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Abstract—This paper puts forward the power system stability
under investigation. Power system stability is critical for reliable
and safe operation of the network and the protection of the
power system elements. Maintaining the voltage level within
normal range and the robustness against the disturbances that
may lead to chaotic oscillation which finally may cause system
bus voltage collapse and angle divergence. The observation of
bifurcation and chaotic oscillations are analyzed for a wide
range of parameters variations with the help of Lyapunov
exponent, Lyapunov spectrum, and bifurcation diagram. Based
on the aforementioned analysis, a robust synergetic controller
design is achieved based on STATCOM and energy storage
facilities to maintain the load bus voltage at the rated level and
restore the synchronous operation. Simulation results confirm the
effectiveness and the robustness of the proposed control scheme.

Index Terms—power system stability, chaotic oscillation, chaos
suppressing, synergistic control theory

I. INTRODUCTION

Recent investigations show that the highly complex non-
linear power system can exhibit chaotic behavior leading to a
voltage collapse [1], angle instability, which severely threatens
the secure and stable operation of the power system and may
immediately damage the whole power system and blackout
[2], [3].

The chaos in power system can be triggered by parameters
variations [4], noise [5], large disturbances [6] and time delay
[7]. In [8] based on the fuzzy supervisor algorithm, a sliding
mode control is built to ensure perfect tracking and damping
chaotic oscillations in the presence of uncertainties.

A single machine infinite bus power system is studied in
[9] it is reported that angle divergences due to the break of
stable chaotic oscillation are causing the instability of power
system, then an adaptive backstepping sliding mode controller
is designed to eliminate the angle divergences and render
the power system run in stable orbits. In [10] first order
sliding mode controller is designed to control the chaotic
behavior in an extended 4D fundamental power system. A
second-order model of the power system has been analyzed
in [11] to show the characteristics of chaotic oscillation, and
suggest an improved adaptive sliding mode control approach
based on relay characteristic function. Pole placement-based
proportional integral sliding mode control is suggested to sup-
press the chaos in a 4D fundamental power system. Lyapunov

stability theory is employed to derive sufficient conditions for
asymptotic stability of the sliding manifold [12].

However, in practical applications of SMC, the design may
be subjected to unwanted oscillations having finite amplitude
and frequency, which is known as chattering phenomenon.
Chattering is an undesirable phenomenon because it decreases
the accuracy of the designed control algorithm, where it
excites fast dynamics which were neglected in the ideal model,
induces instability and may cause severe damage and high
wear of moving mechanical parts of actuators through high
frequency control effort [13]. Several solutions have been
proposed to overcome this problem, all these approaches
alleviate chattering to different degrees at expenses of added
complexity and often robustness.

The synergetic control approach, based on the analytical
design of aggregated regulators (ADAR) [14], removes chat-
tering as a whole by the use of totally continuous control law
and provides the same level of closed-loop invariance similar
to the SMC. This method provides the advantages of the SMC
without the chattering phenomena and its complications. The
synergetic control, works on the full nonlinear system and does
not need any simplification or linearization of the input-output
system dynamics, as required in the traditional control theory
during application [15].

Motivated by the literature survey and chaotic oscillation
critical issues, this paper puts forward a robust synergetic
control algorithm for chaos elimination in a 4D power system
model. The controller is integrated with FACTS devices and
energy storage element. There are many FACTS technologies
are used to control the power system, one of the familiar is the
static var compensator SVC [16] for maintaining the load bus
voltage at the rated value. For better performance and faster
response, the STATCOM compensator will be used in this
work to support the system bus voltage stability, against the
large-scale disturbances [17]. While the energy storage device
will be used to recover the synchronous operation of the power
system and remove the chaotic oscillation.

This paper is organized as follows. In Sec. II, the mathe-
matical model of the chaotic power system is introduced, and
the system dynamics investigated to reveal the system behavior
which shows a chaotic state at parameters variation. In Sec. III,
the synergetic controller design is provided and the dynamics



of the STATCOM compensator and the energy storage device
are introduced. In Sec. IV, two simulation examples were
provided to reveal the controller effectiveness and robustness.
Then general conclusions and discussion are given in Sec. V.

