توصيف وتصنيف والتنبؤ بالحدود الفاصلة بين وحدات خرائط الترب بأستخدام تقانات الأستشعار عن بعد ونظم المعلومات الجغرافي للمنطقة بحر النجف - العراق 1 - الصفات الطيفية لترب بحر النجف **داخل راضى نديوي ***حسين موسى حسين *عبدالأمير سليمان داود * المعهد التقنى – كوفة – جامعة الفرات الأوسط التقنيــــة ** قسم علوم التربة والموارد المائية- كلية الزراعة - جامعة البصر، *** مركز التحسس النائي – جامعة الكوفة

الخلاصة

أجريت هذه الدراسة لمعرفة إمكانية استخدام تقنيات الاستشعار عن بعد ونظم المعلومات الجغرافية (GIS) لحساب الانعكاسية الطيفية لستة عشر بيدون (Pedons) حددت بالأستعانة بالتصنيف غير الموجه والملاحظات الحقلية إضافة الى الطوبوغرافية لتمثَّل ترب منطقة بحر النجف إستقطعت منطقة الدراسة من المرئية الفضائية للقمر الصناعي Landsat 8 وللمتحسسين (OLI + TIRS) والملتقطة بتاريخ 13- 7- 2014 من موقع المساحة الجيولوجية الأمريكية (USGS) بأستخدام برنامج ERDAS, 2013 بعد أجراء بعض التحسينات (الأشعاعية و الطيفية والمكانية) عليها مع إختيار الخلطة اللونية الكاذبة (RGB (753) RGB المفضلة لدر اسة التربة والمعادن . لوحظ وجود تغاير في قيم الانعكاسية الطيفية سواء بين بيدونات الدراسة ضمن النطاق الطيفي الواحد أو بين الحزم الطيفية المستخدمة في هذه الدراسة ، مما يعكس حالة التباين بين صفات ترب منطقة الدراسة فضلاً عن التباين في قابلية استشعار الحزم الطيفية فيما بينها ، فقد أظهرت الحزمتان الطيفيتان الزرقاء والخضراء B3 , B2 أقل القيم للإنعكاسية في جميع مواقع بيدونات الدراسة ، مما يشير الى أن قابلية امتصاص مكونات التربة لهاتين الحزمتين اكبر من بقية الحزم الطيفية ، لذا كان تحسسهما ضعيفاً . وأبدت الحزمتان B6 , B5 أعلى قيم للإنعكاسية مقارنة ببقية الحزم الطيفية للمتحسس OLI ولجميع المواقع المدروسة ، وكانت قيم الدليل الخضري NDVI (0.1 أو أقل) مما يدل على أن غالبية المواقع المدروسة تمثل مناطق جرداء أو ذات غطاء خضري ضعيف وأظهرت الحزمتان الحراريتان B11, B10 أعلى قيم السطوع مقارنة مع باقى الحزم الطيفية ، مما يشير الى أن الأملاح الموجودة على سطح ترب منطقة الدراسة هي من النوع الباعث للحرارة وليس الممتص لها ، أبدى محتوى دقائق الرمل والطين في التربة علاقة موجبة مع الحزم الطيفية بينما كانت علاقة الغرين والكثافة الظاهرية سالبة مع الحزم الطيفية ، إرتبطت الأيصالية الكهربائية ومحتوى الجبس بعلاقة سالبة مع جميع الحزم والأدلة الطيفية بأستثناء الحزمتين B3, B2 فكانت موجبة بينما أبدى محتوى الكلس علاقة إرتباط موجبة مع جميع الحزم والدلائل الطيفية في حين كانت علاقته سالبة مع الحزمة B2 والدليل NDWI , ، أي كان سلوك الجبس معاكسا" لسلوك الكلس .

> **كلمات مفتاحية** :الأستشعار عن بعد ، انعكاسية التربة ، الحزم والأدلة الطيفية ، نظم المعلومات الجغرافية * البحث مستل من اطروحة الدكتور اه للباحث الاول

Characterization , Classification and Prediction of Soil Map Units Boundaries by Using Remote Sensing and GIS in Bahar Al-Najaf / Iraq

*Abdulameer S. Dawood	**Dakel R. Nedewi	***Hussain I	M. Hussain
* Kufa Technical Instit	tute / Al-Furat Al-Awsat T	Technical University	sity
**Gollege	e of Agriculture / Univ . of	Basrah	
***		17£-	

Abstract

The study area is located in the west of the Al-Najaf Al-Ashraf city center, It is bounded by $32^{\circ} 8' 8'' - 31^{\circ} 39' 16''$ N and $44^{\circ} 3' 15'' - 43^{\circ} 4' 11''$ E, It covers an area of (1970) Km² lying within the land of Al-Najaf sea. The study relied on Satellite Image for Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) which captured on 07/13/2014 from the USGS site, The study area was truncated by using ERDAS package, and followed by choose the mix of False color Composite RGB (753) to be the best being a specialist to study the soil and minerals. Some improvements have been made (radiation and spectral and spatial) and Unsupervised classification as well as the use of Earth indicators such as the heterogeneity of the characteristics of field perspective on the ground such as soil Color, texture and natural plants in addition to topographical in determining the movement paths to select 16 Pedon sites . The results showed a variation in spectral reflectivity values both between studied pidons within the same spectral range or between the spectral bands used in this study, reflecting the state of the contrast between the characteristics of soils for studied pidons as well as the variation in susceptibility sensor spectral bands among them.

The reflectance of B2, B3 bands were low comparing with others in all pedons sites, this mean that ability of soil materials to absorb them were more than the rest, for this their sensitivity appear low. On other hand, B5, B6 bands show higher reflectivity than others of OLI sensor in all pedons sites. As the NDVI index values were 0.1 or less, this mean that most of study areas were bare soils or covered with low vegetation. Thermal Infrared bands B10, B11 show the highest values of DN comparing with others, this identifying that soil surface salts were thermal incentive. Spectral bands appear positive correlation with sand and clay grains but negative with Silt grains and bulk density. Electrical conductivity and gypsum appear negative correlation with all bands and studied spectral indices except B2,B3 bands were positive. Calcite shows positive correlation with all spectral bands and indices, but negative with B2 and NDWI index.

Key words: Remote sensing, Soil reflectance, Spectral bands & indices, GIS

المقدمة :-

ضمن طول موجي معين من الطيف الكهرومغناطيسي . ويمثل الضوء في العادة الجزء المرئي من المدى الواسع للإشعاع الكهرومغناطيسي الذي يمتد من الموجات الراديوية إلى الأشعة الكونية ، لذلك فأن جميع أشكال الطاقة عبارة عن أمواج كهرومغناطيسية تنتقل بسرعة واحدة (سليم ، 1985). وتمثَّل الانعكاسية الطيفية لسطح التربة محصلة للعديد من التفاعلات والتداخلات بين خصائص ومكونات التربة ونوع وطبيعة الأشعة الساقطة كالطول الموجي ونوع وملاقة ذلك بخصائص التربة الفيزيائة والكيميائية والمعدنية وعلاقة ذلك بخصائص التربة الفيزيائة والكيميائية والمعدنية البرل عن عوامل أخرى مثل المناخ وطبيعة البزل والتعرية (المشهداني ، 1994 و لولو ، 1998). وبناءا" إن المصدر الأساسي للأشعة الكهرومغناطيسية هو الشمس ، وهذه الأشعة إما أن تنعكس عن الأهداف والأجسام الطبيعية كما هو الحال في المجال المرئي، أو يتم امتصاصها ومن ثم تقوم الأجسام بإعادة انبعاثها كما يحصل في المجال تحت الأحمر الحراري . لذلك يهتم علم الاستشعار عن بعد باستعمال أجهزة لجمع المعلومات عن الأهداف والأجسام المختلفة من دون تلامس فيزيائي مباشر معها وذلك باستغلال الأشعة الكهرومغناطيسية بأطوالها الموجية المختلفة (Elachi and Van , 2006 المعنا موجود على الأرض توقيعاً طيفياً معيناً، وعليه يتم التمييز الطيفي ، فهناك تمييز طيفي للتربة وتمييز طيفي للماء وآخر للنبات ، ولكل ظاهرة استجابة طيفية عالية وفعالة غير المستقر (سلوم وصكر ، 1994). تقع منطقة الدراسة ضمن

على كمية ونوعية الأشعة الكهرومغناطيسية المنعكسة من سطح التربة ضمن نطاقات طيفية متعددة يمكن توصيف وفصل أنواع مختلفة من الترب ، كما ويمكن معرفة عمليات تكوينها ونشأتها عن طريق دراسة المميزات الطيفية لها وتحديد صلاحيتها للأستخدامات الزراعية ودرجة مقدرتها الأنتاجية وتتبعها على فترات سنوية مختلفة (, Irons et al Zinck , 2008 ; 1989) . كما يمكن أن تتغير الأنعكاسية الطيفية للتربة بواسطة عوامل مختلفة مثل التغير بالتكوين الكيمياوي للتربة ومحتوى المادة العضوية والمحتوى الرطوبي والحديد ونوع المادة الأم للتربة (-Ben Dor et al, 1999) . فيمكن التعرف على البصمة الطيفية للمواد بواسطة الانعكاسية أو الامتصاص كدالة للطول الموجي في الطيف الكهرومغناطيسي ، فمعادن الطين تكون أكثر وضوحاً وتمييزاً بالبصمة الطيفية في منطقة الاشعة تحت الحمراء القصيرة الموجة (SWIR) بسبب الامتصاص القوى من قبل الكاربونات والهيدروكسيل واتحادها مع الصفات الأساسية الأخرى (2002, Shepherd and . (Walsh

جيولوجية منطقة الدراسة :-

تشكل منطقة بحر النجف منطقة تحوّل بين السهل الرسوبي ومنطقة الصحراء الغربية ، أي بين الرصيف المستقر والرصيف

الرصيف المستقر نطاق (الرطبة – الجزيرة) إستنادا الى التقسيمات الفيزيوغرافية للعراق ، حيث تتميز المنطقة بأنبساطها وقلة التراكيب السطحية وتحت السطحية فيها مع إمتداد ترسبات العصر الرباعي ومكاشف التكوينات العائدة للعصر الثلاثي . أما ترسبات العصر الرباعي Pleistocene – Holocene فتنتشر على معظم أرجاء المنطقة متباينة في سمكها ونسيجها حيث تمتد ترسبات ملئ الوديان على المناطق المتاخمة للوديان الموسمية (برواري و صليوة ، 1995). أما ترسبات الجبس الثانوي فتنتشر بمساحة واسعة جدا وهي ناتجة عن عمليات تعرية الصخور الكاربونية العائدة للحقب الثلاثي وماقبله ، ويلاحظ في بعض المناطق إنتشار وإمتداد ترسبات الكثبان الرملية وترسبات المنخفضات ، وأن عموم الترسبات أعلاه مكونة من فتات الرمل والحصى والغرين والطين مع قطع صخرية منقولة ومتجوية بالأضافة الى الجبس الثانوي والبيئة الترسيبية لهذه الترسبات بيئة قارية . يبلغ سمك تكوين إنجانة في منطقة بحر النجف بين (10 -30) متر ويتكون هذا التكوين من صخور رملية بصورة رئيسية وصخور طينية ذات ألوان مختلفة (مخضر – رصاصى – بنى) ويكون حد التماس بين تكوين إنجانة وتكوين الدبدبة ظهور طبقة حصوية ناعمة ، أما الترسيبات لهذا التكوين فمتغايرة فهي تتحول من بحرية الى قارية (Buday and Jassim ,1984). ويبين الشكل (1) تتابع الطبقات الجيولوجية لمنطقة الدر اسة .

