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Abstract In this paper, the higher-order three-phase indirect field-oriented controlled (IFOC)8

induction motor is modeled in synchronous reference frame. The IFOC induction motor is9

analyzed numerically to investigate the system behavior due to control parameters change.10

The slip speed compensator, integral, and proportional gains variations of the speed loop11

controller are used to confirm the system dynamics. The simulation results show that the 112

chaos behavior is noted in small region of the slip speed compensator gain which is difficult13

to be observed through the dominant limit cycles and fixed-point solutions. The effects of the14

integral and proportional gains change on the system dynamic are verified. Also, the system15

exhibits period-doubling bifurcation (period-2, period-4, period-8, and period-16) route to16

chaos. The bifurcation diagram and Lyapunov exponent spectrum assign these situations. The17

phase portrait and time response results are also presented. The system has multistability and18

coexistence of different attractors for the same system parameters as represented in the basins19

of attractions plots. 220

1 Introduction21

3

Indirect field-oriented controlled (IFOC) [1–6] induction motor (IM) is generally utilized22

in industrial applications for its high torque performance. The parameters of motor may23

be changed due to aging and environmental conditions, temperature changes and levels of24

saturation of IM which maybe lead to the variation of the dynamic and the steady state of the25

drive system [7]. Also, estimation errors diverge these parameters from its real value [8]. In26

Ref. [9] and Ref. [10], the PI speed controller was tuned in order to prevent the occurrence27

of saddle-node bifurcation (SNB) and Hopf bifurcation (HB) in IFOC induction motor. In28

Ref.[11], the PI speed controller was also tuned theoretically to avoid HB, and the results29

were validated with some simulation proof. The occurrence of co-dimension-two bifurcation30

phenomena, such as a Bogdanov–Takens bifurcation (BTB) as well as HB, was provided in31

[12]. Zero Hopf bifurcation (ZHB) was found in [13] which depends on the PI speed controller32

gain. HB occurrence was proved [14]; they used time-delayed state feedback criterion to33

avoid HB which was validated numerically. The speed chaotification was confirmed by both34

a e-mail: ahm782013@gmail.com (corresponding author)

b e-mail: fadhilrahma.creative@gmail.com
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simulation and experimental results for periodic speed command by tuning the gain of the35

compensator for the resistance change due to prolonged operation [15]. By using numerical36

analysis in [16], a SNB was observed at underestimation of rotor resistance; besides, effect37

of load change on HB was studied where BTB and ZHB phenomenon were also noted with38

variations of PI speed loop gain. Simulation and experiment results (for SNB and HB) were39

also offered.40

In the studies [9–14], with ignoring stator current dynamics and less comprehensive load-41

ing status, lower-order IM model was relied on. The results in the studies [9–14,16] showed42

that the general behavior of the system with fixed speed command is the occurrence of the43

limit cycles (SNB, HB, BTB, and ZHB) in addition to the fixed point. Reference [15] used44

periodic speed command with and without dc speed offset only to prove the chaotic case, but45

they did not use fixed speed command, while the fixed speed command is used widely in the46

industrial applications. The chaotic phenomenon for fixed speed command in dynamics of47

system was not shown in Refs. [9–14].48

In this paper, a bifurcation study on PI-controlled IFOC induction motor is achieved by49

using a full-order IM model that closes the shortages introduced earlier. Bifurcation situations50

of IFOCIM are calculated based on linearized model of IFOCIM near the equilibrium point.51

A numerical analysis is used to investigate period-doubling bifurcation and chaos phenomena52

with loading condition. The rest of paper is divided into three sections: Sect. 2 deals with53

IFOCIM system modeling. The scheme of IFOCIM system is introduced, and a mathematical54

model is derived to investigate the system dynamics. The obtained IFOCIM model consists55

of eight nonlinear first-order differential equations. Section 3 includes the dynamical analysis56

of the system. The bifurcation diagrams of the speed of the motor supported with Lyapunov57

exponent spectrums for a certain ranges of the slip speed compensator gain (α) and PI58

speed integral gain are plotted by using computer simulation to reveal the period-doubling59

route to chaos. 2D bifurcation diagram of the speed of the motor due to change of PI speed60

proportional and integral gains is obtained. The period-doubling route to chaos is indicated61

in the bifurcation diagrams. Finally, conclusion is provided in Sect. 4.62

2 Model of IFOCIM drive system63

The general closed-loop control diagram of IFOCIM drive is shown in Fig. 1. The speed and64

flux signals are fed internally, and the direct (d) and quadrature (q) axes current references (ids65

and iqs) are produced from the flux and speed PI controllers. The inverter output is applied to66

