levulinic acid and formic
acid [49], alcohols [50], and furans like furfurals and 5-hydroxymethylfurfural (5-HMF) [51].
These products can be transformed into a variety of derivatives that serve as highly potential
agents in polymers, solvents, and biofuel industries.
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Download : Download full-size image

Fig. 8. A general schematic representation of a chemo-catalytic biorefinery.

(Modified from reference K. Kohli, R. Prajapati, B.K. Sharma, Bio-based chemicals from
renewable biomass for integrated biorefineries, J. Energies 12 (2019) 233.)

Download : Download full-size image

Fig. 9. Potential fuels and chemicals derived from a lignocellulose-based biomass.
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(Modified from reference K. Kohli, R. Prajapati, B.K. Sharma, Bio-based chemicals from
renewable biomass for integrated biorefineries, J. Energies 12 (2019) 233.)

3.5. Reactions involved in biomass conversion

3.5.1. Dehydration

Dehydration is a process that involves the removal of the water molecule from the reactant,
especially alcohol, to form an alkene or other unsaturated products [52]. Dehydration is
usually catalyzed with the aid of Lewis or Brønsted acids because of the strongly bonded
hydroxyl group. The dehydration process involves three steps (Fig. 10): Step 1—the hydroxyl
group is protonated in the presence of the Brønsted acid catalyst which is a more preferable
leaving group as compared to the simple hydroxyl group. The catalyst is removed as water in
the end; Step 2—according to Zaitsev's rule (the main product is always alkene with majority
substitution on double bond), a double between carbon atoms is made in the carbon backbone
of the substrate, while in case of the reactions catalyzed by Lewis acids, the reaction undergoes
bond formation between the electrons of the lone pair of the hydroxyl group and the Lewis
acid (in Step 1) [53]. The electrophilic nature of the Lewis acid reduces the density of electrons
in the C O bond of alcohol, resulting in the breaking of the C O bond and the generation
of alkene along with the Lewis acid hydroxide species (Step 2); Step 3—the hydroxide of Lewis
acid combines with the released proton to form water along with the neat catalyst species [48].

Download : Download full-size image

Fig. 10. Mechanism of dehydration using Lewis and Brønsted acid catalysts.

(Modified from reference K. Kohli, R. Prajapati, B.K. Sharma, Bio-based chemicals from
renewable biomass for integrated biorefineries, J. Energies 12 (2019) 233.)

3.5.2. Hydrogenation

The products obtained from the dehydration process can be enhanced via hydrogenation.
Hydrogenation (Fig. 11) is the principal reaction in chemistry where hydrogen atoms are
added to unsaturated compounds to lower the number of triple and double bonds. Molecular
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hydrogen (H ) in gaseous form and some other compounds that could transfer hydrogen can
be utilized as a source of hydrogen in reaction. Nevertheless, hydrogen addition does not
proceed in the absence of a catalyst. Heterogeneous and homogenous catalysts are used to
catalyze the reaction in the shortest possible time interval. For the catalytic biomass
conversion process, heterogeneous systems having solid state metal hydrogenation catalysts
and molecular hydrogen are utilized [48]. Nature generates a number of unsaturated
compounds containing double bonds, C C, in carbonyl groups, and in the structures of
ketoses and aldoses of hemicellulose and cellulose. Hydrogenation of the lignocellulose-
biomass-based monosaccharides produces sugar alcohols [48], and hydrogenation of xylose
and glucose generates xylitol and sorbitol, respectively. The products of hydrogenation can be
utilized as monomers, biofuels, and solvents [54], [55], [56].

Download : Download full-size image

Fig. 11. Illustration of hydrogenation process.

(Modified from reference X. Han, Y. Guo, X. Liu, Q. Xia, Y. Wang, Catalytic conversion of
lignocellulosic biomass into hydrocarbons: a mini review, Catal. Today 319 (2019) 2–13.)