Era	Period	Epoch	Age	Formation	Lithology
				Aeolian deposits	
		Holocene		Valley fill deposits	
	Quaternary			Depression deposits	
		Pleistocene		Gypcrete deposits	
2				Dibdibba	
		Pliocene		Dibdibba	
CENC			Upper	Injana	
	Tertiary		_		
		Miocene	Middle	Fatha	
			Lower	Euphrates	

شكل (1) التتابع الطباقي للتكاوين الجيولوجية في محافظة النجف (Barwary and Slewa, 1995)

ERDAS, 2013 على مرئية القمر الصناعي Landsat

8ذو المتحسسين (OLI,TIRS) والمبينة مواصفاته في

الجدول (2) وقد التقطت بتاريخ 13- 7- 2014 من

موقع المساحة الجيولوجية الأمريكية (USGS) بعد أجراء

بعض التحسينات (الأشعاعية و الطيفية والمكانية) عليها مع

إختيار الخلطة اللونية الكاذبة (RGB (753) المفضلة

لدراسة التربة والمعادن فضلا" عن الاستعانة بالدلائل

الارضية كالتغايرات في قوام التربة والنبت الطبيعي إضافة

الى الطبوغر إفية ، (شكل 3).

المواد وطرق العمل :-

تتحصر منطقة الدراسة بين خطي الطول (=11 °43 -⁻ 75 =15 °30 °44) شرقا" ودائرتي العرض (~30 °31 ⁻ 75 = 16 °30 °32) شمالا"، وتقدر مساحتها ب (1970 km²) . وهي ضمن المناخ الصحراوي العار والجاف ويتميز فصل الصيف بطوله وجفافه أما فصل الشتاء فيكون قصيرا" وباردا" نسبيا" ، تم تحديد مسارات الشتاء فيكون قصيرا" وباردا" نسبيا" ، تم تحديد مسارات الحركة والتنقل بالطريقة الحرة (Free Lance Soil) الحركة والتنقل بالطريقة الحرة Survey) تمثَّل أنواع الترب المتوقع وجودها بمنطقة الدراسة مع الاعتماد على التصنيف غير الموجه بتطبيق برنامج

0'0"E 40°0'0"E 42°0'0"E 44°0'0"E 46°0'0"E 43°50'0"E 44°0'0"E 44°10'0"E 44°20'0"E 44°30'0"E R 32°10'0"N 32°10'0'N 32°0'0"N 32°0'0"N 40°0'0"E 44°0'0"E 31°50'0''N 31°50'0"N کر بلاء الديوانية لانبار N..0.01 31°40'0"N N..0.0 31°0'0"N * المثنى 20 Kilometers 44°0'0"E 44°10'0"E 44°20'0"E 43°50'0"E 44°30'0"E 43°0'0"E 44°0'0"E 45°0'0"E

شكل (2) موقع منطقة الدر اسة نسبة لمحافظة النجف الأشرف وجمهورية العراق وتطابقها مع خر ائط الهيئة

شكل (3) مواقع بيدونات ترب منطقة الدراسة.

أخذت عينات تربة من ألآفاق السطحية لإجراء التحاليل المختبرية لبعض الصفات الفيزيائية والكيميائية ، اذ استخدمت الطرق الموصوفة في (Black (1965) في تقدير نسجة التربة والكثافة الظاهرية وتم قياس درجة تفاعل التربة في معلق التربة 1:1 وقياس درجة التوصيل الكهربائي في مستخلص عجينة التربة المشبعة باتباع الطرق الموصوفة

في (Richards (1954) وقدرت كاربونات الكالسيوم والمادة العضوية حسب ما ورد في (Jackson (1958 اما الجبس فقدر بطريقة الترسيب بالأسيتون حسب ما موصوف في (Richards (1954 ، ويبين (جدول 1) نتائج تلك التحليلات.

				2	<u> </u>					0.(-)-5	•	
pedons	depth	sand	silt	clay	texture	B. D	РН	Ece	О.М	Gyps.	Lime	Coord	linates
	cm		gm kg ^{- 1}			Mg m ⁻³		dsm ^{- 1}	g kg⁻¹	g kg ⁻¹	g kg ⁻¹	X	Y
P2A	0 -15	298.4	391.6	310	CL	1.44	7.82	2.99	4.7	10.24	445	43.963	31.953
P3A	0 - 10	776	136	88	SL	1.7	7.72	2.5	6.6	10.17	225	44.115	31.895
P4AA	0 - 10	485.6	447.1	672	SL	1.21	7.28	121.2	4	26.15	205	44.088	31.965
P4BA	0 - 10	445.6	307.2	247.2	L	1.43	7.46	40	4.1	13.37	525	44.101	31.956
P5A	0 - 10	376.8	301.6	321.6	CL	1.33	7.91	2.46	2.3	10	245	43.957	31.953
P6A	0 -5	785.6	154.4	60	LS	1.58	7.72	3	2.9	11.83	250	44.099	31.969
P7A	0 - 12	776	40	184	SL	1.69	7.59	9.73	5.1	10.8	570	44.138	31.859
P8A	0 - 15	262	288	464	С	1.39	7.41	48.1	3.7	16.38	390	44.233	31.919
P9A	0 - 10	549.8	402	48.2	SL	1.33	7.34	88.9	1.5	22.2	245	44.221	31.859
10AP	0 -10	584	358	58	SL	1.41	7.71	3.08	2	11.15	300	44.249	31.804
P11A	0 - 15	122.4	577.4	300.2	Si C L	1.47	7.42	90	8.5	30.5	168	44,288	31.867
P12A	0 - 20	863	56.4	80.6	LS	1.52	7.59	54.3	2.5	10.43	357	44.267	31.903
P13A	0 - 25	217.3	561.6	221.1	Si L	1.51	7.44	62.4	6.5	14.43	297	44.329	31.862
P14A	0 - 12	406.2	496.1	97.7	L	1.54	7.41	104	6.5	49.1	204	44.225	31.961
P15A	0 - 10	912	60	28	s	1.66	7.76	2.63	2.6	11.55	510	44.059	31.907
P16A	0 - 12	372	200	428	T	1.50	7 74	1 73	14	2.67	210	44 271	31 745

جدول (1) بعض الخصائص الفيزيائية والكيميائية للأفاق السطحية لبيدونات منطقة الدراسة

جدول (2) الأطوال الموجية والدقة المكانية لحزم المتحسسين OLI, TIRS للقمر الصناعي 8 OLI

Spectral Band	Wavelength	Resolution
Band 1 - Coastal/ Aerosol	0.433 - 0.453 μm	30 m
Band 2 – Blue	0.450 - 0.515 μm	30 m
Band 3 – Green	0.525 - 0.600 μm	30 m
Band 4 – Red	0.630 - 0.680 µm	30 m
Band 5 - NIR	0.845 - 0.885 μm	30 m
Band 6 - SWIR ₁	1.560 - 1.660 μm	30 m
Band 7 - SWIR ₂	2.100 - 2.300 μm	30 m
Band 8 – Panchromatic	0.500 - 0.680 μm	15 m
Band 9 - Cirrus	1.630 – 1.390 μm	30 m
Band 10 - LIR10	10.30 - 11.30 μm	100 m
Band 11 - LIR11	11.50 - 12.50 μm	100 m

جدول (3) الأدلة الطيفية Spectral Indices المستخدمة في الدر اسة ومعادلاتها ومصادر ها المعتمدة

Indices	Full Name	Equation	References
NDVI	Normalized Difference Vegetation Index	(B5 – B4) / (B5 + B4)	Fadhil , 2011
NDWI	Normalized Difference Water Index	(B3 – B5) / (B3 + B5)	McFeeters, 1996
BSI	Bar Soil Index	(((B6+B4)-(B5+B2))/((B6+B4)+(B5-B2))) + 1	Fadhil, 2011
TCW	Tasseled Cap Wetness	$= 0.1509^{*}(B2) + 0.1973^{*}(B3) + 0.3279^{*}(B4) + 0.3406^{*}(B5) - 0.7112^{*}(B6) - 0.4572^{*}(B7)$	Fadhil , 2011
TCT_B	Tasseled Cap Brightness	= 0.3037*B 2 + 0.2793*B 3 + 0.4743*B 4 + 0.5585*B 5 + 0.5082*B6 - 0.1863*B7	Crist et al, 1986 ; Jensen, 1996
TCT_G	Tasseled Cap Greenness	= - 0.2848*B 2 - 0.2435*B 3 - 0.5436*B 4 + 0.7243*B 5 + 0.0840*B6 - 0.180*B7	Crist et al, 1986 ; Jensen, 1996

جدول (4) قيم السطوع (DN) لحزم المتحسسين OLI, TIRS ولمواقع بيدونات منطقة الدراسة

B11	B10	B8	F	37	B6	B5	B4	B3	B2		Y	Х	Pedons
31184	33885	20095	23	662	28290	26866	22796	18870	16564	31.	9532	43.9629	P2A
pedons	depth	sand	silt	clay	texture	B. D	РН	Ece	O.M	Gyps.	Lime	Coord	linates
	cm		gm kg ^{- 1}			Mg m	-3	dsm ^{- 1}	g kg ⁻¹	g kg-1	g kg⁻¹	X	Y
P2A	0 -15	298.4	391.6	310	CL	1.44	7.82	2.99	4.7	10.24	445	43.963	31.953
P3A	0 - 10	776	136	88	SL	1.7	7.72	2.5	6.6	10.17	225	44.115	31.895
P4AA	0 - 10	485.6	447.1	672	SL	1.21	7.28	121.2	4	26.15	205	44.088	31.965
P4BA	0 - 10	445.6	307.2	247.2	L	1.43	7.46	40	4.1	13.37	525	44.101	31.956
P5A	0 - 10	376.8	301.6	321.6	CL	1.33	7.91	2.46	2.3	10	245	43.957	31.953
P6A	0 -5	785.6	154.4	60	LS	1.58	7.72	3	2.9	11.83	250	44.099	31.969
P7A	0 - 12	776	40	184	SL	1.69	7.59	9.73	5.1	10.8	570	44.138	31.859
P8A	0 - 15	262	288	464	С	1.39	7.41	48.1	3.7	16.38	390	44.233	31.919
P9A	0 - 10	549.8	402	48.2	SL	1.33	7.34	88.9	1.5	22.2	245	44.221	31.859
10AP	0 -10	584	358	58	SL	1.41	7.71	3.08	2	11.15	300	44.249	31.804
P11A	0 - 15	122.4	577.4	300.2	Si C L	1.47	7.42	90	8.5	30.5	168	44.288	31.867
P12A	0 - 20	863	56.4	80.6	LS	1.52	7.59	54.3	2.5	10.43	357	44.267	31.903
P13A	0 - 25	217.3	561.6	221.1	Si L	1.51	7.44	62.4	6.5	14.43	297	44.329	31.862
P14A	0 - 12	406.2	496.1	97.7	L	1.54	7.41	104	6.5	49.1	204	44.225	31.961
P15A	0 - 10	912	60	28	s	1.66	7.76	2.63	2.6	11.55	510	44.059	31.907
P16A	0 - 12	372	200	428	L	1.52	7.74	1.73	1.4	2.67	210	44.271	31.745

30139	32551	20964	24668	29654	27630	23710	19790	17216	31.8954	44.1152	P3A
29644	31880	20573	22019	26167	26271	22814	19512	17156	31.9648	44.0882	P4AA
29285	31553	20022	21223	25338	26661	22194	19234	17021	31.9564	44.1007	P4BA
31247	33897	20085	24912	29128	26830	22672	18666	16359	31.9527	43.9571	P5A
29487	31733	19643	20798	24403	25769	21618	18753	16738	31.9685	44.0998	P6A
29895	32209	21769	26073	31487	29164	24728	20348	17495	31.8592	44.1377	P7A
29086	31334	20852	21426	25456	27192	23001	20109	17749	31.9186	44.2329	P8A
28979	31029	21769	23695	27973	27936	24403	20610	17709	31.8589	44.2211	P9A
28841	30800	22211	24121	28498	28298	24834	21044	18204	31.8035	44.2499	P10A
29169	31136	22209	25038	28471	28439	24637	21128	18374	31.8666	44.2884	P11A
29094	31115	22186	24043	27645	28462	24510	21174	18376	31.9028	44.2671	P12A
27460	29488	20854	19366	22543	24855	22740	20195	17950	31.8619	44.3285	P13A
27896	30026	20853	18776	22489	25285	22694	20211	17954	31.9609	44.2254	P14A
30510	33008	20582	24309	30227	27874	23584	19316	16739	31.9066	44.0588	P15A
28563	30518	22972	26586	30903	29659	25898	21711	18487	31.7454	44.2707	P16A