IM, while the controller feedback signals are the currents and voltages of the induction motor67

stator. The synchronous d − q reference frame model of a squirrel-cage induction motor can68

be stated according to [3], to have the following full order IM dynamic system:69

dids

dt
= −γ ids + ωeiqs + ζβψdr + βωrψqr +

vds

σ Ls

(1)70

diqs

dt
= −ωeids − γ iqs − βωrψdr + ζβψqr +

vqs

σ Ls

(2)71

dψdr

dt
= ζ Lm ids − ζψdr + (ωe − ωr ) ψqr (3)72

dψqr

dt
= ζ Lm iqs − (ωe − ωr ) ψdr − ζψqr (4)73
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Fig. 1 IFOCIM drive system scheme

Table 1 System parameters definitions

Parameter Definition Parameter Definition

Rs Stator resistance P Number of poles

Ls Stator inductance J Rotor inertia

Rr Rotor resistance Bm Viscous friction coefficient

Lr Rotor inductance Tr Rotor time constant

Lm Mutual inductance Tl Load torque

ωr Rotor speed ωref Speed reference

dωr

dt
=

P

2J

[

3

2

P

2

Lm

Ls

(

ψdr iqs − ψqr ids

)

− TL −
2

P
Bmωr

]

(5)74

where vds , vqs , ψdr , and ψqr are the stator voltage and the rotor fluxes in synchronous75

direct and quadrature axis reference frame referred to stator, respectively; ωe is the angular76

synchronous speed of the motor, σ = 1 − L2
m

Ls Lr
, Tr = Lr

Rr
, γ = Rs

σ Ls
+ 1−σ

σ Tr
, β = Lm

σ Ls Lr
, and77

ζ = 1
Tr

. The motor parameters are listed in Table 1.78

To compensate the change in rotor resistance due to prolonged operation, the slip speed79

(ωsl ) in IFOCIM method is used to be [17]:80

ωsl = (ωe − ωr ) =
α

Tr

Lm Tre

Tre =
(

K pw + Kiw

∫

dt

)

(ωref − ωr )

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(6)81
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The direct and quadrature reference currents of the stator can be expressed as the following:82

idref =
ψdref + Tr ψ̇dref

Lm

− ψqr Tre

iqref = ψdr Tre

⎫

⎪

⎬

⎪

⎭

(7)83

where α is the gain of the compensator, ψdref is the rotor reference flux, and K pω and Kiω84

are the proportional and integral gains of the speed controller, respectively. From Fig. 1, Eqs85

(1)–(7), and by defining the state variables x1 = ids , x2 = iqs , x3 = ψdr , x4 = ψqr , x5 = ωr ,86

x6 =
(

K pw + Kiw

∫

dt
)

(ωref − ωr ), x7 =
∫

(idref − ids) dt , and x8 =
∫ (

iqref − iqs

)

dt , the87

higher-order model (HOM) of IFOCIM system can de expressed by the following equations:88

ẋ1 = −γ x1 +
[

x5 +
α

Tr

Lm x6

]

x2 +
β

Tr

x389

+β
Lr

Lm

K pd

[

1

Lm

ψdref +
Tr

Lm

ψ̇dref − x4x6 − x1

]

90

+βx5x4 + β
Lr

Lm

Kid x7 (8)91

ẋ2 = −
[

x5 +
α

Tr

Lm x6

]

x1 − γ x2 − βx5x3 +
β

Tr

x492

+β
Lr

Lm

K pq [x3x6 − x2] + β
Lr

Lm

Kiq x8 (9)93

ẋ3 =
Lm

Tr

x1 −
1

Tr

x3 +
α

Tr

Lm x4x6 (10)94

ẋ4 =
Lm

Tr

x2 −
1

Tr

x4 −
α

Tr

Lm x3x6 (11)95

ẋ5 =
P

2J
[K (x2x3 − x1x4) − TL ] −

Bm

J
x5 (12)96

ẋ6 = −K pw

[

P

2J
[K (x2x3 − x1x4) − TL ] −

Bm

J
x5

]