3.5.3. Hydrodeoxygenation

Hydrodeoxygenation is a reaction which involves the elimination of oxygen from the
substrate in the existence of hydrogen. The elimination of oxygen to restrain compound
functionalities can take place via direct hydrogenolysis (H  breaks the C O bond),
dehydration (the C O bond breaks with the elimination of the water molecule),
decarboxylation (CO  release), and decarbonylation (release of CO) [57]. In the case of biomass-
derived substrates, hydrodeoxygenation reactions are mostly used to minimize the high
content of oxygen [58]. Generally, these hydrodeoxygenation reactions need high pressure and
high temperature, thereby forming the product mixtures via C C bonds breaking and
rearrangements occurring in the carbon backbone (Fig. 12) [48]. Hydrodeoxygenation requires
a specific catalyst to generate the desired products and the mechanisms are dependent on the
type of catalysts used and the reaction conditions [48]. Noble metal containing catalysts are
generally used along with the Lewis or Brønsted acidic sites for C O bond breakage.
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Download : Download full-size image

Fig. 12. Hydrodeoxygenation routes dependent on oxygen moieties.

(Modified from Z. He, X. Wang, Hydrodeoxygenation of model compounds and catalytic
systems for pyrolysis bio-oils upgrading, Catal. Sustain. Energy 1 (2013) 28–52.)

3.5.4. Hydrogenolysis and hydrodeoxygenation of lignin in a two-step process

A catalytic hydrogenolysis mechanism for depolymerization of lignin is required for ether
bonds cleavage and enhanced hydrogen content [40], [59], [60]. Noble metal is the most
common catalyst used [61], [62], while others such as Pd/C, Pt/C, Ru/C, and Co/C@N have
proven effective for the hydrogenolysis process of lignin [63], [64], [65]. Incorporation of acids
in noble metals serving as bifunctional catalysts is effective in the termination of
condensation and to produce stable products [66], [67]. Catalysis with phosphoric acid and
Pt/C, and sulfuric acid with Pt/Al O , produces 46.4% of phenol-based monomers and 17% of
guaiacol-type products, respectively, after the depolymerization of lignin [68], [69]. Similarly,
catalytic combined effects of noble metals with metal chlorides have also been proven
successful [62], [70], [71], [72]. The major products from the hydrogenolysis of lignin, however,
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possess large oxygen content and a large quantity of different functional groups, and these
cannot directly be utilized as fuels.

Catalyst-based hydrodeoxygenation is a successful downstream reaction to produce products
that possess low oxygen content, less amount of functional groups, and high chemical stability
[73], [74], [75]. Solid form catalysts for hydrodeoxygenation, comprising the metal and support
system, have been mostly utilized, as these have good recyclability and product separation.
Solid single-site catalysts are required to enhance the efficiency of lignin depolymerization
and for C O cleavage mechanisms [39], [76], [77], [78]. Noble metal catalysts have much more
activity for hydrodeoxygenation reaction as compared to the transition metal and the sulfide
metal. Unfortunately, the high cost of the catalyst restricts its vast application in different
fields. Lowering the noble metal load and improving the metal sites, by enhancing the specific
activity through the reduction of the metal particle size and improving metal dispersion, can
help to overcome the limitation [79], [80] and elevate the efficiency of hydrodeoxygenation for
phenolic compounds [81].

The combination of hydrogenolysis with the second step of hydrodeoxygenation for lignin
depolymerization is an optimal solution. The first step involves lignin depolymerization via
hydrogenolysis in the presence of Pd/C, and is integrated with CrCl  (metal chloride) at 280°C.
The types of catalyst, time, and reaction temperature are all important factors influencing the
liquefaction of lignin and the distribution of products. CrCl  is effective to catalyze the
breakage of bonds and Pd/C influences the hydrogenation process. During hydrogenolysis,
methylation (methanol used as the solvent), condensation, and depolymerization occur
simultaneously where the condensation process is favored at high temperature and a longer
time interval. In the second step, the extraction of aromatic monomers takes place in the
presence of octane solvent (89.7% degree of extraction) and the high yield aromatic monomers
at 19.2% are used as substrates for hydrodeoxygenation reaction [82]. The high dispersion of
the 2 wt% Ru/TiO  catalyst in the presence of octane under 1 MPa hydrogen pressure at 300°C
has been successfully utilized for lignin depolymerization to extract fuels. The products
obtained after hydrodeoxygenation include a 49.7% yield of alkylphenols and a 26.5% yield of
hydrocarbons consisting of 24.5% of arenes and 2% of cyclohexane. The two-step method
represents a reference point for the production of fuel from lignin [81].