شكل (4) : منحنى قيم السطوع (DN) لحزم مرئية لاندسات 8 وللمتحسسين OLI + TIRS عند مواقع بيدونات ترب الدراسة

ومن تتبع سلوك منحنيات الأنعكاسية للحزم الطيفية عند مواقع بيدونات الدراسة ، شكل (4) نجد هناك زيادة في قيم الأنعكاسية الطيفية إبتداءا" من الحزمة B2 وحتى الحزمة B5 ولجميع مواقع البيدونات ، لكنه حصلت تغايرات نوعما في قيم الأنعكاسية عند الحزمة B5 ومابعدها وكما يلي :-

- إستمرت الزيادة بالأنعكاسية الطيفية من الحزمة B5
 وحتى الحزمة B6 في كل من البيدونات
 (P5, P15, P7, P3, P2, P16, P10, P9, P11

وبنسبة (, 7.78 , 7.38 , 6.83 , 5.03 , 4.03 , 9 وبنسبة (, 7.78 , 7.38 , 6.83 , 5.03 , 4.03 , 0.11) مع الترتيب وذلك تماشيا" مع أرتباط الحزمتين B6,B5 الموجب المعنوي مع الكلس (* 3.00 , * 0.318 الموجب المعنوي مع الكلس (ماحق 1) فضلا من عن المحتوى المنخفض لرطوبة هذه المواقع إستدلالا" من القيم المنخفضة لأدلة الرطوبة هذه المواقع إستدلالا" من لأدلة السطوع MDWI , TCW (جدول 5) ، وقد حسبت قيم الأدلة الطيفية طبقا" للمعادلات والمصادر المبينة في جدول (3) .

- حصل إنخفاض في قيم الإنعكاسية الطيفية إبتداءا" من الحزمة B6 وحتى الحزمة B8 في المواقع (P4B, P6, P8, P12, P4A) بنسبة (23.77, 24.9 (24.9, 23.72, 23.32,)% على الترتيب بينما إنخفضت إنعكاسية الحزمتين B6 ، B7 عند الموقعين إنخفضت إنعكاسية الحزمتين B6 ، 76 عند الموقعين بسبب الحساسية العالية للحزم التحت الحمراء القصيرة الرطوبة ، سيما وأن رطوبة هذين الموقعين كانت مرتفعة إستنادا" على القيم العالية لدلائل الرطوبة عندها , NDWI

TCT_B, BSI والمنخفضة لدلائل السطوع TCW والمنخفضة لدلائل السطوع TCW (جدول 5) . فضلا" عن إرتباطها السالب مع الجبس ، فكان معامل الأرتباط (0.045 - , 0.332 - , 0.359 -) . للحزم B8, B7, B6 على التوالي (ملحق 1) .

P15 أبدت الحزمة B6 أعلى قيم السطوع عند البيدونات P15 (30227, 30903, 31487, 2002, 916, P7 (2002, 2002, 916, P7 (2002, 2002, 916, 100

معنوية مختلفة كان أكبرها عند الحزمة B6 وتتفق النتائج مع (بهلوان ، 2010 و داود ، 2006 و الهنيدي وآخرون ، 2014) . أما علاقة الأنعكاسية مع الحزمة B2 فكانت سالبة ، لذلك نلاحظ إنعكاسيتها هي الأقل مقارنة ببقية الحزم الطيفية (جدول 4 والشكل 5) .

ومن الشكل (5) يتضح الآتي :-

- أبدت الحزم الطيفية B8, B3, B2 سلوكا" متشابها" في تغاير الأنعكاسية من حيث زيادتها ونقصانها عند المواقع المختلفة للبيدونات ، فقد تفوقت قيم السطوع للحزمة B8 ملك المختلفة للبيدونات ، فقد تفوقت قيم السطوع للحزمة B3 على الحزمتين B2 ، 20 في جميع مواقع بيدونات الدراسة ، مما يشير الى أن قابلية امتصاص مكونات التربة لهاتين الحزمتين B2 ، 20 في حميع مواقع بيدونات الدراسة الحزمتين B2 ، 20 في حميع مواقع بيدونات الدراسة الحزمتين B2 ، 20 في حميع مواقع بيدونات الدراسة المختلفة للبيدونات ، فقد تفوقت قيم السطوع للحزمة B3 مما يشير الى أن قابلية امتصاص مكونات التربة لهاتين الحزمتين B2 ، 20 في حميع مواقع بيدونات الدراسة الحزمتين B2 ، 20 في حميع مواقع بيدونات الدراسة الحزمتين B2 ، 20 معارنة بيقية الحزم الطيفية ، فضلا عن أن صفات التربة لذا كان تحسسهما ضعيفاً ، فضلا عن أن صفات التربة المتمثلة بملوحة التربة B2 ، 20 وسلبية ضعيفة جدا معلاقة الحزمة B3 ، 20 معاكسا وسلمت بعلاقتها مع بقية الحزم الطيفية الأخرى ذات الأنعكاسية الحزمة B3 ، 20 معايية الخرى ذات الأنعكاسية بين الحزم B3 ، B3 , B3 والحبس إرتبط معاكسا موجبة مع الحزمتين B3 , B3 ، 20 معاكسا معلومة التربة B3 ، 20 معاكسا وسلمية ضعيفة جدا معلومة الحرمة B3 ، 20 معاكسا وسلمية ضعيفة جدا معالية الحزمة B3 ، 20 معاكسا معالية (B3 ، 20 معاكسا معلومة الأخرى ذات الأنعكاسية بين الحزم B3 ، 20 ما أن قوة الإرتباط بين الحزم B3 , B3 , B3 ، كما أن قوة الإرتباط في حين كانت علاقتها ضعيفة الى متوسطة مع الحزم التحت الحمراء القريبة والمتوسطة والقصيرة (ملحق 1) .

34

شكل (5) إنعكاسية الحزم الطيفية (DN) لمرئية لاندسات 8 وللمتحسسين OLI+TIRS شكل (5) إنعكاسية الحزم الطيفية (

يلاحظ هناك تبايناً في قيم انعكاسية الحزم تحت الحمراء B7, B6, B5 ضمن بيدونات الدراسة ، اذ ان القيم تتذبذب مع تغير صفات ترب البيدونات بشكل يجعل من الصعوبة ايجاد تفسير مباشر وذلك لاجتماع تأثيرات اكثر من صفة في أن واحد على قيم الانعكاسية . وهذا يتفق مع ما ذكره (خاروف ، 1994 و عباس ، 2010) في تداخل اكثر من صفة للتربة بالتأثير على الانعكاسية . وعموما" تفوقت إنعكاسية الحزمتان B6, B5 على إنعكاسية بقية حزم المتحسس OLI وفي جميع مواقع البيدونات بأستثناء الموقعين P14, P13 (اللذين حصل فيهما إنخفاض شديد في إنعكاسية الحزم التحت الحمراء B7, B6, B5 كونها الأكثر تأثرا" بالرطوبة) ، وقد أظهرا أعلى القيم لدلائل الرطوبة NDWI, TCW وأقل القيم لدلائل السطوع TCT_B, BSI (جدول 5) . لأن الماء يمتص بقوة الحزم التحت الحمراء لذلك تستخدم هذه الحزم للتمبيز بين الترب الجافة والرطبة (Bhattacharjee, 2013) ، وتتفق النتائج مع (Quinn , 2001 ; Margate and Shrestha , 2001 و عباس ، 2010) الذين أشاروا بأنَّ أدنى قيم الأنعكاسية للحزمتان B7,B6 تتواجد في المواقع ذات المحتوى الرطوبي المرتفع ، كونهن تتضمنان الأطوال الموجية (1450 , 1450) nm التي تعد من مناطق الطيف

رب الدراسة. لأمتصاص الماء . ويتميز هذان الموقعان بمحتواهما من معادن الطين والمادة العضوية ذوا البصمة الطيفية الواضحة في الأشعة تحت الحمراء بسبب إمتصاصهما القوي نسبيا" لها ، إضافة الى إرتباط هذه الحزم مع المجاميع الهيدروكسيلية (Ben-Dor and Banin ,1995) فضلا" عن محتوى الموقعين المرتفع من الغرين (جدول 1) الذي يرتبط بعلاقة سالبة مع هذه الحزم (ملحق 1) ، فكل هذه العوامل مخفّضة للأنعكاسية .

- أبدت الحزمة B5 (NIR) أعلى قيم للإنعكاسية مقارنة بالحزمة B4 (RED) ولجميع المواقع المدروسة ، وكانت قيم الدليل الخضري (NDVI) أو أقل) (جدول 5) ، مما يدل على أن غالبية المواقع المدروسة تمثل مناطق مما يدل على أن غالبية المواقع المدروسة تمثل مناطق جرداء أو ذات غطاء خضري ضعيف وتتفق النتائج مع جرداء أو ذات غطاء خضري ضعيف وتتفق النتائج مع ماتوصل اليه كل من (Abineh , 2015 , عالم 2005 ; Huete and Lillsand and Kiefer , 2000 ; Huete and (1991 , 1991)

- أظهرت الحزمتان الحراريتان B11, B10 أعلى قيم السطوع (DN) مقارنة ببقية الحزم الطيفية ، فتراوحت حدودها الدنيا بين (29488 , 29486) والعليا بين (33897 , 33897) ولكل منهما على التوالي ، وقد تفوقت قيم الحزمة B10 على الحزمة B11 ، ويعود ذلك الى أن

قابلية الالتقاط gain للحزمة B10 أعلى مما للحزمة B11 (U.S. Geological Survey , 2015) علما أنهما تختلفان في مدى أطوالهما الموجية (ملحق 3) وتوافقت النتائج مع (عباس ، 2010) . وقد إنحصرت قيمتيهما الدنيا عند البيدونين P14 , P13 بسبب محتواهما الرطوبي المرتفع ويستدل على ذلك من القيم المرتفعة لدلائل الرطوبي المرتفع ويستدل على ذلك من القيم المرتفعة لدلائل الرطوبي المرتفع ويستدل على ذلك من القيم المرتفعة لدلائل B10 , TCT_B , BSI P15 , P5 , P2 والمنخفضة لدلائل السطوع بسبب محتواها الرطوبي المنخفض ويؤكد ذلك القيم المرتفعة الرطوبة NDWI , TCW والمنخفضة ويؤكد ذلك القيم المرتفعة الرطوبة 2013 , RSI والمنخفضة لدلائل

و عموما" ، يتضح من الشكال (5) بوجود زيادة في الأنعكاسية الطيفية متوافقة مع زيادة الأطوال الموجية للحزم علاقات صفات التربة الفيزيائية والكيميائية مع بعضها البعض ومع الحزم والأدلة الطيفية :-