+ Kiw (ωref − x5) (13)97

ẋ7 = −x1 − x4x6 +
1

Lm
ψdref +

Tr

Lm

ψ̇dref (14)98

ẋ8 = −x2 + x3x6 (15)99

where K = 3
2

P
2

Lm

Lr
, K pd , Kid , K pq , and Kiq are the proportional and integral gains for the100

ids , iqs controllers, respectively.101

3 Dynamical analysis102

The IM parameters are listed in Table 2 [15], and the PI controller gains are chosen to be103

K pd = K pq = 50, Kid = Kiq = 100, K pω = 20, Kiω = 5, ψdref = 0.55 Wb, and α is104

selected to be 1.3. The load torque and the speed reference are set to be 3 Nm and 50 rad/sec,105

respectively.106
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Table 2 IM parameters for simulation

Parameter Value Parameter Value

P 4 Lr (H) 0.2235

Rs (Ω) 0.76 Lm (H) 0.2176

Ls (H ) 0.2248 J (kg m2) 0.0111

Rr (Ω) 0.675 Bm (Nm/rad/s) 7.355 × 10−4

Fig. 2 Locus of real solution of

Xe1 as a function of α. System

parameters are K pd = K pq

= 50, Kid = Kiq = 100,

K pω = 20, Kiω = 5, and

ψdref = 0.55 Wb

3.1 Equilibrium points107

Let the notations xe
i , i = 1, 2, . . . , 8 indicate the equilibrium point states. By considering108

xe
5 = ωref and solving Eq. (8) to (15), the values of the states at the equilibrium point can be109

described as:110

X e =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

xe
1

xe
2

xe
3

xe
4

xe
5

xe
6

xe
7

xe
8

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−m±
√

m2−4ln
2l

Bmωref + P
2 TL

α P
2 Kψdref

Lm xe
1 (1 − α) + αψdref

Lm xe
2 (1 − α)

ωref
xe

2

xe
3

Lm

βLr Kid

(

a1xe
1 + a2

(xe
2)2

xe
3

− a3

)

Lm

βLr Kiq

((

b1 + b2
xe

2

xe
3

)

xe
1 + b3

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)111

where l = (1 − α)L2
m , m = (2α − 1)Lmψdref , n =

l
(

Bmωref + P
2 TL

)2

(

α P
2 Kψdref

)2 − αψ2
dref , a1 =112

γ − β
Lm

Tr
(1 − α) + βLr

Lm
K pd , a2 = βLr (1 − α)K pd − α

Lm

Tr
, a3 = (βLm(1 − α) + 1)113

ωref
Bmωref + P

2 TL

α P
2 Kψdref

+
(

αβ
Tr

+ βLr K pd

L2
m

)

ψdref , b1 = ωref + βωref Lm(1 − α), b2 = αLm

Tr
, and114

b3 =
(

γ − βLm

Tr
(1 − α)

)

Bmωref + P
2 TL

α P
2 Kψdref

+ αβωrefψdref .115
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From Eq. (16), X e is not unique for α �= 1, otherwise X e has unique solution. The real116

solution of X e is obtained when:117

2Lm

(

Bmωref + P
2

TL

)

2Lm

(

Bmωref + P
2

TL

)

+ P
2

Kψ2
dref

≤ α ≤
2Lm

(

Bmωref + P
2

TL

)

2Lm

(

Bmωref + P
2

TL

)

− P
2

Kψ2
dref

(17)118

According to Eq. (17) and Fig. 2, the real solution is obtained in the range of 0.61 ≤ α ≤ 3.04.119

In the outside of this range of α, the system does not have real equilibrium points.120

3.2 Stability of equilibrium points121

The IM parameters as in Table 2 [15] and PI controller gains are chosen to be K pd = K pq =122

50, Kid = Kiq = 100, K pω = 20, 0 ≤ Kiω ≤ 120, ψdref = 0.55 Wb, and α=1.3. According123

to Eq. (16), the system has two different equilibrium points:124

X e1 = (2.783, 1.446, 0.533,−0.094, 50, 2.71, 0.12,−0.531)T
125

X e2 = (10.697, 1.446, 0.017,−0.094, 50, 86.561, 0.344,−0.13)T
126

Based on the linearization theorem, the differential system is described in matrix form close127

to the equilibrium point as the following:128

Ẋ = J (x) X (18)129

where J(x) is the Jacobian matrix of the system, X = (x1, x2, x3, x4, x5, x6, x7, x8)
T is the130

vector of the system variables, and Ẋ = (ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6, ẋ7, ẋ8)
T

