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Abstract: The stability of the power system is a critical issue for the reliable and safe operation
of the network. Where maintaining voltage levels constant or within the prescribed permissible
limit and robustness against disturbances, while the power system is working near its stability
margin due to growth of power consumption, nowadays are great challenges. Chaotic oscillation
in power network may lead to system bus voltage collapse, angle divergence and possibly both
phenomena simultaneously. These cases directly affect the service quality of the power system. The
paper presents the problem of chaos suppressing in a three-bus power system of a six-dimensional
model. The dynamics of the power system are investigated through examining the nonlinear system’s
behavior analysis tools, such as power spectral density, bicoherence, Poincaré map and the Lyapunov
exponents. The chaotic oscillation of the power system is suppressed through a Lyapunov-based
adaptive algorithm with synergetic control theory. A nonlinear evolution constraint is used for
achieving better transient responses and fast dynamics. The dynamics of the energy storage device
and STATCOM compensator are employed within the control loop to restore the synchronous
operation and maintain the rated voltage, respectively. Numerical simulations are conducted to
verify the effectiveness and robustness of the proposed control algorithm. The stabilization of the
chaotic power system dynamics and the fast recovery to the normal state are characterized by a
smooth and free-of-chattering controller output.

Keywords: synergetic control; chaos; adaptive control; power system; nonlinear evolution constraint;
Lyapunov stability

1. Introduction

Power system voltage stability is the ability of the power system to maintain stable
voltages within the rated value for all power system buses at all operating conditions,
even after undergoing some disturbance effects. Disturbances can be due to demand load
change, system faults, or any other issues affecting the system stability. Disturbances in the
power system, may force the power system to suffer from voltage instability, and causes an
uncontrollable progressive change in the voltages of the system buses. Consequently, this
leads to an unacceptable voltage service quality in different parts of the power network
and possibly leads to a voltage collapse or a voltage avalanche [1]. It is important to
mention that the tripping of power transmission lines and/or losses of system loads and
the complete shutdown of the affected areas may follow a voltage collapse [2].

Chaos is a nonlinear complex phenomenon that can critically affect the dynamical sys-
tems stability behavior. Unpredictability, high sensitivity to initial conditions consequently
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yielding completely different responses [3], are the main attributes of chaotic systems that
led to severe blackouts and power system failures [4]. It can be induced by parameter vari-
ations [5], time delay [6] and external disturbances [7]. Chaos has been widely investigated
in many systems in different areas [8,9]. Control of chaotic systems in engineering and
science is currently an interesting research area in the modern control literatures [10].

The chaotic phenomena in power systems have been analyzed by several researchers.
One of the first studies are those of Chiang et al. [11,12] in the early 1990s, where they
studied the chaotic behavior of a two-bus simple interconnected power system under
different load conditions. Early studies mainly focused attention on interpreting the chaotic
oscillation behavior of power systems [13–15]. Routes to chaos and the relationship be-
tween power system instability and chaotic oscillation were presented by [16]. The scholars
in [17] showed that chaos can force a voltage profile of the power system to instability then
to collapse when stability conditions are ruined. In addition, it was reported that chaos
occurs possibly as an intermediate case in the instability state after a large disturbance
affecting the power system. In [18], it was revealed that the collapse of voltage is related to
static bifurcation and/or dynamic bifurcation. Moreover, it was shown that the nominal
operating point subjected to dynamic bifurcations prior to the static bifurcation for which
voltage collapse was attributed. Chaotic power oscillation occurs in the electrical network
due to many other phenomena. Subsynchronous resonance (SSR) and ferroresonance are
two phenomena that cause power oscillation of rotary systems. During SSR, electrical en-
ergy is exchanged between the generation unit and transmission systems with a frequency
below the fundamental synchronous frequency. It happens due to electro–mechanical inter-
actions of a series-compensated transmission line with a generator. It results in oscillation
in the shaft and power oscillation [19,20]. Ferroresonance is a nonlinear resonance, which
occurs in the presence of a saturable nonlinear inductance and capacitance in a circuit with
low resistance. It can emerge due to several configurations, like breaker failure during
opening or closing operation, line and plant outage, etc. It causes a misshaping of the
waveforms, power oscillation and frequency deviation in the network [21,22]. Obviously,
chaotic oscillations are harmful to power systems and should be suppressed or eliminated
by using effective control measures. Several control methods have been developed for this
purpose. Since power systems are highly nonlinear, different nonlinear control strategies
have been developed for chaotic oscillation suppression and elimination in power systems.
Global state feedback linearization has been developed in [23] to suppress chaotic oscilla-
tions in the power system. Moreover, adaptive control algorithms have been applied for
chaos control of power systems in [24,25]. In addition, [25] applied a conventional linear
manifold synergetic controller that suffers from the problem of a long convergence time to
the equilibrium point, and reaching the reference signal may not be fast enough in cases
that the initial conditions of the system state variables are far from the equilibrium [26].