أجريً التحليل الأحصائي لصفات التربة المدروسة مع البيانات المستحصلة من مرئية القمر الصناعي لاندسات 8 بأستعمال البرنامج الأحصائي SPSS V.20 . وتوضئح الملاحق (1 , 2 , 3) مصفوفة الأرتباط (Correlation الملاحق (1 , 2 , 3) مصفوفة الأرتباط (Matrix والكيميائية المدروسة فيما بينها ومع إنعكاسية الحزم الطيفية والكيميائية المدروسة فيما بينها ومع إنعكاسية الحزم الطيفية وقيم الدلائل الطيفية المحسوبة من مرئية لاندسات 8 للآفاق السطحية لمواقع بيدونات منطقة الدراسة ، وقد تبين الآتي :-السطحية لمواقع بيدونات منطقة الدراسة ، وقد تبين الآتي :-المطحية لمواقع بيدونات منطقة الدراسة ، وكانت العلاقة عالية التربة الفيزيائية والكيميائية المدروسة ، وكانت العلاقة عالية التربة الفيزيائية والكيميائية المدروسة ، وكانت العلاقة عالية المعنوية مع دقائق الغرين (**0.837 -) والمادة العضوية المعنوية مع دقائق الغرين (**201 -) والمادة العضوية المعنوية مع دقائق الغرين (**201 -) والمادة العضوية المعنوية مع دقائق الغرين (**201 -) والمادة العضوية المعنوية مع دقائق الغرين (**201 -) والمادة العضوية مع المعنوية مع دقائق الغرين (**201 -) والمادة العضوية مع المعنوية مع دقائق الغرين (**201 -) والمادة العضوية مع المعنوية مع دقائق الغرين (**201 -) والمادة العضوية مع الموجده (1976 -) ، عدا الكثافة الظاهرية والأس الهيدروجيني

; et al, 2013). أما علاقتها مع الحزم الطيفية فكانت موجبة مع جميعها وبدرجات معنوية مختلفة عدا الحزمة B2 فكانت سالبة وغير معنوية ، لذلك

الطيفية (عباس ، 2010 ؛ محيميد و زعين ، 2013). وقد أيَد كذلك كل من حسين (1988) و الشيخلي وعلي ، وقد أيَد كذلك كل من حسين (1988) و الشيخلي وعلي ، (2001) الذين إعتبروا أن التربة دالة لمكوناتها ، وتتسم بزيادة إنعكاسيتها مع زيادة الطول الموجي من (0.5 – 1.1) μm ، وكذلك إتفقت النتائج مع (2003) , Nield الذي أشار الى زيادة إنعكاسية الترب الجرداء ذات المحتوى أشار الى زيادة العضوية وأوكسيد الحديد تتوافق مع زيادة الطوال الموجية المرئية والتحت الحمراء القريبة والمتوسطة أما إنخفاض قيم الأنعكاسية الطيفية للحزمة B7 مقارنة بالحزمتين B6 , B5 ولجميع مواقع البيدونات كونها أكثر تحسسا" للغطاء النباتي والمحتوى الرطوبي (Lillisand and Kiefer , 2000).

SL نيتضح إرتفاع الأنعكاسية في البيدون P7 ذو النسجة SL ومحتوى أفقه السطحي من الرمل 766 غم . كغم ⁻¹ (ومحتوى أفقه السطحي من الرمل 766 غم . كغم ⁻¹ (R7, وخصوصا" عند الحزم التحت الحمراء , B7 Manchanda et al , وتنقق النتيجة مع (, B6, B5 2008 و كاطع ومحيميد ، 2002 و المشهداني ، 2008 و محيميد وزعين ، 2013) .وقد كانت علاقة دقائق الرمل موجبة مع جميع الأدلة الطيفية المدروسة عدا الدليل NDSI فكانت سالبة (ملحق 2) .

- أبدت دقائق الغرين علاقة إرتباط موجبة مع صفات التربة الفيزيائية والكيميائية المدروسة عدا دقائق الرمل والكثافة الحقيقية والاس الهيدروجيني (pH) والمسامية ومحتوى الكلس فكانت سالبة ، وكانت علاقتها سالبة أيضا" مع جميع الحزم الطيفية وبدرجات معنوية مختلفة عدا الحزمة B2 فكانت إيجابية ضعيفة ، أما علاقتها مع جميع الأدلة الطيفية المدروسة فكانت سالبة .

يتضح مما سبق أن دقائق الرمل سلكت سلوكا" معاكسا" لسلوك دقائق الغرين من حيث إرتباطها مع صفات التربة المدروسة والحزم والدلائل الطيفية المدروسة ، لذلك فزيادة محتوى دقائق الرمل في التربة تعمل على زيادة

الأنعكاسية بسبب العلاقة الطردية مع الحزم الطيفية ، بينما تعمل زيادة دقائق الغرين على خفض إنعكاسية التربة . وتتفق هذه النتائج مع (; 2000 , Coleman et al, 1991).

- إرتبطت دقائق الطين بعلاقة سالبة مع صفات التربة المدروسة عدا دقائق الغرين ، والكثافة الحقيقية ومحتوى الجبس فكانت موجبة ، وعلاقتها موجبة أيضا"مع جميع الحزم الطيفية ، لذلك يتضح إرتفاع الأنعكاسية في البيدون P5 ذو النسجة CL ومحتوى أفقه السطحي من الطين 321.6 غم كغم ⁻¹ وخصوصا" للحزم التحت الحمراء B7 B6 , B5 , a وتتفق النتائج مع (2007 , 2007 و عبداللطيف ، 2012) ، بأن الأنعكاسية تتناسب عكسيا" مع حجم دقائق التربة بسبب زيادة المساحة السطحية النوعية وبالأخص في الحالة الجافة . بينما كانت علاقتها سالبة مع الأدلة الطيفية المدروسة عــدا الأدلة

TCT_B, GSI, TCW, BSI, NDSI فكانت موجبة .

- أبدت الكثافة الظاهرية علاقة إرتباط موجبة مع كل صفات التربة المدروسة عدا دقائق الطين والأيصالية الكهربائية (ECe) ومحتوى الجبس فكانت سالبة ، كما كانت علاقتها سالبة مع جميع الحزم الطيفية ، أي بأرتفاع الكثافة الظاهرية تنخفض الأنعكاسية ، وتتفق هذه النتيجة مع (الكبيسي ، تنخفض الأنعكاسية ، وتتفق هذه النتيجة مع (الكبيسي ، 1997 و المشهداني ، 2008) . أما علاقتها مع الدلائل الطيفية المدروسة فكانت سالبة بأستثناء الأدلة , TCT_G الطيفية المدروسة فكانت سالبة بأستثناء الأدلة , CI , NDWI , NDSI , NDVI

أبدت الأيصالية الكهربائية علاقة إرتباط موجبة مع كل صفات التربة المدروسة عدا الكثافة الظاهرية ودقائق الرمل والأس الهيدروجيني ومحتوى الكلس فكانت سالبة ، واتفقت نتائج الصفات المدروسة مع (Noller and) إضافة لعلاقتها السالبة مع جميع الحزم والأدلة الطيفية بأستثناء الحزمتين B3, B2 فكانت موجبة ، ولوحظ من الجدول (1) والشكل (5) بأنه قد لا تتحقق زيادة الأنعكاسية بزيادة قيم ملوحة التربة (EC) في بعض

مواقع البيدونات سيما عندما تكون الرطوبة عالية والقشرة الملحية غير مرئية Invisible على سطح التربة ، أي مختلطة مع مكونات التربة الأخرى ، ولهذا يصعب مباشرة كشف ملوحة التربة وتصبح العملية معقدة وصعبة كشف ملوحة التربة وتصبح العملية معقدة وصعبة Complicated وربما تعطي نتائج غير موثوق بها (Allbed and Kumar , 2013) Unreliable Fan et al) Unreliable fan et al) 2012 ; Bouaziz et al , 2011 ; Fernandez – 2016 ; Bouaziz et al , 2011 ; Fernandez الخضرية EVI , NDVI , SAVI الخضرية مع ملوحة التربة . ECE .

- إرتبطت المادة العضوية بعلاقة موجبة مع صفات التربة المدروسة عدا دقائق الرمل والطين ومحتوى الكلس فكانت سالبة إضافة لعلاقتها السالبة مع جميع الحزم والدلائل TCT_G, CI, NDSI, NDVI والطيفية بأستثناء فكانت موجبة ، وهذا ما يؤكد دور المادة العضوية بالأحتفاظ بالرطوبة بسبب لونها الداكن وقابليتها على إمتصاص الرطوبة والأشعة الساقطة عليها وبالتالي خفض الأنعكاسية ، وتتفق النتائج مع (داود ، 2006 و المشهداني ، 2008) ، إلاً أن نسبتها القليلة في ترب منطقة الدراسة ربما لا يكون له التأثير الواضح والملموس على إنعكاسيتها . (Batchily et al , 2003)

- كانت علاقة محتوى الجبس موجبة مع كل صفات التربة المدروسة عدا علاقته مع دقائق الرمل والكثافة الظاهرية والاس الهيدروجيني ومحتوى الكلس فكانت سالبة . أما علاقته مع الحزم والدلائل الطيفية فكانت سالبة مع جميعها في حين كانت موجبة مع الحزمتين B3 , B2 . ويعتمد في حين كانت موجبة مع الحزمتين العراقة . هل هي تأثير الجبس في الأنعكاسية على نسبة وجوده في الأفق السطحي بالتربة إضافة الى المركبات المرافقة له ، هل هي ماصة أم عاكسة للأشعة الساقطة عليها . ولوجود العلاقة الموجبة عالية المعنوية للجبس **880 $= 2^{2}$ مع الموجبة الكهربائية ، والذي إنعكس تأثيرها على خفض إنعكاسية الحزمتين B3 , B2 مقارنة مع الحزم الطيفية الأخرى مع إختلاف قيم الأنعكاسية الطيفية لجميع المواقع

بسبب الدور الفعّال للعاملين الآنفي الذكر . فقد حصل (2002) , Howari et al على أعلى قيمة للأنعكاسية الطيفية للتربة المعاملة ب 100% gypsum بينما إنخفضت قيم الأنعكاسية الطيفية مع إضافة الهالايت Halite بوصفه ملحا" مرافقا" للجبس مع إختفاء النطاقات الأمتصاصية المميزة للجبس ، وتتفق هذه النتائج مع عباس ، (2010) عند دراسته في تصنيف وتوصيف ترب شمال الكوت . إضافة الى (2000) , المتعامية وتوصيف ترب شمال الكوت . إضافة الى (2000) , عند دراسته للجبس مع الأنعكاسية الطيفية ، وتوافقت كذلك مع الكبيسي ، (1997) خلال معالجته الأحصائية لنسب الجبس في الآفاق السطحية لترب منطقة حصيبة – غرب العراق بحصوله علاقة سالبة معنوية منطقة حصيبة القريبة NIR عند إستخدامه النموذجين الخطي البسيط والأسي .

- أبدى محتوى الكلس علاقة إرتباط سالبة مع صفات التربة المدروسة عدا علاقته مع دقائق الرمل والكثافة الظاهرية فكانت موجبة . أما علاقته مع الحزم والدلائل الطيفية فكانت موجبة مع جميعها بينما كانت سالبة مع الطيفية فكانت موجبة مع جميعها بينما كانت سالبة مع الحزمة B2 والدليل NDWI. وتتفق هذه النتائج مع (لولو ، 1991, 1998 و كاطع وآخرون ، 2005 وبهلوان ، وراد ، 2005 و الهنيدي وآخرون ، 2014) ، وراد ، 2006 و الهنيدي وآخرون ، 2014) ، الما جيث أبدت الترب الكلسية إنعكاسية عالية ، وقد تباينت السطحية ونسبة الغطاء الخضرى .