131

The Jacobian matrix of the linearized model can be given as:132

J (x) =
[

J6×6 J6×2

J2×6 02×2

]

(19)133

where134

J6×6 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−γ − c1 K pd x5 + c2x6
β
Tr

βx5 − c1 K pd x6 −x2 − βx4 c2x2 − c1 K pd x4

−x5 − c2x6 −γ − c1 K pq c1 K pq x6 − βx5
β
Tr

x1 + βx3 −c2x1 + c1 K pq x3
c2
α

0 −1
Tr

c2x6 0 c2x4

0 c2
α

−c2x6
−1
Tr

0 −c2x3

c4x4 −c4x3 −c4x2 c4x1 −c3 0

c4 K pwx4 −c4 K pwx3 −c4 K pwx2 c4 K pwx1 Kiw − c3 K pw 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,135

J6×2 =
[

c1 Kid 0 0 0 0 0

0 c1 Kiq 0 0 0 0

]T

, J2×6 =
[

−1 0 0 −x6 0 −x4

0 −1 x6 0 0 x3

]

,136

c1 = β Lr

Lm
, c2 = α

Lm

Tr
, c3 = Bm

J
, and c4 = 1.5Lm P2

4J Lr
137

The eigenvalues of the Jacobian matrix described in Eq.(19) are checked numerically. The138

equilibrium point X e1 is stable, while X e2 is unstable for Kiω > 106.4. For Kiω = 106.4,139

the eigenvalues are listed in Table 3.140

3.3 Bifurcation diagram141

The system specified by Eqs. (8)–(15) has been simulated numerically for different values of142

the controller parameters. The bifurcation diagram and corresponding Lyapunov exponents143

(LEs) spectrum as a function of parameter α are shown in Fig. 3. The parameters are K pd =144

K pq = 50, Kid = Kiq = 100, K pω = 20, and ψdref = 0.55 Wb. From Fig. 3, one can145

note that, for a certain value of controller gains with varying of α, the system bifurcates146

into period-1, period-2, period-4 and chaotic attractor. For Kiω = 5 and α is varied from147
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Fig. 3 Speed bifurcation diagram and Lyapunov exponents due to α change at K pd = K pq = 50, Kid =
Kiq = 100, and K pω = 20 a bifurcation diagram for Kiω = 5, b corresponding Lyapunov exponents, c

bifurcation diagram for Kiω = 90 and d corresponding Lyapunov exponents

0.3 to 5, Fig. 3a depicts that the dominant cases are period-1, period-2, and period-4, in the148

ranges of α from 0.3 to 0.671, 1.256 to 1.265, and 1.273 to 5 and the fixed point is seen149

in the range from 0.672 to 1.255. Hopf bifurcation occurs at α = 1.256 where the chaos150

behavior is noted during tiny range from 1.266 to 1.272 only. Figure 3b confirms the system151

behavior shown in Fig. 3a, where the largest LEs are zero for the periodic solution in the152

ranges 0.3 ≤ α ≤ 0, 671 , 1, 256 ≤ α ≤ 1.265, and 1.273 ≤ α ≤ 5, all LEs are negative for153

the range of 0.672 ≤ α ≤ 1.255, while one of LEs became positive for 1.266 ≤ α ≤ 1.272.154
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Table 3 The eigenvalues of the linearized system for K pd = K pq = 50, Kid = Kiq = 100, K pω = 20,

Kiω = 106.4, ψdref = 0.55 Wb, α = 1.3, Tl = 3 Nm and ωref = 50 rad/s,

Eigenvalues Xe1 Xe2

λ1 −7832.1 −7785.7 + 175.27i

λ2 −3913.8 + 2913.86i −7785.7 − 175.27i

λ3 −3913.8 − 2913.86i −71.9

λ4 −0.487 + 0.064i −38.644

λ5 −0.487 − 0.064i 14.707

λ6 −2.81 −5.125

λ7 −4.174 −0.468 + 0.047i

λ8 −5.322 −0.468 − 0.047i

Fig. 4 IFOCIM drive system with K pd = K pq = 50, Kid = Kiq = 100, K pω = 20, ψdref = 0.55 Wb,