Several types of sliding mode control (SMC) strategies have been developed for
chaos control and avoiding power system voltage collapse [27,28]. However, the main
obstacle for the SMC practical engineering implementation, is an undesirable phenomenon
associated with the sliding mode theory known as the chattering. The chattering is a
harmful oscillation of a finite frequency and amplitude. This devastating phenomenon
distinctly affects the controller accuracy and can lead to damage in the actuator mechanical
moving parts of the controlled system, besides high power circuit losses. Chattering
can amplify the neglected system fast dynamics during the ideal modeling moreover, it
induces instability problems [29]. Although there are different methods to overcome the
chattering phenomenon problem, including, but not limited to SMC approximations [30]
and application of high order sliding mode (HOSM) [31]. Most of these approaches
reduce the chattering to different degrees at the expense of reducing robustness and
added complexity.

These facts illustrate the necessity of finding a fundamental new control approach
such as the synergetic control theory, instead of traditional ones. This new method is
characterized by the use of robust control for the multi-connected nonlinear mathematical
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models, to satisfy the practical implementation of the required invariant manifolds, or at-
tractors, and enhance the controlled system stability. The synergetic control principles are
based on the analytical design of aggregated regulators (ADAR) [32]. The approach uses a
totally smooth continuous control law to remove the chattering phenomena and insures
the same closed-loop invariant level as in the SMC.

Therefore, the synergetic control theory has attracted a great deal of attention. Where it
has been successfully used in many industrial applications such as power electronics, power
systems, quadrotor helicopter system, grid-connected photovoltaic systems, and robotic
manipulators, are all applications reported in the literature [33]. The fundamental principles
of synergetic control are based on the theory of directed self-organization [26]. Synergetic
control theory was first proposed by the Russian researcher Kolesnikov [32]. Where the
problem of the system synthesis i.e., finding the objectives for the common process control
of the nonlinear dynamical system, is handled based on the synergetic realization [32].
The synergetic control scheme has the merit of employing the complete input-output
nonlinear dynamical model and does not need a model linearization or simplification, as it
common in the traditional control methods [34]. From the practical applicability point
of view, the synergetic control has several advantages. First, it is well-suited for digital
control implementation as it needs a fairly low bandwidth for the controller. On the other
hand, the SMC needs a fairly high bandwidth for the controller, which hinders the solution
feasibility. The second advantage is that it requires a constant switching frequency and it
does not have chattering problems, therefore it causes fewer power filtering problems in
power electronics applications [33].

Motivated by the above discussion, this paper presented the following aspects: sup-
pressing chaotic oscillation in a six-dimensional power system. Employing static syn-
chronous compensator (STATCOM), which is a superior technology in supporting system
bus voltage against large-scale disturbances [35]. It has the advantage of fast voltage recov-
ery which is crucial to maintain the power system transient voltage stability [36]. Moreover,
an energy storage device has been exploited along with synergetic control theory based on
an adaptive control algorithm and nonlinear evolution constrain approach, to elaborate a
robust control scheme for stabilizing the power system dynamics.