II. MATHEMATICAL MODEL

The power system scheme is shown in Fig. 1, which is a
benchmark model introduced in [16], [18], for studying the
voltage stability. The model consists of three buses, the first
bus is the generator bus and the second bus is the load bus
while the third bus is the generator slack bus. The load bus
constituted from induction motor in parallel with constant PQ
load. The full power system dynamical model can be written
as follows:

δ̇m = ω,

Mω̇ = −dmω + Pm + EmYmV sin (δ − δm − θm)

+E2
mYm sin θm,

Kqw δ̇ = −Kqv2V
2 −KqvV + E′0Y

′
0V cos (δ + θ′0)

+EmYmV cos (δ − δm + θm)− (Y ′0 cos θ
′
0

+Ym cos θm)V 2 −Q0 −Q1,

TKqwKpvV̇ = KpwKqv2V
2 + (KpwKqv −KqwKpv)V

+Kqw (−E′0Y ′0V sin (δ + θ′0)

−EmYmV sin (δ − δm + θm)

+ (Y ′0 sin θ
′
0 + Ym sin θm)V 2 − P0 − P1

)
−Kpw (E′0Y

′
0V cos (δ + θ′0)

+EmYmV cos (δ − δm + θm)

− (Y ′0 cos θ
′
0 + Ym cos θm)V 2 −Q0 −Q1

)
(1)

where δm represents the generator angle, ω is the frequency
deviation. M is the inertia of the generator, dm represents the
damping coefficient and Pm is the mechanical input power.
Ym and θm are the admittance and the impedance angle of
the transmission line, respectively. Em refers to the generator
voltage magnitude. V and δ stand for the load voltage magni-
tude and the phase angle, respectively. P1 and Q1 are the real
and reactive power of the constant PQ load, respectively. The
induction motor real power and reactive power are defined
as P0 and Q0, respectively. And its constants are given by
Kpv , Kpw, Kqv , Kqw and Kqv2. E′0, Y ′0 and θ′0 are Thevenin
equivalent circuit parameters.

To investigate the power system dynamical behavior, the
input mechanical power Pm, will be considered as a bifur-
cation parameter. The system parameters are adapted from
[16] as follow: Em = 1.05, Ym = 5.0, θm = 0, E′0 = 20,
Y ′0 = 0.1665, θ′0 = 0, dm = 0.05, M = 0.01464, Kpw = 0.4,
Kqv2 = 2.1, Kqw = −0.03, Kqv = −2.8, Kpv = 0.3,
T = 8.5, P0 = 0.6, Q0 = 1.3, P1 = 0, Q1 = 2.9.
All parameters values are in per unit except θm and θ′m are
in rad. The initial conditions of the system are considered
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Fig. 1. The power system model (1) under investigation.

as [δm(0), ω(0), δ(0), V (0)]T = [0.29, 0.2, 0.23, 0.8]T . Using
the local maximum method and changing the bifurcation
parameter Pm in the range of [1.096,1.102], the bifurcation
diagram of (1) state ω can be drawn as shown in Fig. 3. The
bifurcation diagram reveals that when Pm ∈ [1.0961.0985],
the power system behaves periodically. While a period dou-
bling bifurcation occurs in the range Pm ∈ [1.09851.1006].
And in the interval Pm ∈ [1.10061.102] the power system
states become chaotic and follow a period doubling root to
chaos. The Lyapunov spectrum can show the stated dynamics
as shown in Fig. 4. The time domain waveforms and the phase
plane chaotic attractor of the power system at Pm = 1.102 are
shown in Fig. 5 and Fig. 6, respectively. These figures show
that the system is so aperiodic and has an irregular oscillation.
All the aforementioned analyses reveal the chaotic existence
in the power system. The chaos in the power system results in
voltage collapse and then may lead to unwanted blackout. So,
it is important to design a robust control algorithm to suppress
the chaotic states of the power system as will be done in the
next section.