مما سبق يتضح أن محتوى الجبس سلك سلوكا" معاكسا" لسلوك محتوى الكلس من حيث محتواه في التربة وإرتباطه مع صفات التربة والحزم والدلائل الطيفية المدروسة (جدول 1)، لذلك كانت علاقة الجبس مع الحزم الطيفية وخاصة الحمراء والتحت الحمراء والبانكروماتية الطيفية وخاصة الحمراء والتحت الحمراء والبانكروماتية

الكلس معها موجبة (ملحق 1) . وقد أظهر التحليل الكيميائى المختبري للأفاق السطحية لمواقع الدراسة أن محتوى الكلس يتراوح بين (168 – 570) غم كغم ⁻¹ و هو أكثر بمقدار كبير مقارنة بمحتوى الجبــس (- 49.1 2.67) غم كغم 1 ، لذلك ظهر التأثير الأيجابي للكلس في رفع إنعكاسية الحزم المشار اليها سلفا" ، ويتماشى ذلك مع (بهلوان ، 2010 و الهنيدي وأخرون ، 2014) وقد ظهر ذلك جليا" في الشكل (5) وبالأخص في مواقع البيدونات P15, P7 حيث محتوى الكلس فيهما (570, 510) غم كغم -1 على التوالي (الجدول 1) . أما إرتفاع إنعكاسية الأفق السطحى للبيدون P16 رغم محتواه المتوسط من الكلس 210 غم كغم -1 مقارنة بالموقعين الأنفى الذكر قد يعود الى تأثير عوامل مشتركة ، كما أشار الى ذلك عباس ، (2010). ومن هذه العوامل النسجة (Loam) ومحتواه من الرمل 372 غم كغم $^{-1}$ والطين 248 غم كغم $^{-1}$ واللذين كانت علاقتهما موجبة ومعنوية مع الأنعكاسية وبالذات المشار اليها سابقا" (الحمراء والتحت الحمراء والبانكروماتية) . إضافة لذلك إنخفاض محتواه الرطوبي والذي تم الأستدلال عليه من القيم المنخفضة للدلائل الطيفية NDWI = -) ، (TCW = - 0.16848) الرطوبة (0.19209) مقارنة بقيمها في مواقع البيدونات الأخرى والمبينة في (جدول 5) . وعموما" يلاحظ وجود علاقة إرتباط ضعيفة فيما بين صفات التربة المدروسة وإنعكاسيتها عند الحزم وقيم الدلائل الطيفية المختلفة المحسوبة ،(ملاحق 3,2,1) . وتتفق النتائج مع ما توصلت اليه (Qadir , 2007 عند در استها لأنعكاسية أصناف إستخدام الأرض وعلاقتها بصفات التربة للمتحسس TM بأستخدام الحزم الطيفية B3, B2, B1 ، وقد حددت 12 صنفا" لترب منطقة الدراسة بشمال العراق

pedons	NDVI	NDSI	NDWI	BSI	SAVI	TCW	GSI	CI	TCT_B	TCT_G
P2A	0.1026	-0.1026	-0.2238	1.8031	0.0974	-0.1598	0.12682	1.2480	54903	-4127.9
P3A	0.0941	-0.0941	-0.2093	1.8943	0.0907	-0.1726	0.14055	1.2509	57104	-4565.7
P4AA	0.0885	-0.0885	-0.1889	1.7135	0.0835	-0.1096	0.11847	1.2437	53553	-4776.2
P4BA	0.1150	-0.1150	-0.2069	1.6477	0.1083	-0.0921	0.10580	1.2537	52789	-3976.9
P5A	0.1066	-0.1066	-0.2313	1.8354	0.1100	-0.1889	0.12654	1.2113	55424	-4098.8
P6A	0.1112	-0.1112	-0.2030	1.5901	0.1031	-0.0913	0.09652	1.2249	51312	-4127.1
P7A	0.1011	-0.1011	-0.2231	2.0048	0.0994	-0.1922	0.16197	1.2569	59872	-4304.2
P8A	0.1068	-0.1068	-0.1925	1.6768	0.1017	-0.0792	0.11201	1.2456	53915	-4390.6
P9A	0.0835	-0.0835	-0.1901	1.8516	0.0811	-0.1240	0.15038	1.2288	56942	-5008.9
10AP	0.0810	-0.0810	-0.1864	1.8978	0.0792	-0.1318	0.15447	1.2257	58102	-5230.8
P11A	0.0880	-0.0880	-0.1856	1.8906	0.0861	-0.1399	0.14666	1.1672	58389	-5303.3
P12A	0.0911	-0.0911	-0.1830	1.8414	0.0890	-0.1129	0.14188	1.1900	57569	-5134.7
P13A	0.0571	-0.0571	-0.1339	1.5482	0.0531	-0.0339	0.10304	1.2141	50875	-5977.3
P14A	0.0682	-0.0682	-0.1438	1.5364	0.0636	-0.0228	0.10206	1.2712	50815	-5529.8
P15A	0.1035	-0.1035	-0.2320	1.9219	0.1001	-0.1791	0.14691	1.3086	57408	-3915.5
P16A	0.0836	-0.0836	-0.1921	2.0247	0.0832	-0.1685	0.17588	1.2039	61077	-5301.7

جدول (3) قيم الدلائل الطيفية المحسوبة من المرئية Landsat 8 للآفاق السطحية ولمواقع بيدونات الدراسة

الأستنتاجات

 1- يمكن التعرف على مكونات التربة المعدنية عن طريق بصماتها الطيفية ، فمعادن الطين تكون أكثر وضوحاً وتمييزاً بالبصمة الطيفية في منطقة الاشعة تحت الحمراء القصيرة الموجة (SWIR) ، ويستخدم مدى الطول الموجي للضوء المرئي (SWIR) ، ويستخدم مدى الطول الموجي للضوء والمرئي (SWIR) ، ويستخدم مدى الطول الموجي للضوء والطبقات الجيولوجية ، وفي التعرف على المادة العضوية واكاسيد الحديد والهدروكسيل

2- إعتمادا" على كمية ونوعية الأشعة الكهرومغناطيسية المنعكسة من سطح التربة ضمن نطاقات طيفية متعددة يمكن توصيف وفصل أنواع مختلفة من الترب ، كما ويمكن معرفة عمليات تكوينها ونشأتها عن طريق دراسة المميزات الطيفية لها وتحديد صلاحيتها للأستخدامات الزراعية ودرجة مقدرتها الأنتاجية وتتبعها على فترات سنوية مختلفة .

التوصيــات

1 - تشابهت منحنيات الأنعكاسية المحسوبة من قيم السطوع
 (DN) مع تلك المحسوبة من الأنعكاسية المصححة
 (Corrected reflection
 ۲СТ_В ، إلاً أنه عند حساب الأدلة

TCT_G, بينما تطبق قيم الأنعكاسية المصححة في الأخرى مثل NDVI, GSI, BSI.

2 - ضرورة الاستفادة القصوى من تحسس الطيف الكهرومغناطيسي وذلك بأستخدام تطبيق تعدد الحزم الطيفية الكهرومغناطيسي وذلك بأستخدام تطبيق تعدد الحزم الطيفية Multispectral باستعمال معطيات اكثر من متحسس في آن واحد على ان تتوافق اساسياتها ، أو استخدام مرئيات لمتحسسات ذات قدرات تمييزية طيفية ومكانية عالية تمتلك لمتحسسات ذات قدرات تمييزية طيفية ومكانية عالية تمتلك مرع طيفية متعددة ذات عرض ضيئق (Imagery على حزم طيفية متعددة ذات عرض ضيئق (imagery على منحنيات البصمات الطيفية الأكثر تخصصا" فضلا" عن تفاصيل أكثر للصفات والخصائص المدروسة وخاصة في مجال مسح وتصنيف الترب.

3 - يجب دراسة تأثير كل صفة من صفات التربة الفيزيائية والكيميائية من دون حصول تداخل وتأثير مكونات التربة الأخرى لمعرفة التأثير المباشر والحقيقي لكل صفة في قيم الانعكاسية الطيفية للتربة . وقد لا تعطي الترب الانعكاسية الطيفية التي تميزها بشكل نقي بسبب إختلاطها مع الانعكاسية الطيفية للغطاء النباتي المتواجد فيها وبذلك يلجأ المحلل إلى الفحص المختبري أو نوع استخدام الأرض .

4 - أهمية الاحاطة بصفات التربة المراد دراستها بمثل هذه التقانات مع اختيار الوقت المناسب لاجراء هذه الدراسات نظراً لديناميكية بعض الصفات ، كما يتطلب الامر اجراء التقديرات الأنية لهذه الصفات على ان تكون ذات توافق مع تأريخ ووقت التقاط المرئية الفضائية .

5 - إجراء معايرة لقيم الانعكاسية الطيفية المحسوبة من
 المرئية الفضائية مع القراءة الميدانية لها باستعمال جهاز الـ.

المصــادر Refrences

برواري, انور مصطفى وصليوة, نصيرة عزيز, 1995, جيولوجية لوحة النجف الشركة العامة للمسح الجيولوجي والتعدين تقرير داخلى (20) صفحة.

بهلوان، محمد حسام. 2010 . تقدير محتوى التربة من الجبس باستخدام بيانات الانعكاسية الطيفية في . ترب حوض مسكنة شرق حلب ، مجلة بحوث جامعة حلب ، العدد 87 . حسين ، ناصر حسين سلمان . 1988 . دراسة الأنعكاسية الطيفية لأراضي القطر لأغراض التمويه والأستشعار عن بعد . رسالة ماجستير . كلية العلوم . الجامعة المستنصرية . العراق .

حمد , عبد الغفور ابراهيم . 2009 . استخدام تقانتي الاستشعار عن بعد ونظم المعلومات الجغرافية في تقويم الاراضي في وسط السهل الرسوبي العراقي . رسالة ماجستير - كلية الزراعة - جامعة بغداد .

خاروف ، حسن حلمي . 1994 . الاستشعار عن بعد وتفسير المرئيات . مترجم توماس.م. ليلسان . المركز العربي للتدريب والترجمة والتأليف والنشر . دمشق . سوريا .

داود ، نامق عبد المنعم . 2006. إمكانية استخدام تقنيات التحسس النائي في دراسة مشكلة الملوحة في مشروع ري الجزيرة الشمالي / ربيعة . رسالة ماجستير ، كلية الزراعة ، جامعة الموصل .

سلوم ، أياد جهاد و راجح حيدر صكر . 1994 . مسح التربة شبه المفصل والتحريات الهيدرولوجية في مشروع بحر النجف (تقرير غير منشور) . قسم التحريات والتربة . وزارة الموارد المائية .

Radiometer مع الحاجة الى استخدام تقانات الاستشعار الفعال لغرض تحسس صفات التربة الداخلية ، فضلاً عن امكانية مزاوجتها مع التقانات غير الفعالة لرفع كفاءة استخدام الاستشعار عن بعد في در اسات التربة.

سليم ، ليلى محمد نجيب . 1985 . الطيف . مديرية مطبعة جامعة الموصل . 292 صفحة.

الشيخلي، فلاح عطا وحسين زيدان علي . 2001 . حساب قيم الأشعاعية الطيفية والأنعكاسية الطيفية من الأعداد الرقمية بأستخدام الصورة الفضائية الملتقطة بواسطة الراسم الغرضي TM .

عباس ، أياد حميد . 2010. توصيف وتصنيف وحدات ترب مشروع شمال الكوت والتنبؤ عن بعض الصفات الفيزيائية باستعمال نظام المعلومات الجغرافية والاستشعار عن بعد اطروحة دكتوراه ، كلية الزراعة ، جامعة بغداد . عن بعد الطريف ، رياض خير الدين . 2012 . العلاقات الطيفية للبيانات الرقمية لصور التابع LANDSAT ETM ولبعض خصائص التربة في محافظة ديالى . مجلة العلوم الزراعية العراقية. 112 – 102 , (1) 43 .

كاطع, حسن حميد واحمد صالح محيميد. 2002 . العلاقة بين الوحدات الجيومور فولوجية وتوزيع وحدات الترب في منطقة غرب بحيرة الرزازة . المجلة العراقية لعلوم التربة . 1(2)129-140.

كاظع ، حسن حميد ورعد عطا محمود وأحمد صالح محيميد . 2005 . إستخدام تقنيات الأستشعار عن بعد في تمييز الأغطية الأرضية لمنطقة غرب بحيرة الرزازة – محافظة كربلاء – جمهورية العراق .

الكبيسي , احمد مدلول . 1997. نمذجة التغايرات المكانية لبعض صفات التربة في منطقة حصيبة الشرقية باستخدام البيانات الرقمية للقمر الصناعي لاندسات - 5 . اطروحة دكتوراه . كلية الزراعة . جامعة بغداد.