This paper consists of six sections. Following this introduction, Section 2, intro-
duces the mathematical model of the chaotic power system. In Section 3, the synergetic
control theory fundamentals are presented along with the general control framework.
In Section 4, the adaptive synergetic controller design for the chaotic power system is pre-
sented. In Section 5, the dynamical behavior of the power system is investigated through
nonlinear analysis tools such as Poincaré map, system trajectory evolution, power spectral
density and bicoherence to reveal the chaotic nature of the power system. Then, three
simulation procedures were provided to verify the controller robustness and effectiveness.
The main conclusions and discussion are presented in Section 6.

2. Mathematical Model

In this section, the dynamic behavior of the chaotic power system model [25,37], is
investigated. The system can be regarded as one generator bus 1 supplying power to a
local load bus 2 and connected to slack bus 3, as shown in Figure 1. The dynamics of the
system depend on the generator angle δm, generator slip sm, the generator q-axis transient
potential E

′
q, excitation potential E f d, the load phase angle δL and VL the load bus voltage

amplitude as written in (1).
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δ̇m = ωBsm,

ṡm =
1

2H
(
−dsm + Pm − Pg

)
,

Ė
′
q =

1
T′d0

(
−E

′
q + (xd − x

′
d)Id + E f d

)
,

Ė f d =
1

TA

(
−E f d + KA(Vre f −Vt)

)
,

δ̇L =
1
q1

(
Q−Q1d −Q0 − q2VL − (q3 − Bc)V2

L

)

V̇L =
1
p2

[
P− P1d − P0 − p3VL −

p1

q1

(
Q−Q0 −Q1d − q2VL − (q3 − Bc)V2

L

)]
.

(1)

,PQ

23

1

bÐ0
Y3 Ðf

3 qÐ Vt

YÐf2 2 Y Ðf11

VÐL d
L

E

Figure 1. power system model with three buses.

All parameters in the model (1) are considered as constants, except the functions Pg, P,
Q, Id and Vt that depends on the power system model state variables. Pg parameter defines
the power delivered by the generator, and can be written as:

Pg = (x
′
d − xq)Id Iq + E

′
q Iq, (2)

where {
Id = [(YE

′
q − a)(sin φ−Yxq)− b cos φ]/A,

Iq = [(YE
′
q − a) cos φ + (sin φ−Yx

′
d)b]/A

(3)
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and 

A =
[
cos2 φ +

(
sin φ−Yxq

)(
sin φ−Yx′d

)]
,

a = Y3Eb cos(δm − φ3 + φ) + VLY1 cos(δL − δm + φ1 − φ),
b = −Y3Eb sin(δm + φ− φ3) + VLY1 sin(δL − δm + φ1 − φ),

Y =
√

Y2
1 + Y2

3 + 2Y1Y3 cos(φ1 − φ3),

φ = tan−1
[

Y1 sin φ1+Y3 sin φ3
Y1 cos φ1+Y3 cos φ3

]
.

(4)

where Id and Iq represent components of stator current on the d-axis and the q-axis,
respectively. The expressions for the load active power P, reactive power Q and the
generator bus terminal voltage Vt are defined as (5):

P = VLVtY1 cos(β1)−Y1V2
L cos(φ1) + VLEbY2 cos(β2)−Y2V2

L cos(φ2)

Q = VLVtY1 sin(β1) + Y1V2
L sin(φ1) + VLEbY2 sin(β2) + Y2V2

L sin(φ2)

Vt =
√
(Vd)2 + (Vq)2

(5)

where 

Vd = −xq Iq

Vq = E′q + x′d Id

β1 = δL − θ − φ1

θ = δm + tan−1
(

Vd
Vq

)
β2 = δL − φ2

(6)

3. Synergetic Control Theory

The synergetic control method is an attractive trend in control science [38]. It found
particular applications in nonlinear systems for solving complicated controlling problems.
Synergetic control theory (SCT) needs a comprehensive view of controlled system dynamic
interactions between energy, matter and information being implemented using positive
and negative feedback [39]. The synergetic control method is based on the principle of
expansion and contraction of the controlled system state space. It can achieve the required
transient performance, which is a challenging requirement for modern control of nonlinear
system [26]. The control objective of this paper is to design an adaptive synergetic control
algorithm for power system dynamics stabilization. The following preliminary definitions
are provided:

Consider the following nonlinear system:{
ẋi = xi+1, i = 1, 2, . . . , n− 1
ẋn = fn(x) + gn(x)u

(7)

where x ∈ Rn is the system states vector, fn(x) ∈ R is a smooth function that denotes the
nonlinear dynamics of the system. The gain control function is designated by gn(x) 6= 0,
and u ∈ R is the control signal. The calculated continuous synergetic control law u, drives
controlled system states to a prescribed invariant manifold and then onto the operating
equilibrium point of the system (7). The main advantage of this method is that once system
dynamics reach the invariant manifold, the system states remain insensitive to parameter
variation and disturbances. The synergetic control law u is a function of an aggregated
variable of system states called the macro variable ψ. These macro variables ψ should be
chosen properly by the designer to satisfy the following evolution constrain (8) [40,41]:

Tψ̇ + Ω(ψ) = 0, (8)
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where T determines the macro variable ψ rate of convergence to the synergetic attractor
ψ(x, t) = 0, and Ω(ψ) is a differentiable smooth function of ψ that is selected such that:

(a) invertible and differentiable;
(b) Ω(0) = 0;
(c) Ω(ψ).ψ > 0, ∀ψ 6= 0.

Lemma 1. If Ω(ψ) is designed in the form of (9), then the function Ω(ψ) satisfies previous
conditions [42].

Ω(ψ) = ψ(m1/n1) + ψ(n1/m1) (9)

where m1 > 0 and n1 > 0, are odd numbers and satisfy 0 < n1/m1 < 1.

Proof. The proof can be found in Appendix A.

Then the synergetic nonlinear evolution constrain can be described by the following
form (10):

Tψ̇ + ψ(m1/n1) + ψ(n1/m1) = 0, (10)

where the design parameters m1, n1 and T are chosen such that the macro variable ψ
reaches the synergetic invariant manifold as fast as required. From the synergetic point
of view, these parameters are related to actions done by self-organization forces. Where
an appropriate selection for these parameters can determine the required speed of self-
organization process.

An attractive advantage of the nonlinear synergetic manifold is the appropriate tran-
sient response of the controller, which is one of the important issues in the modern controller
design process. In the conventional synergetic controller with linear manifold, in cases
that the system initial conditions are far from equilibrium, the time of convergence to the
reference value may not be rapid enough. In contrast, in the synergetic control with the
nonlinear exponential functional constrain (10), with a proper setting of the exponential
term parameters, it is possible to drive the system dynamics, from any bounded initial
state to the equilibrium, and keep them there. Based on the synergetic control theory
properties, this movement to the steady-state will have smooth, proper conditions with a
rapid convergence rate. The object of the controller is to restore the state variables of the
chaotic power system (1) to the required states and stabilize the system dynamics.

4. Synergetic Based Adaptive Controller Design for the Chaotic Power System

To suppress the chaos in the power system (1) and get rid of the chaotic oscillation
and restore the normal operation. It is important to force the power system dynamics
to work in synchronization and keep the bus voltage within the required limit. In this
work, the objective of the designed controller is achieving δmd = smd = 0 and , VLd = 1 and
keep the system in the equilibrium state. To enhance power system stability and achieve
the desired control objectives, two facilities will be simultaneously used, which are the
energy storage system and the STATCOM compensator. The dynamical model of these two
systems, energy storage device [43] and the STATCOM [35], are given as follows:


Ṗes = − 1

Tes
Pes +

Kes
Tes

ues

i̇stat = − 1
Tstat

istat +
Kstat
Tstat

ustat

(11)

where Pes represents the amount of the active power handled by the energy storage system.
Tes represents energy storage device time constant. Kes represents the gain of the input con-
trol signal. ues denotes the input control signal. istat denotes the STATCOM compensator
current, Tstat defines the STATCOM time constant, Kstat designates the input gain and ustat
denotes the input control signal.
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It is known that energy storage devices have been considered by many researchers as
oscillation damping units in power system [44]. The damping of active power oscillations
is more effective through active power modulation. The energy storage device can provide
real power, therefore it can damp out oscillations very effectively when its output is
modified by a proper control algorithm. Therefore, the energy storage device is used to
dampen out the oscillation in the system (1) and restore synchronous state using the control
signal ues. On the other side to keep the bus voltage at rated, the STATCOM compensator
is employed through the control input signal ustat.

The whole controlled power system circuit diagram is shown in Figure 2. The energy
storage device is located on the first bus with the generator side, while the STATCOM
is connected to the second bus to support the load. To derive the mathematical model
of the controlled power system [25], combine (1) and (11) yields the following system of
differential Equations (12):

δ̇m = ωBsm = f1,

ṡm =
1

2H
(
−dsm + Pm − Pg − Pes

)
= f2

Ṗes = − 1
Tes

Pes +
Kes

Tes
ues = f3 +

Kes

Tes
ues

Ė′q =
1

T′d0

(
−E′q +

(
xd − x′d

)
Id + E f d

)
= f4

Ė f d =
1

TA

(
−E f d + KA(Vref −Vt)

)
= f5

δ̇L =
1
q1

(
Q−Q0 −Q1d −Qstat − q2VL − (q3 − Bc)V2

L

)
= f6

V̇L =
1
p2

[
P− P1d − P0 − p3VL −

p1
q1

(
Q−Q1d −Qstat −Q0 − q2VL − (q3 − Bc)V2

L

)]
= f7

i̇stat = − 1
Tstat

istat +
Kstat
Tstat

ustat = f8 +
Kstat
Tstat

ustat

(12)

where Qstat denotes the STATCOM reactive power provided to the load bus 2, and can be
written as follows (13): 

Qstat = −istatVL

f3 = − 1
Tstat

Pes

f8 = − 1
Tstat

istat

(13)
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STATCOM
,PQ

23

1

Energy 

Storage

Device

bÐ0
Y3 Ðf

3 qÐ Vt

Y Ðf2 2 Y Ðf11

VÐL d
L

Pesistat

E

Figure 2. schematic diagram for the power system with the connecting locations of the energy storage
device and the STATCOM controllers.

To elaborate the controller goals, the controlled system (12) can be represented as
follows (14): 

ẋ = f (x) + g(x)u
y1 = δm

y2 = VL

(14)

where x defines the states vector of the full controlled system (12) and f (x) designates the
vector of the smooth functions f1 to f8. y1 and y1 are the controlled system (12) outputs and

u = [ues ustat]
T

g(x) =

[
0 0 Kes/Tes 0 0 0 0 0
0 0 0 0 0 0 0 Kstat/Tstat

]T (15)

By defining the following transform e1 = δm, the three first equations of (12) can be
written as: 

ė1 = e2

ė2 = e3

ė3 = f9 −
ωBKes

2HTes
ues

(16)

where

f9 = −ωB
2H

[
d f2 + Ė′q Iq + İqE′q +

(
x′d − xq

)(
Iq İd + İq Id

)
− 1

Tes
Pes

]
To steer the first output y1 of the controlled system (14) to the zero equilibrium,

the power system (16) should be stabilized to the origin. The first step in the design



Electronics 2021, 10, 1532 9 of 19

procedure of the synergetic control theory, is to define the macro variable which can be
selected as linear combination of the state variables of system (16) as follows:

ψ1 = e3 + k2e2 + k1e1 (17)

The parameters of the macro variable ψ1, k1 and k2 are selected such that the system
(16) follows the required transient dynamics and the characteristic polynomial ∆(λ) =
λ2 + k2λ + k1 satisfing the Hurwitz stability criteria.