III. SYNERGETIC CONTROLLER DESIGN

To implement the synergetic controller, a method based on
integrating the synergetic control theory with the STATCOM
and energy storage device are presented. The system dynamics
of the STATCOM and energy storage device are given in (2)
[17], [19]: 

i̇stat = − 1
Tstat

istat +
Kstat

Tstat
ustat

Ṗes = − 1
Tes

Pes +
Kes

Tes
ues

(2)

where istat denotes the STATCOM compensator current,
Kstat and Tstat represent the gain and time constant of the
STATCOM, respectively. ustat refers to the STATCOM input
control. Pes denotes the energy storage device real power,
Kes and Tes represent the gain and time constant of the
energy storage device, respectively. ues refers to the energy
storage input control. The complete controlled power system
circuit diagram is shown in Fig. 2. The energy storage device
is located on bus 1 to damp out the oscillation, while the
STATCOM is connected to the local load bus 2 to maintain
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Fig. 2. The complete controlled power system (3) circuit diagram.

the rated voltage level. To derive the mathematical model of
the controlled power system, combine (1) with (2) yields a
six-dimensional power system model (3):



δ̇m = ω = f1,

ω̇ = 1
M [−dmω + Pm + EmYmV sin (δ − δm − θm)

+E2
mYm sin θm − Pes

]
= f2,

Ṗes = − 1
Tes

Pes +
Kes

Tes
ues

δ̇ = 1
Kqw

[
−Kqv2V

2 −KqvV + E′0Y
′
0V cos (δ + θ′0)

+EmYmV cos (δ − δm + θm)− (Y ′0 cos θ
′
0

+Ym cos θm)V 2 −Q0 −Q1 −Qstat

]
= f3,

V̇ = 1
TKqwKpv

[
KpwKqv2V

2 + (KpwKqv −KqwKpv)V

+Kqw (−E′0Y ′0V sin (δ + θ′0)

−EmYmV sin (δ − δm + θm)

+ (Y ′0 sin θ
′
0 + Ym sin θm)V 2 − P0 − P1

)
−Kpw (E′0Y

′
0V cos (δ + θ′0)

+EmYmV cos (δ − δm + θm)

− (Y ′0 cos θ
′
0 + Ym cos θm)V 2 −Q0 −Q1

−Qstat)] = f4,

i̇stat = − 1
Tstat

istat +
Kstat

Tstat
ustat

(3)

where Qstat refers to reactive power provided by the
STATCOM, which can be written as Qstat = istatV .

Defining the following transform x1 = δm, the first three
equations of controlled system (3) can be written as:

ẋ1 = x2

ẋ2 = x3

ẋ3 = ḟ2

(4)

Fig. 3. Bifurcation diagram of the chaotic power system (1)
for the system state ω varying with Pm.
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Fig. 4. Lyapunov spectrum for the power system (1) varying with Pm.

Then define the synergetic control macro variable for the first
auxiliary system (4) as follows:

ψ1 = x3 + k2x2 + k1x1 (5)

and this macro variable (5) will be evolved according to the
following dynamical constrain (6):

ψ̇1 +
1

T1
ψ1 = 0 (6)

To achieve the second control objective, maintaining the load
bus voltage level at the rated voltage, assume the following
transform x4 = V − 1, the last two equations of controlled
system (3) can be written as:{

ẋ4 = x5

ẋ5 = ḟ4
(7)



For the second auxiliary system (7), assume the macro vari-
able and the evolution constrain as defined in (8) and (9),
respectively:

ψ2 = x5 + k3x4 (8)

ψ̇2 +
1

T2
ψ2 = 0 (9)

By solving the dynamical constrains (6) and (9) using the
defined auxiliary systems (4) and (7), for ustat and ues, these
two input controls can be written as follows:

ues = TesM
Kes

[
f5 + k2x3 + k1x2 +

1
T1
ψ1

]
ustat =

−TstatTKqwKpv

KstatKpwV 2

[
f6 + k3x5 +

1
T2
ψ2

] (10)

where

f5 = −1
M [dmf2 − EmYmf4 sin(δ − δm − θm)