α = 1.3, ωref = 50 and TL = 3 Nm: a bifurcation diagram and the corresponding spectrum of the seven

Lyapunov exponents b(i) L1, L2, L3, L4,L5, L6, L7 and the eighth Lyapunov exponent b(ii) L8 illustrate

various behaviors of system with variation of Kiω upward in the range 0 ≤ Kiω ≤ 120
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Fig. 5 Transient chaotic behavior with system parameters K pd = K pq = 50, Kid = Kiq = 100, K pω = 20,

Kiω = 110, ψdref = 0.55 Wb, α = 1.3, ωref = 50 and TL = 3 Nm: a phase portrait projection (x3, x4)

and the initial value (x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0), x8(0))=(0,0,-1.265,-0.5918,0,0,0,0) and

b the corresponding time series of x4

Fig. 6 Two-dimensional speed bifurcation diagram where the system parameters are K pd = K pq = 50,

Kid = Kiq = 100, ψdref = 0.55 Wb, α = 1.3, TL = 3 Nm and ωref = 50 rad/s

For Kiω = 90, Fig. 3c, d shows that the boundaries of the bifurcation regions are shifted155

and the chaotic domain is increased. The results show that the chaos occurs in a very small156

range of α, while it is noted that the results in the previous studies [9–14,16] showed that the157

general behavior of the system is the occurrence of SNB, HB, BTB, and ZHB.158

As shown in Fig. 3, the value of α which leads to chaos is varied in a small ranges around159

1.27 for Kiω = 5 and around 1.3 for Kiω = 90. Besides, in practical application upper limit160

value of α is about 1.5 [18]. Therefore, α = 1.3 is selected to investigate the system dynamics161

due to the changes of the controller gain(s).162

The system dynamics is verified numerically to investigate the bifurcation behavior due163

to Kiω change for a certain value of α(= 1.3) as illustrated in Fig. 4a. It is noted that for164

Kiω = 0, a stable periodic solution occurs with period-2; period-doubling bifurcation route165

to chaos is appeared for Kiω ≥ 0.1. The period-4 occurs for Kiω from 0.1 to 23, period-8166

for Kiω from 23.1 to 28.3, and period-16 for Kiω from 28.4 to 29.7. The system exhibits167

chaotic for Kiω from 29.8 to 106.3, while period-5 and period-10 are also noted at a windows168
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Fig. 7 Phase portrait projected (iqs , ids ) in A with system parameters that are K pd = K pq = 50, Kid =
Kiq = 100, K pω = 20, ψdref = 0.55 Wb, α = 1.3; TL = 3 Nm and ωref = 50 rad/sec a for Kiω = 0, b for

Kiω = 20, c for Kiω = 26, d for Kiω = 29, e for Kiω = 76, f for Kiω = 77, g for Kiω = 50, and h time

series responses for direct currents (ids ) in A and rotor speed (ωr ) in rad/sec for Kiω = 50

Kiω from 75.6 to 76.7 and Kiω from 76.8 to 77.7. Also, there are windows for fixed-point169

spread between the chaos region for Kiω from 104.3 to 104.6 and Kiω from 104.9 to 105.170

For Kiω ≥ 106.4; the system tracks speed command perfectly which is noted as fixed point.171

The Lyapunov exponents spectrum is obtained with respect to Kiω change. The simulation172

results confirmed the bifurcation diagram. From Fig. 4b, the largest Lyapunov exponents spec-173

trum shows that the system has periodic behavior for Kiω from 0 to 29.7 and then the chaos174

state has occurred for Kiω from 29.8 to 106.3. All the eight Lyapunov exponents are negative175

for Kiω ≥ 106.4 which denote fixed-point state. From Fig. 4b, the system shows positive LE176
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Fig. 8 Basins of attractions with system parameters as in Fig. 4 with K pω = 45 and Kiω as mentioned

in subfigures, where in a, b, and c x3 and x4 are varied with x1(0) = 0, x2(0) = 0, x5(0) = 0, x6(0) =
0, x7(0) = 0, and x8(0) = 0, d, e, and f x6 and x7 are varied with x1(0) = 0, x2(0) = 0, x3(0) = 0, x4(0) =
0, x5(0) = 0, and x8(0) = 0, fixed-point behavior (red) and periodic behavior (yellow)

in the fixed-point behavior region that means it has transient chaotic behavior followed by177

fixed-point steady-state response. Figure 5 states the system transient chaos, Fig. 5a illustrates178

the phase portrait for initial value (x1(0), x2(0), x3(0), x4(0), x5(0), x6(0), x7(0), x8(0)) =179