To drive the system (16) dynamics evolution toward the invariant manifold ψ1 = 0,
the nonlinear evolution constraint defined as follows:

T1ψ̇1 + ωB

(
ψm1/m2

1 + ψm2/m1
1

)
= 0 (18)

then
T1ψ̇1 = T1(ė3 + k2e3 + k1e2) = −ωB

(
ψm1/m2

1 + ψm2/m1
1

)
(19)

where m1 > 0 and m2 > 0 are design parameters selected as odd numbers and satisfy
0 < m2/m1 < 1. T1 > 0, represents the convergence time constant that required such that
the first macro-variable ψ1 approaches the invariant attractor ψ1 = 0. This design parameter
selected carefully to achieve the required convergence rate. By combining (16) and (19),
the required control ues for system (16) can be described by the following form (20):

ues =
2HTes

ωBKes

[
f9 + k1e2 + k2e3 +

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

)]
(20)

Obviously, the control equation ues presented in (20), involves a complicated term
f9 which is a function of the state variables and parameters of controlled system (12).
In general, complex terms render the practical application of the designed controller
hard to implement [25]. Therefore, it is more realistic to employ a controller free of f9.
To achieve that, the control signal ues will be considered as a reference control for an
adaptive synergetic control law ues(ad), that will replace the complicated control law ues (
20). The adaptive synergetic control law can be defined as follows:

ues(ad) =
2HTes

ωBKes

[
k̂1e2 + k̂2e3 +

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

)]
(21)

where the controller adaptive parameters k̂1 and k̂2 should be trained on-line such that the
final synergetic control law u∗es(ad) matches the real complicated synergetic control ues (20),

when the adaptive parameters k̂1 and k̂2 converge to the optimal values k̂∗1 and k̂∗2 . That is:

u∗es(ad) =
2HTes

ωBKes

[
k̂∗1e2 + k̂∗2e3 +

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

)]
(22)

To achieve this goal, the Lyapunov method will be used to derive the learning laws of
the controller adaptive parameters as follows:

Theorem 1. For the system (16), if the used control input law is given by (23), with parameters
adjustment laws (24), then the macro-variable ψ1 defined in (17) will approach the synergetic
attractor ψ1 = 0 and the adjusted parameters k̂1 and k̂2 converge to the optimal parameters k̂∗1 and
k̂∗2, respectively.

ues(ad) =
2HTes

ωBKes

[
k̂1e2 + k̂2e3 +

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

)]
(23)
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{ ˙̂k1 = ωBe2ψ1
˙̂k2 = ωBe3ψ1

(24)

Proof. By substituting ues(ad) from (23) instead of ues in (16) then:

ė3 = f9 −
ωBKes

2HTes

2HTes

ωBKes

[
k̂1e2 + k̂2e3 +

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

)]
− ωBKes

2HTes
ues(ad)

+
ωBKes

2HTes
u∗es(ad)

(25)

Combining (20) and (22) with (25), system (16) be as follows:
ė1 = e2

ė2 = e3

ė3 =
(

k̂∗1 − k̂1 − k1

)
e2 +

(
k̂∗2 − k̂2 − k2

)
e3 −

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

) (26)

Choosing a Lyapunov function as follows:

V1 =
1
2

ωBψ2
1 +

1
2

(
k̂1 − k̂∗1

)2
+

1
2

(
k̂2 − k̂∗2

)2
(27)

Then, the time derivative of V1 is

V̇1 =ωBψψ̇ +
(

k̂1 − k̂∗1
)

˙̂k1 +
(

k̂2 − k̂∗2
)

˙̂k2

=ωBψ(ė3 + k1e2 + k2e3) +
(

k̂1 − k̂∗1
)

˙̂k1 +
(

k̂2 − k̂∗2
)

˙̂k2

=ωBψ
[(

k̂∗1 − k̂1 − k1

)
e2 +

(
k̂∗2 − k̂2 − k2

)
e3 −

ωB
T1

(
ψm1/m2

1 + ψm2/m1
1

)
+ k1e2 + k2e3

]
+
(

k̂1 − k̂∗1
)

˙̂k1 +
(

k̂2 − k̂∗2
)