− EmYmV (f3 − f1) cos(δ − δm − θm)− 1
Tes

Pes

]
,

f6 = −1
TKqwKKpv

[−2KpwKqv2V f4 − (KpwKqv

−KqwKpv)f4 −Kqwf7 +Kpwf8 − 2KpwistatV f4
istatKpwV 2

Tstat
] ,

f7 = −E′0Y ′0 [f4 sin (δ + θ′0) + V f3 cos (δ+

θ′0)]− EmYm [f4 sin (δ − δm + θm)+

V (f3 − f1) cos (δ − δm + θm)] + 2 (Y ′0 sin θ
′
0+

Ym sin θm)V f4,

f8 = E′0Y
′
0 [f4 cos (δ + θ′0)− V f3 sin (δ + θ′0)] +

EmYm [f4 cos (δ − δm + θm)− V (f3 − f1)
sin (δ − δm + θm)]− 2 (Y ′0 cos θ

′
0+

Ym cos θm)V f4
(11)

Theorem 1. Consider the nonlinear chaotic power system (1),
the system will converge to the invariant manifolds ψ1 = 0 and
ψ2 = 0, under the action of the control laws (14).

Proof: Define a Lyapunov candidate function as

V =
1

2
(ψ2

1 + ψ2
2) (12)

then the time derivative of V is:

V̇ = (ψ1ψ̇1 + ψ2ψ̇2) (13)

substituting (6) and (9) into (13):{
V̇ = ψ1(− 1

T1
ψ1) + ψ2(− 1

T2
ψ2),

= −
[

1
T1
ψ2
1 +

1
T2
ψ2
2

] (14)

Therefore, V̇ ≤ 0.
And this is complete the proof.

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0 10 20 30 40 50 60 70 80

-2

-1

0

1

0 10 20 30 40 50 60 70 80

-0.2

0

0.2

0 10 20 30 40 50 60 70 80

0.8

0.85

0.9

Fig. 5. Time responses for the chaotic power system (1).

Fig. 6. Phase diagram of the chaotic power system (1).

IV. SIMULATION RESULTS

Two illustrative scenarios are considered to show the effec-
tiveness, the robustness, and the superiority of the designed
controller in eliminating the chaos in the power system. The
controller parameters are selected as k1 = 25, k2 = 10,
k3 = 5, T1 = T2 = 0.2, Tstat = 0.01, Kstat = 1, Tes = 1,
and Kes = 1.

In the first scenario, the controller is implemented at the
beginning time of the simulation and the power system is in
the chaotic state where Pm = 1.102.

The time waveforms of the state variables under the pro-
posed controller are displayed in Fig. 7, it is clear that the
system states responses derived to the normal state without
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Fig. 7. Controlled system (3) time responses with control in action at t=0
[Sec].
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chaotic oscillation and settle down to the equilibrium state.
Fig. 8 and Fig. 9 show the auxiliary variables and the syn-
ergetic macro variables ψ1 and ψ2, respectively. The system
reaches the invariant manifold as required under the synergetic
control algorithm. The controller action and the control state
time series are depicted in Fig. 10 and Fig. 11, it is clear that
the control actions are chattering free and smooth. And this is
rendering the controller feasible for practical applications.

In the second scenario, the system works in a chaotic
oscillation state then the controller is applied at an arbitrary
time point. The time response waveforms of the system state
variable are given in Fig. 12 where the control applied at
t = 175 (s). The trajectories evolution is shown in Fig. 13,
obviously the power system dynamics leave the chaotic attrac-
tor after applying the synergetic controller and then follow the
red line in Fig. 13, to settle down finally to the equilibrium
state.
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Fig. 9. The synergetic macro variables of the proposed controller.
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Fig. 10. Control inputs for the chaotic power system (1).
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Fig. 12. Controlled system (3) time responses with control in action at t =
175 (s).

Fig. 13. Phase diagram of the controlled power system (3) with control in
action at t = 175 (s). The red line represents the trajectory leaving the
chaotic attractor.

V. CONCLUSION

In this paper, a synergetic control theory has been employed
to design an effective and a robust controller for chaos
suppressing in a power system. The design integrated the
synergetic theory, along with the STATCOM compensator and
the energy storage device. The resulted controller, successfully
achieved the control objectives with fast response, chattering
free control actions and effective recovery of the system
states to the synchronous operation. Lyapunov stability has
been used to show the whole system stability and prove
the convergence of the synergetic macro variables, to the
invariant manifolds through the selected dynamical constrain.
Numerical simulation results reveal the effectiveness and the
superiority of the designed controller when applied to the
chaotic power system.
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