لولو ، عبد الرحيم . 1991 . استخدام تكنولوجيا الاستشعار عن بعد في التحري عن العوامل المؤثرة على صلاحية الترب للري ، مجلة الاستشعار عن بعد ، الجمهورية العربية السورية . العدد السادس .ص 55 – 46 .

لولو، عبد الرحيم .1998 . تطبيقات الاستشعار عن بعد في مسح وتصنيف التربة / الدورة التدريبية على بناء قاعدة معلومات الأراضي واستخدام التقانات الحديثة في مسح التربة . الجمهورية اللبنانية . بيروت .

محيميد ، أحمد صالح و أحمد أسعد زعين . 2013. دراسة الانعكاسية الطيفية والعوامل المؤثرة في الأغطية الأرضية السائدة باستعمال تقنية الاستشعار عن بعد في مشروع أبي غريب . مجلة بغداد للعلوم . مجلد 10(1) : 72 – 64 . المشهداني ، أحمد صالح محيميد . 1994 . مسح وتصنيف الترب . دار الطباعة والنشر . جامعة الموصل . جمهورية العراق .

المشهداني, احمد اسعد . 2008 . استعمال الاستشعار عن بعد لدراسة انعكاسية الاغطية الارضية وعلاقتها ببعض صفات التربة في منطقة ابي غريب . رسالة ماجستير - كلية الزراعة- جامعة بغداد .

الهنيدي ، فاتن ووسيم المسبر وويونس إدريس . 2014 . دراسة تغير محتوى ترب سهل الحير الشرقي من كربونات الكالسيوم بأستخدام تقنيات الأستشعار عن بعد . مجلة جامعة دمشق للعلوم الزراعية . مجلد (30) ، عدد (4) : 51 – 41 .

Abineh , T. 2015 . Application of GIS for Calculate Normalize Difference Vegetation Index (NDVI) using LANDSAT MSS, TM, ETM+ and OLI_TIRS in Kilite Awulalo, Tigray State, Ethiopia . Journal of Environment and Earth Science . Vol.5, No.3

Al- Rawi, A. H. ; L. Pavel ; A. Hardan and G. sh. Toma . 1976 . Mechanical Chemical and Mineralogical Characteristics of Some

Soils and Alluvial Sediments in the Lower Mesopotamain Plain . Technical Bulletin

. No.94. sci, Res found. Baghdad, Iraq Allbed, A. and L. Kumar. 2013. Soil salinity mapping and monitoring in Arid and Semi-Arid Regions using remote sensing technology : A Review. Advances in Remote . Sensing. 2, 373 – 385

Batchily A. Karim ; Donald F. Post , R. B.
Bryant and Donald, J. Breckenfeld . 2003
Spectral Reflectance and Soil Morphology
Characteristics of Santa Rita Experimental
Range Soils . USDA Forest Service .Proceedings RMRS-P-30

Baumgardener, M. F. and S. Lars . 1980 . Extension of Laboratory measured soil spectra to field condition . soil sci. soc. Am. J. : 44

Ben-Dor, E.; J. R. Irons and G. F. Epema . 1999 . Soil reflectance, in Remote Sensing for the Earth Sciences: Manual of Remote Sensing, edited by A. N. Rencz, USA , John .Wiley, New York , pp. 111 –188

Ben-dor, E. and A. Banin . 1995 . Near infrared analysis as rapid Methods simultaneously evaluate several soil properties . Soil Sci. Soc. Am. J. 59: 364- 372

Bhattacharjee , D. 2013 . Optimum Index Factor (OIF) for Landsat data: Acase study on Barasat Town , West Bengal , India . Inter. J. of Remot. Sens. And Geoscince (IJRSG) , . vol. 2 , Issue , 5

Black , C. A. 1965 . Methods of soil analysis. Part 1 Physical Properties. Am. Soc.Agron. .Madison. Wisconsin, USA

Bouaziz , M. ; J. Matschullat and R. Gloaguen . 2011 . Improved Remote Sensing detection of Soil Salanity from a Semi – Arid Climate in Northeast Brazil .Comptes

. Rendus Geoscince . vol. 343 , pp.795 – 803 Buday , T. and S. Z. Jassim 1984 . The regional geology of Iraq .S.E. for Geological survey and mineral investigation . Baghdad ...352pp

Coleman, T. L. ; P. A. Agbu ; O. L. Montgomery ; T. Gao, and S. Prasad . 1991 . Spectral band selection for quantifying selected properties in highly weathered soils.

.Soil Sci. Vol. 151, No. 5, pp. 355-361 Elachi, C. and J. Van . 2006 . "Introduction to the physics and of Remote sensing (Wiley series in Remote sensing and Image

. (Processing)". Wiley-Interscience . p(18 Elnaggar , A. A. and J. S. Noller . 2009 . Application of Remote Sensing Data and Decision – Tree Analysis to Mapping Salt affected soils over Large areas . Remote

. Sensing . vol. 2 , No. 1 , pp. 151 – 165 Fan , X. ; B. Pedroli ; G. Liu ; Q. Liu ; H. Liu and L. Shu . 2012 . Soil Salanity Development in the Yellow River Delta in Relalation to Groundwater Dynamics . Land Degradation and Development . vol . 23 , No. . 2 , pp. 175 – 189

Fernandez – Buces , N. , C. Siebe , S. Cram and J. L. Palacio . 2006 . Mapping Salanity

using a combined spectral Response Index for bare soil and vegetation : A Case study in the Former Lake Texcoco , Mexico . J of Arid Environment s . vol . 65 , No. 4 , pp. 644 – . 667

Howari , F. M. , P. C. Goodell and S. Miyamoto . 2002 . Spectral-properties-of-saltcrusts-formed-on-saline-soils-. J.Environ. .Qual. 31: 1453-1461p

Huete , A. R. and R. Escadafal . 1991 . Assessment of biophysical soil properties through spectral decomposition techniques .

Remote Sens Environ . 35: 149-59 Irons , J. R. , R. A. Weismiller and G. W. Petersen . 1989 . Soil Reflectance . In G. Asrar (ed.) Theory and applications of Optical remote sensing . John Wiely & Sons , New

(York . pp(66 – 106 Jackson , M. L. 1958 . Soil Chemical analysis

.. Prentice Hall, Inc. Englewood Cliffs,N. J Kaihua L. ; X. Shaohui ; W. Jichun and Z. Qing . 2013 . Spatial estimation of surface soil texture using remote sensing data . Soil

. Science and Plant Nutrition . 59, 488–500 Karavanova, E. I. ; D. P. Shrestha and D. S. Orlov . 2000 . Application of remote sensing techniques for the study of soil salinity in semi arid Usbekistan . In Response to Land Degradation, Bridges EM, Hannam ID, Oldeman LR, de Vries FWTP, Scherr SJ, Sombatpanit S (eds). Oxford and IBHPublishing Co. Pvt. Ltd.: New Delhi; 261–273

Lillesand, T. M. and R. W. Kiefer . 2000 .

"Remote Sensing and Image Interpretation" .

. 4thed., John Wiley and Sons . New York Manchanda, M. L. ; M. Kudrat and A. K. Tiwari . 2002 . Soil Survey and mapping using remote sensing .Tropical Ecology . . 43(1):61-74

Margate, D.E. and D.P. Shrestha . 2001 . The use of hyperspectral data in identifying "desert-like" soil surface features in tabernas area, southeast Spian.22nd Asian conference .on remote sensing, Singapore 5-9 Nov.2001

Mulder , M. A. and G. F. Epema . 1986 . The Thematic Mapper ; Anew Tool for Soil mapping in Arid Areas . ITC Journal (1) : 24 .-29

Nield , S. J. 2003 . Spectral characteristics of vegetation canopies . RS6750 Fall 2003 .prentice Hall , upper saddle River , N. J

Qadir , M. H. S. 2007 . Study of land cover – land use and its reflectivity in Shahrazur plain by using remote sensing techniques . MSc. Theses . Agr. Collage . Uni. Of Sulaimania . . Iraq

Quinn, J. W. 2001. Band Combinations. (.Web. Site: (jquinn@uni.edu

Richards, L.A., (Ed.) . Diagnosis and Improvement of Saline and Alkali Soils, Agric. Hand book 60, U.S. Dept of Agric, .Wishing ton, D.C. 1954

Shepherd , K. and M. Walsh . 2002 . " Development of reflectance spectral libraries for characterization of soil properties" . soil

science society of American Journal . No 66 . (. pp(988-998

U.S. Geological Survey . 2015 . Ver. 1.2 and

2.5 LANDSAT 8 (L8) DATA USERS

HANDBOOK June 2015 Approved By: K.

Zanter LSDS CCB Chair USGS Department of the Interior U.S. Geological Survey

Zinck J ., 2008 . Remote Sensing of soil Stalinization : impact on Land management . CRC Press , Technology and Engineering . pp . ((374

) علاقات الأر تباط بين صفات الترية الفبز بائبة و الكيميائية و الأنعكاسية الطيفية المصححة	ملحق (1

CR_B8	CR_B7	CR_B6	CR_B5	CR_B4	CR_B3	CR_B2	Lime	Gyps.	O.M	Ece	PH	P.D	clay	silt	sand	B.D	Parameter s
185	215	194	192	206	147	077	.118	199	.267*	283*	.168	.058	280*	.084	.007	1	B.D
.171	.438**	.484**	.413**	.287*	.073	089	.158	194	356*	220	.048	029	251	837**	1	.007	sand
211	500**	539**	496**	332*	107	.063	208	.260	.283*	.249	059	090	.083	1	837**	.084	silt
.160	.076	.062	.111	.133	.159	.148	016	.099	130	.196	167	107	1	.083	251	280*	clay
284*	033	003	062	194	332*	388**	.087	.007	.690**	.138	026	1	107	090	029	.058	P.D
347*	328*	316*	383**	366*	310*	225	235	090	.086	067	1	026	167	059	.048	.168	PH
039	337*	377***	257	145	.049	.174	277*	.860**	.301*	1	067	.138	.196	.249	220	283*	Ece
431**	390**	380**	405**	438**	382**	279*	069	.268*	1	.301*	.086	.690**	130	.283*	356*	$.267^{*}$	O.M
043	332*	359*	256	143	.039	.170	239	1	.268*	.860**	090	.007	.099	.260	194	199	Gyps.
.095	.349*	.377**	.318*	.206	.013	118	1	239	069	277*	235	.087	016	208	.158	.118	Lime
.825**	.176	.107	.412**	.647**	.932**	1	118	.170	279*	.174	225	388**	.148	.063	089	077	CR_B2
.971**	.492**	.438**	.697**	.875**	1	.932**	.013	.039	382**	.049	310*	332*	.159	107	.073	147	CR_B3
.963**	.829**	.810**	.935**	1	.875**	.647**	.206	143	438**	145	366*	194	.133	332*	.287*	206	CR_B4
.830**	.924**	.924**	1	.935**	.697**	.412**	.318*	256	405**	257	383**	062	.111	496**	.413**	192	CR_B5
.631**	.982**	1	.924**	.810**	.438**	.107	.377**	359*	380**	377**	316*	003	.062	539**	.484**	194	CR_B6
.671**	1	.982**	.924**	.829**	.492**	.176	.349*	332*	390**	337*	328*	033	.076	500**	.438**	215	CR_B7
1	.671**	.631**	.830**	.963**	.971**	.825**	.095	043	431**	039	347*	284*	.160	211	.171	185	CR_B8