4. Production of biofuels using alkylphenol solvents
Alkylphenol solvents have been used in the production of biofuels from cellulose and corn
stover [83]. In the commercial practices for the generation of levulinic acid and derivatives,
levulinic acid has to be isolated from the mineral acid in order to achieve recyclability of the
acid catalyst and circumvent the problems in the downstream. To obtain greater than 50%
yield of levulinic acid, sulfuric acid aqueous solution is used for the degradation of cellulose.
The amount of levulinic acid formed is, however, low and the recovery is costly. Furthermore,
the use of a solvent such as water, which possesses a low boiling point as compared to
levulinic acid, is such that, for product recovery, the solvent must be distilled. Alkylphenol
solvents can be utilized to obtain selective levulinic acid mainly from sulfuric acid aqueous
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solution, and to obtain γ-valerolactone from water with a relatively greater partition
coefficient than levulinic acid. The amount of γ-valerolactone in the alkylphenol solvent can
be further enhanced by the transformation of levulinic acid into γ-valerolactone by hydrogen
with the help of the carbon-supported Ru-Sn catalyst in the presence of alkylphenols without
solvent hydrogenation. After obtaining levulinic acid in the presence of the alkylphenol
solvent, the sulfuric acid aqueous phase can be renewed for continuous cycles for degradation
of cellulose. The recovery of γ-valerolactone can be achieved from the solvent through
distillation.

Ruthenium on carbon (Ru/C) could serve as an efficient catalyst. The C C bonds in 2-s-
butylphenol are hydrogenated by Ru/C, resulting in the formation of butylcyclohexanone and
butylcyclohexanol. However, the Ru/C catalyst could deactivate with time in the presence of
formic acid even at low temperatures. Formic acid is transformed into hydrogen and carbon
dioxide, but catalyst deactivation could form ethane and carbon monoxide [82]. The
hemicellulose part of a lignocellulose-based biomass can be transformed into levulinic acid
and furfural in biphasic reactors having alkylphenols as a solvent, which would then
selectively separate furane-based compounds from aqueous solutions of acids. A catalytic
system in the presence of the alkylphenol solvent for the conversion of the cellulosic and
hemicellulosic parts into fuels, with integrated subsystems for conversion of cellulose,
hemicellulose, and lignin along with a subsystem designed for alkylphenol solvent recovery
and the intermediates obtained from biomass, i.e., levulinic acid and γ-valerolactone, has been
developed. Reduction of energy requirements is achieved via a heat exchange network (HEN),
resulting in a process with a 34.8% yield for the conversion of biomass into fuels having low
solid concentrations but utilizing a high amount of solvents. The HEN and the separation
subsystems recover 99% of the solvents and 72% of the total heating requirements are
reduced. The techno-economic analyses suggest a minimal selling price of $3.37 per gallon of
gasoline, which is economical as an alternative to other methods of biofuel production [83].

5. Conclusions
Bio-based solvents are eco-friendly and biodegradable and can be produced from renewable
resources. Alkylphenols are lignin-based biodegradable solvents derived mainly from
lignocellulosic biomass and have great potential to be used as alternatives to other
nondegradable solvents. Alkylphenols and alkyl ethoxyphenols are widely utilized in
surfactant industries. However, excessive and unregulated use of alkylphenols could pose
health and environmental concerns. Advances in technology and design at an industrial scale
could promote application of alkylphenol solvents in a biorefinery setup for the production of
biochemical and biofuels.
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