(0,0,-1.265,-0.5918,0,0,0,0), and Fig. 5b shows the corresponding time series.180

The effect of change of speed controller gains (K pω and Kiω) has been investigated to181

get the two-dimensional bifurcation diagram as shown in Fig. 6. The red zones denote the182

fixed-point behavior, while the yellow, light green, and green zones denote quasi-periodic183

behavior. The chaos zones are colored with light blue, blue, light purple, and purple. The184

diversity of the colors is due to the strength of the chaotic behavior. It is noted that the fixed-185

point state has the largest area of the 2D diagram, while the chaos behavior has very small186

area. The diagram simplifies the boundaries of each of K pω and Kiω for the designer to be187

used according to the application.188

Figure 7 shows the phase portrait projected (iqs , ids) and the corresponding time response189

with K pd = K pq = 50, Kid = Kiq = 100, K pω = 20, ψdref = 0.55 Wb, α = 1.3;190

TL = 3 Nm and ωref = 50. Figure 7a illustrates period-2 when Kiω = 0. Period-doubling191

period-4, period-8, and period-16 are plotted at Kiω = 20, 26, and 29 as shown in Fig. 7b–d,192

respectively. Period doubling from period-5 to period-10 is illustrated in Fig. 7e, f when193

Kiω equals 76 and 77, respectively. Chaotic behavior is represented in Fig. 7g at Kiω = 50,194

while Fig. 7h represents the time series responses for direct currents (ids) and rotor speed195

(ωr ) at Kiω = 50. The figures emphasize the bifurcation diagrams and Lyapunov exponents196

spectrum.197
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3.4 Basins of attractions198

This subsection discusses the basins of attractions and multistability. The nonlinear systems199

are sensitive to the changes in its parameters and the initial conditions of the state variables.200

Some of the system variables’ initial values have been used to discover the IFOC drive system201

behavior. In Fig. 8, the system shows two different attractors: fixed point (red) and periodic202

(yellow). Figure 8a–c represents different attractors with respect to the change in initial values203

of x3 and x4 with Kiw = 10, 20, and 40, respectively. The other variables have constant initial204

values x1(0) = 0, x2(0) = 0, x5(0) = 0, x6(0) = 0, x7(0) = 0, and x8(0) = 0. As shown in205

Fig. 8d–f, the initial values of x1, x2, x3, x4, x5, and x8 have been adjusted to be 0, 0, 0, 0,206

0, and 0 for Kiw = 10, 20, and 40, respectively, and the values of x6(0), x7(0) are changed.207

Figure 8d–f displays fixed point and periodic attractors due to the changes in the initial values208

of x6 and x7 for Kiw = 20. These different attractors, which are shown in Fig. 1, reveal that209

the IFOCIM system is sensitive to the variation of the initial value of IFOC system variables.210

From Figs. 4, 5, and 8, one can conclude that the IFOCIM model has multistability.211

4 Conclusions212

The full-order three-phase IM has been modeled in synchronous reference frame and con-213

trolled by using indirect field-oriented control method. The numerical analysis is used to214

investigate the system behavior due to control parameters change. The variation of slip speed215

compensator gain, integral gain, and proportional gain of speed loop controller are used to216

test the system dynamics. The simulation results show interesting notes related to the gain217

of the slip speed compensator bifurcation values where the chaos behavior is shown in very218

small region which is difficult to be indicated compared with the dominant limit cycles solu-219

tions; while the quasi-periodic behavior has the largest region, the fixed-point state has been220

noted in significant range of α. Also, the results show that the system has been bifurcated221

into period-2, period-4, period-8, period-16, and then the system becomes chaotic due to222

integral gain variation of speed loop. The bifurcation diagram and Lyapunov exponent spec-223

trum confirm these situations. Period-5 and period-10 have been indicated in a window inside224

the bifurcation diagram. The 2D bifurcation diagram gives visualization about the accepted225

ranges for each of K pω and Kiω to avoid the undesirable cases. Also, the system has mul-226

tistability for different initial values of the state variables. In future work, a suitable control227

method will be used to suppress the chaos in the IFOC drive system.228
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