*Correlation is significant at 0.05 Level

** Correlation is significant at 0.01 Level

CR_B 2,3,4.5.6,7,8 = Correction Reflectance of bands 2,3,4,5,6,7,8

ملحق (2) علاقات الأرتباط بين صفات التربة الفيزيائية والكيميائية والأدلة الطيفية

TCT_G	TCT_B	CI	GSI	TCW	SAVI	BSI	NDWI	NDSI	NDVI	Lime	Gyps	О.М	Ece	РН	P.D	clay	silt	sand	B.D	Param.
.023	206	.135	220	230	020	207	.017	.074	.010	.118	199	.267*	283*	.168	.058	280*	.084	.007	1	B.D
.382**	.413**	.168	.377**	.231	.437**	.440**	.295*	022	.400**	.158	194	356*	220	.048	029	251	837**	1	.007	sand
457**	477**	116	417**	171	554**	496**	358*	109	509**	208	.260	.283*	.249	059	090	.083	1	837**	.084	silt
076	.105	084	.109	.041	024	.087	006	104	045	016	.099	130	.196	167	107	1	.083	251	28*	clay
.398**	096	.158	118	054	.308*	050	.120	.367**	.330*	.087	.007	.690**	.138	026	1	107	090	029	.058	P.D
036	367**	.130	344*	.044	157	352*	395**	.360*	102	235	090	.086	067	1	026	167	059	.048	.168	РН
338*	280*	143	240	038	341*	313*	020	188	316*	277*	.860**	.301*	1	067	.138	.196	.249	220	283*	Ece
.079	427**	.121	438**	185	037	408**	076	.288*	.022	069	.268*	1	.301*	.086	.690**	130	.283*	356*	.267*	О.М

عبدالأمير سليمان داود داخل راضى نديوي حسين موسى

328*	272*	059	232	006	341-	*304-	-*02	.1	136	315*	239	1	.268*	.860		090	.007	.099	.260	194	199	Gyps.
.339*	.314*	.081	.277*	.054	.348*	.337*	•02	.2	96* .3	304*	1	239	069	27	7* -	235	.087	016	208	.158	.118	Lime
.942**	.243	.188	.127	136	.989*	* .298*	* .584	.45	58**	1	.304*	315*	.022	31	6* -	102	.330*	045	509**	.400**	.010	NDVI
.565**	383**	.307*	428**	282*	.386*	321	*18	39	1.4	158**	.296*	136	.288*	18	8	360*	.367**	104	109	022	.074	NDSI
.425**	.376**	067	.313*	095	.603**	* .369*	* 1	1	189 .5	584**	024	022	076	02	.0	.395**	.120	006	358*	.295*	.017	NDWI
.250	.989**	136	.971**	.517**	.433**	* 1	.369)**3	21* .2	298*	.337*	304*	408*	*31	3*	.352*	050	.087	496**	.440**	207	BSI
.923**	.383**	.155	.270*	062	1	.433*	* .603	3** .38	36** .9	989**	.348*	341*	037	34	1* -	157	.308*	024	554**	.437**	020	SAVI
048	.484**	.089	.513**	1	062	.517*	*09	952		.136	.054	006	185	03	8.	.044	054	.041	171	.231	230	TCW
.070	.986**	159	1	.513**	.270*	.971*	* .313	3*4	28**	127	.277*	232	438*	*24	0	.344*	118	.109	417**	.377**	220	GSI
.416**	193	1	159	.089	.155	136	506	57 .3	07* .	188	.081	059	.121	14	.3 .	.130	.158	084	116	.168	.135	CI
.160	1	193	.986**	.484**	.383*	* .989 [*]	* .376	5**3	83**	243	.314*	272*	427*	*28	0*	.367**	096	.105	477**	.413***	206	TCT_B
1	.160	.416**	.070	048	.923**	* .250	.425	5** .50	65 ^{**} .9	942**	.339*	328*	.079	33	8* -	036	.398**	076	457**	.382**	.023	TCT_G
					*Cor	relation is	s significa	ant at 0.0)5 Level		** دارية	Correla*	ation is si ئرة مالطرفرة	gnifican اندة مالكرميا	tat 0.0)1 Level	earson C	orrelation	in an an bl	ا علاقة إرت	3) 51	
																	carson c	onenation		÷_; ->- (ستی رو	
D1	1 D10	DQ	D7	P 6	D 5	D 4	D 2	D 2	Limo	Curr		м	Faa	DU	ΡD	alow	cilt	con	a pn		Doromot)MC
B1	1 B10	B8	B7	B6	B5	B4	B3	B2	Lime	e Gyp	s. O	.M	Ece	РН	P.D	clay	silt	san	d B.D	Peg	Paramete	ers
B1 080	1 B10 5078	B8 185	B7 215	B6 194	B5 192	B4 206	B3 147	B2 077	Lime .118	e Gyp 199	s. 0	.M 7*:	Ece 283 [*] .	PH 168 .	P.D 058	clay 280*	silt .084	san .007	d B.D	Pea Corr	Paramete arson elation	ers B.D
B1 080 .299	1 B10 5 078 .317	B8 185 .126	B7 215 .092	B6 194 .115	B5 192 .117	B4 206 .101	B3 147 .183	B2 077 .319	Lime .118 .235	e Gyp 199 .109	s. 0 .26' .04	.M 7*: 8 .0	Ece 283* . 039 .	PH 168 149	P.D 058 362	clay 280* .040	silt .084 .303	san .007 .483	d B.D	Pea Corr Sig. (1	Parameter Parameter Parson Parson Parson Parson Parameter Paramete	ers B.D
B1 080 .299 .372*	1 B10 5 078 .317 * .340*	B8 185 .126 .171	B7 215 .092 .438**	B6 194 .115 .484**	B5 192 .117 .413**	B4 206 .101 .287*	B3 147 .183 .073	B2 077 .319 089	Lime .118 .235 .158	e Gyp 199 .109 194	s. 0 .26' .04 35	.M 7* 8 .0 66*	Ece 283* . 039 . . 220 . .	PH 168 . 149 . 048	P.D 058 362 .029	clay 280* .040 251	silt .084 .303 837*	 san .007 .483 * 1 	d B.D 1 .007	Pea Corr Sig. (1 Pea Corr	Paramete arson elation -tailed) arson elation	B.D
B1 080 .299 .372 [*] .009	1 B10 5 078 .317 * .340* .016	B8 185 .126 .171 .146	B7 215 .092 .438** .002	B6 194 .115 .484** .001	B5 192 .117 .413** .004	B4 206 .101 .287* .036	B3 147 .183 .073 .328	B2 077 .319 089 .293	Lime .118 .235 .158 .166	e Gyp 199 .109 194 .116	s. 0 .26' .04 35 .01	.M 7* 8 .0 66* 2 .0	Ece 283* . 039 . . 220 . . 086 . .	PH 168 149 048 - 385	P.D 058 362 .029 430	clay 280* .040 251 .059	silt .084 .303 837* .000	 san .007 .483 * 	d B.D 1 .007 .483	Pea Corr Sig. (1 Pea Corr Sig. (1	Parameter rson elation -tailed) rson elation -tailed)	B.D sand
B1 080 .299 .372 [*] .009 412	1 B10 5 078 .317 .317 * .340* .016 016	B8 185 .126 .171 .146 211	B7 215 .092 .438** .002	B6 194 .115 .484 ^{**} .001 539 ^{**}	B5 192 .117 .413** .004 496**	B4 206 .101 .287* .036 332*	B3 147 .183 .073 .328 107	B2 077 .319 089 .293 .063	Lime .118 .235 .158 .166 208	e Gyp 199 .109 194 .116 .260	s. 0 .26' .04 35 .01 .28:	.M 7* 8 66* 2 3*	Ece 283* . 039 . . 220 . . 086 . . 249 . .	PH 168 . 149 . 048 - 385	P.D 058 362 .029 430 .090	clay 280* .040 251 .059 .083	silt .084 .303 837* .000 1	san .007 .483 * 1	d B.D 1 .007 .483 .084	Pea Corr Sig. (1 Pea Corr Sig. (1 Sig. (1 Pea Corr	Paramete Irson elation -tailed) Irson elation lation	B.D sand
B1 086 .299 .372 .009 412 .004	1 B10 5 078 .317 .317 * .340° .016 016 ** 382°* .007	B8 185 .126 .171 .146 211 .096	B7 215 .092 .438** .002 	B6 194 .115 .484** .001 539** .000	B5 192 .117 .413** .004 496** .001	B4 206 .101 .287* .036 332* .018	B3 147 .183 .073 .328 107 .256	B2 077 .319 089 .293 .063 .351	Lime .118 .235 .158 .166 208 .099	 Gyp 199 .109 194 .116 .260 .052 	s. 0 .26' .04 35 .01 .28: .03	.M 7 [*] 8 66 [*] 2 3 [*] 8	Ece 283* . 283* . . 039 . . 220 . . 086 . . 249 . . 061 . .	PH 168 . 149 . 048 - 385 . - . 059 - 3359 .	P.D 058 362 .029 430 .090 291	clay 280* .040 251 .059 .083 .306	silt .084 .303 837* .000 1	san .007 .483 * 1 .837* .000	d B.D 1 .007 .483 ₅ .084 .303	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1	Parameter arson elation -tailed) arson elation -tailed) arson elation -tailed)	ers B.D sand silt
B1 080 .299 .372 .009 412 .004 084	1 B10 5 078 .317 .317 * .340* 0.016 .016 ** .007 .4 094	B8 185 .126 .171 .146 211 .096 .160	B7 215 .092 .438** .002 500** .001 .076	B6 194 .115 .484** .001 539** .000 .062	B5 192 .117 .413** .004 496** .001 .111	B4 206 .101 .287* .036 332* .018 .133	B3 147 .183 .073 .328 107 .256 .159	B2 077 .319 089 .293 .063 .351 .148	Lime .118 .235 .158 .166 208 .099 016	e Gyp 199 .109 194 .116 .260 .052 .099	s. 0 .26' .04 35 .01 .28: .03 13	.M 7* 8 2 3* 8 30	Ece 283* . 039 . . 020 . . 086 . . 249 . . 061 . .	PH 168 . 149 . 048 - 059 - - . - . - . - . - . - . - . - . - . - . 167 -	P.D 058 362 .029 430 .090 291 .107	clay 280° .040 251 .059 .083 .306 1	silt .084 .303 837* .000 1 .083	san .007 .483 * 1 .837* .000 251	d B.D 1 .007 .483 .084 .303 280*	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr	Parameter arson elation -tailed) arson elation -tailed) -tailed) urson elation elation	ers B.D sand silt
B1 080 .299 .372 .009 412 .004 084 .303	1 B10 5 078 .317 .317 * .340* .016 .016 *** 382** .007 .007 4 094 .281 .281	B8 185 .126 .171 .146 211 .096 .160	B7 215 .092 .438** .002 .500** .001 .076 .321	B6 194 .115 .484** .001 539** .000 .062 .352	B5 192 .117 .413** .004 496** .001 .111 .248	B4 206 .101 .287* .036 332* .018 .133 .207	B3 147 .183 .073 .328 107 .256 .159 .164	B2 077 .319 089 .293 .063 .351 .148 .181	Lime .118 .235 .158 .166 208 .099 016 .460	e Gyp 199 .109 194 .116 .260 .052 .099 .271	s. 0 .26 .04 35 .01 .28 .03 13 .21	.M 7* 88 2 3* 88 30 2 2	Ece Ece 283* . 039 . 220 . 086 . 249 . 061 . 196 . 1112 .	PH 168 . 149 . 048 - 059 - - . 167 .	P.D 058 362 .029 430 .090 291 .107 255	clay 280° .040 251 .059 .083 .306 1	silt .084 .303 837* .000 1 .083 .306	san .007 .483 * 1 .837* .000 251 .059	d B.D 1 .007 .483 .084 .303 280* .040	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Sig. (1	Parameter arson elation -tailed) urson elation -tailed) urson elation elation elation -tailed)	ers B.D sand silt clay
B1 080 .299 .372 ⁴ .009 412 .004 084 .303 .323	1 B10 5 078 .317 .317 * .340° .016 .016 *** 382** .007 .007 4 094 .281 .340°	B8 185 .126 .171 .146 211 .096 .160 .162 284*	B7 215 .092 .438** .002 500** .001 .076 .321 033	B6 194 .115 .484** .001 539** .000 .062 .352 003	B5 192 .117 .413** .004 496** .001 .111 .248 062	B4 206 .101 .287* .036 332* .018 .133 .207 194	B3 147 .183 .073 .328 107 .256 .159 .164 332*	B2 077 .319 089 .293 .063 .351 .148 .181 388**	Lime .118 .235 .158 .166 208 .099 016 .460 .087	 Gyp 199 .109 194 .116 .260 .052 .099 .271 .007 	s. 0 .26 .04 35 .01 .28 .03 13 .21 .690	.M 7* 8 .0 66* 2 .0 3* 8 .0 30 2 9**	Ece 283* . 039 . . 220 . . 086 . . 249 . . 196 . . 112 . .	PH 168 . 149 . 149	P.D 058 362 .029 430 .090 291 .107 255 1	clay 280* .040 251 .059 .083 .306 1 107	silt .084 .303 837* .000 1 .083 .306 090	san .007 .483 * 1 .837* .000 251 .059 029	d B.D 1 .007 .483 .084 .303 280* .040 .058	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Sig. (1 Pea Corr	Parameter rson elation -tailed) urson elation -tailed) urson elation -tailed) urson elation -tailed) urson elation	ers B.D sand silt clay
B1 080 .299 .372 ⁴ .009 412 .004 084 .303 .323 .323 .021	1 B10 5 078 .317 .317 * .340* .016 .016 ** .007 .4 094 .281 .340* .016 .016	B8 185 .126 .171 .146 211 .096 .160 .162 284* .038	B7 215 .092 .438** .002 500** .001 .076 .321 033 .420	B6 194 .115 .484** .001 539** .000 .062 .352 003 .494	B5 192 .117 .413** .004 496** .001 .111 .248 062 .352	B4 206 .101 .287* .036 332* .018 .133 .207 194 .115	B3 147 .183 .073 .328 107 .256 .159 .164 332* .018	B2 077 .319 089 .293 .063 .351 .148 .181 388** .007	Lime .118 .235 .158 .166 208 .099 016 .460 .087 .297	 Gyp 199 .109 194 .116 .260 .052 .052 .099 .271 .007 .483 	s. 0 .26' .04 .04 .35 .01 .28: .03 .03 .13 .21 .690 .00	.M 7* 8 2 3* 8 2 30 2 30 2 30 2 30 2 30 3	Ece 283° . 039 . . 020 . . 086 . . 249 . . 061 . . 196 . . 112 . . 138 . .	PH 168 . 149 . 048 - 385 . - . 059 - 167 - 167 - 026 437	P.D 058 362 .029 430 .090 291 .107 255 1	clay 280° .040 251 .059 .083 .306 1 107 .255	silt .084 .303 .303 .000 1 1 .083 .306 .306 .291	san .007 .483 * 1 .837* .000 251 .059 029 .430	d B.D 1 .007 .483 .084 .303 .280* .040 .058 .362	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1	Parameter rson elation -tailed) rson elation -tailed) rson elation -tailed) rson elation -tailed) rson elation	ers B.D sand silt clay P.D
B1 080 .299 .372 ⁷ .009 412 .004 084 .303 .323 .021 103	1 B10 5 078 .317 .317 * .340* 0.016 .016 ** .007 4 094 .281 .340* .016 .340*	B8 185 .126 .171 .146 211 .096 .160 .162 284* .038 347*	B7 215 .092 .438** .002 .500** .001 .076 .321 033 .420 328*	B6 194 .115 .484** .001 539** .000 .062 .352 003 .494 316*	B5 192 .117 .413** .004 496** .001 .1111 .248 062 .352 383**	B4 206 .101 .287* .036 332* .018 .133 .207 194 .115 366*	B3 147 .183 .073 .328 107 .256 .159 .164 332* .018 310*	B2 077 .319 089 .293 .063 .351 .148 .181 388** .007 225	Lime .118 .235 .158 .166 208 .099 016 .460 .087 .297 235	 Gyp 199 .109 194 .116 .260 .052 .099 .271 .007 .483 090 	s. 0 .26' .04 35 .01 .28: .03 13 .03 13 .21 .690 .00 .08	.M 7* 8 .0 166* 2 .0 3* 8 .0 30 2 9** 10 166	Ece 283* . 039 . . 020 . . 086 . . 249 . . 061 . . 196 . . 112 . . 138 . . 067 . .	PH 168 149 .	P.D 058 362 .029 430 .090 291 .107 255 1 .026	clay 280° .040 251 .059 .083 .306 1 107 .255 167	silt .084 .303 837* .000 1 .083 .306 090 .291 059	san .007 .483 * 1 .837* .000 251 .059 029 .430 .048	d B.D 1 .007 .483 .084 .303 280* .040 .058 .362 .168	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr	Parameter rson elation -tailed) rson elation -tailed) rson elation -tailed) rson elation -tailed) rson elation -tailed) rson elation	ers B.D sand silt clay P.D PH
B1 086 .299 .372 ⁺ .009 412 .004 084 .303 .323 .021 103 .263	1 B10 5 078 .317 .317 * .340* .016	B8 185 .126 .171 .146 211 .096 .160 .162 284* .038 347* .014	B7 215 .092 .438** .002 500** .001 .076 .321 033 .420 328* .019	B6 194 .115 .484** .001 539** .000 .062 .352 003 .494 316* .023	B5 192 .117 .413** .004 496** .001 .111 .248 062 .352 383** .007	B4 206 .101 .287* .036 332* .018 .133 .207 194 .115 366* .010	B3 147 .183 .073 .328 107 .256 .159 .164 332* .018 310* .026	B2 077 .319 089 .293 .063 .351 .148 .181 388** .007 225 .081	Lime .118 .235 .158 .166 208 .099 016 .460 .087 .297 235 .072	 Gyp 199 .109 .109 .194 .116 .260 .052 .099 .271 .007 .483 .090 .290 	s. 0 .26' .04 35 .01 .28: .03 13 .21 .690 .00 .00 .08 .30	.M 7* 8 66* 2 30 2 30 2 66 10 16	Ece Ece 283* . 039 . 220 . 086 . 249 . 061 . 196 . 112 . 138 . 197 . 067 341	PH 168 149 . 048 - 059 - 059 - 167 - 167 - 026 437 1 -	P.D 058 362 .029 430 .090 291 .107 255 1 .026 437	clay 280* .040 251 .059 .083 .306 1 107 .255 167 .151	silt .084 .303 837° .000 1 1 .083 .306 .090 .291 059 .359	san .007 .483 * 1 .837** .000 251 .059 029 .430 .048 .385	d B.D 1 .007 .483 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .084 .085 .005	Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr Sig. (1 Pea Corr	Parameter rson elation -tailed) urson elation -tailed) urson elation -tailed) urson elation -tailed) urson elation -tailed) urson elation	ers B.D sand silt clay P.D PH

JOURNAL OF KUFA – PHYSICS, Vol.9, No.2 (2017)

عبدالأمير سليمان داود داخل راضي نديوي حسين موسى

.037	.043	.405	.017	.008	.054	.185	.382	.142	.042	.000	.029		.341	.197	.112	.061	.086	.039	Sig. (1-tailed)	
015	.024	- .431**	39**	38**	405**	438**	382**	279*	069	.268*	1	.301*	.086	.690**	130	.283*	356*	.267*	Pearson Correlation	О.М
.463	.441	.003	.006	.008	.005	.002	.008	.040	.336	.047		.029	.300	.000	.212	.038	.012	.048	Sig. (1-tailed)	
274*	263	043	332*	359*	256	143	.038	.170	239	1	.268*	.860**	- .090	.007	.099	.260	194	199	Pearson Correlation	Gyps.
.043	.050	.397	.018	.011	.055	.189	.407	.147	.069		.047	.000	.290	.483	.271	.052	.116	.109	Sig. (1-tailed)	

*Correlation is significant at 0.05 Level ** Correlation is significant at 0.01 Level

يتبع ملحق (3) علاقة إرتباط بيرسون Pearson Correlation مع الصفات الفيزيائية والكيميائية والطيفية لمنطقة الدراسة

	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
B11	B10	B8	B7	B6	B5	B4	B3	B2	Lime	Gyps.	O_M	Ece	РН	P.D	clay	silt	sand	B.D	Parameters	
.319*	.302*	.095	.349*	.377**	.318*	.206	.013	118	1	239	069	277*	235	.087	016	208	.158	.118	Pearson Correlation	Lime
.023	.029	.280	.014	.008	.023	.101	.468	.234		.069	.336	.042	.072	.297	.460	.099	.166	.235	Sig. (1-tailed)	
661**	- .717 ^{**}	.825**	.176	.107	.412**	.647**	.932**	1	118	.170	279*	.174	225	388**	.148	.063	089	077	Pearson Correlation	B2
.000	.000	.000	.138	.255	.004	.000	.000		.234	.147	.040	.142	.081	.007	.181	.351	.293	.319	Sig. (1-tailed)	
397**	- .467**	.971**	.492**	.438**	.697**	.875**	1	.932**	.013	.038	382**	.049	310*	332*	.159	107	.073	147	Pearson Correlation	B3
.006	.001	.000	.001	.002	.000	.000		.000	.468	.407	.008	.382	.026	.018	.164	.256	.328	.183	Sig. (1-tailed)	
.064	011	.963**	.829**	.810**	.935**	1	.875**	.647**	.206	143	438**	145	366*	194	.133	332*	.287*	206	Pearson Correlation	B4
.347	.474	.000	.000	.000	.000		.000	.000	.101	.189	.002	.185	.010	.115	.207	.018	.036	.101	Sig. (1-tailed)	
.322*	.246	.830**	.924**	.924**	1	.935**	.697**	.412**	.318*	256	405**	257	383**	062	.111	496**	.413**	192	Pearson Correlation	
.021	.063	.000	.000	.000		.000	.000	.004	.023	.055	.005	.054	.007	.352	.248	.001	.004	.117	Sig. (1-tailed)	B5
.590**	.528**	.631**	.982**	1	.924**	.810**	.438**	.107	.377**	359*	380**	377**	316*	003	.062	539**	.484**	194	Pearson Correlation	
.000	.000	.000	.000		.000	.000	.002	.255	.008	.011	.008	.008	.023	.494	.352	.000	.001	.115	Sig. (1-tailed)	B6
.535**	.469**	.671**	1	.982**	.924**	.829**	.492**	.176	.349*	332*	390**	337*	328*	033	.076	500**	.438**	215	Pearson Correlation	
.000	.001	.000		.000	.000	.000	.001	.138	.014	.018	.006	.017	.019	.420	.321	.001	.002	.092	Sig. (1-tailed)	B7
190	- .264*	1	.671**	.631**	.830**	.963**	.971**	.825**	.095	043	431**	039	347*	284*	.160	211	.171	185	Pearson Correlation	B 8
.121	.050		.000	.000	.000	.000	.000	.000	.280	.397	.003	.405	.014	.038	.162	.096	.146	.126	Sig. (1-tailed)	
.995**	1	264*	.469**	.528**	.246	011	467**	- .717 ^{**}	.302*	263	.024	275*	068	.340*	094	382**	.340*	078	Pearson Correlation	B10
.000		.050	.001	.000	.063	.474	.001	.000	.029	.050	.441	.043	.337	.016	.281	.007	.016	.317	Sig. (1-tailed)	
1	.995**	190	.535**	.590**	.322*	.064	397**	- .661 ^{**}	.319*	274*	015	285*	103	.323*	084	412**	.372**	086	Pearson Correlation	B11
	.000	.121	.000	.000	.021	.347	.006	.000	.023	.043	.463	.037	.263	.021	.303	.004	.009	.299	Sig. (1-tailed)	

*Correlation is significant at 0.05 Level ** C

** Correlation is significant at 0.01 Level