˙̂k2

(28)
Substituting (23) and (24) into (28) yields

V̇1 =ωBψ1

[(
k̂∗1 − k̂1 − k1

)
e2 +

(
k̂∗2 − k̂2 − k2

)
e3 −

ωB
T1

ψ1 + k1e2 + k2e3

]
+
(

k̂1 − k̂∗1
)

ωBe2ψ1 +
(

k̂2 − k̂∗2
)

ωBe3

(
ψm1/m2

1 + ψm2/m1
1

)
=− k1ωBe2ψ− k2ωBe3ψ−

ω2
B

T1
ψ1

(
ψm1/m2

1 + ψm2/m1
1

)
+ k1ωBe2ψ1 + k2ωBe3ψ1

(29)

then

V̇1 =−
ω2

B
T1

ψ1

[
ψm1/m2

1 + ψm2/m1
1

]
=−

ω2
B

T1

[
ψ
(m1+m2)/m2
1 + ψ

(m1+m2)/m1
1

] (30)

due to that m1 and m2 are odd numbers and their sum (m1 + m2) is an even then V̇ ≤ 0,
and the system is stable. Thus the proof is completed.

Based on the aforementioned analysis, the first control objective is achieved, where the
energy storage device that is mounted to the first bus with the generator side, will damp
out the chaotic oscillation as required.
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The second control objective is to stabilize the load voltage VL at the rated value.
For this purpose, define another non-linear transformation as e4 = VL − 1, so the last two
equations of the controlled system (12) can be written as follows:{

ė4 = e5

ė5 = f10 − (p1VLKstat)/(q1 p2Tstat)ustat
(31)

where

f10 =
2
p2

(
Ṗ− p1

q1

[
Q̇−

(
istat

Tstat
VL

)
+ istat f7 − q2 f7 − 2(q3 − Bc)VL f7

]
− p3 f7

)
.

Obviously, when the system (31) reaches the origin, the controlled system (12) load
bus voltage converges to the rated voltage VL = 1. Again, to use the synergetic control
theory to drive the auxiliary system (31) state to achieve the required dynamics, the first
step is to define a new macro variable ψ2 which is a linear combination of the system (31)
state variables as follows:

ψ2 = e5 + k3e4, (32)

where the stability condition in this case is to select k3 > 0.
The synergetic macro variable ψ2 should evolve according to the following nonlinear

functional constrain:
T2ψ̇2 +

(
ψn1/n2

2 + ψn2/n1
2

)
= 0 (33)

then
T2ψ̇2 = T2(ė5 + k3e5) = −

(
ψn1/n2

2 + ψn2/n1
2

)
(34)

where the design parameters n1 > 0 and n2 > 0 are chosen odd numbers and satisfy
0 < n2/n1 < 1. T2 > 0, represents the convergence time constant that required such
that the macro variable ψ2 attains the synergetic artificial attractor ψ2 = 0. This design
parameter selected carefully to satisfy the required convergence rate. By combining (31)
and (34), the control law ustat for system (31) can be obtained as follows:

ustat =
q1 p2Tstat

p1VLKstat

[
f10 + k3e5 +

1
T2

(
ψn1/n2

2 + ψn2/n1
2

)]
(35)

It is clear that, the control equation ustat presented in (35), involves a complicated
term f10 which is function of the state variables and parameters of controlled system (12).
This complex term makes the practical application of the designed synergetic controller
law difficult to implement [25], therefore it is more realistic to use a controller free of f10.
To achieve that, the control law ustat will be replaced by an adaptive synergetic control law
ustat(ad), which will be equivalent to the complicated control law ustat (35). The adaptive
synergetic control law can be defined as follows:

ustat(ad) =
q1 p2Tstat

p1VLKstat

[
k̂3e5 +

1
T2

(
ψn1/n2

2 + ψn2/n1
2

)]
(36)

where the adaptive parameters k̂3 should be adjusted on-line such that the final synergetic
control law u∗stat(ad) matches the real complicated synergetic control ustat (35), as similar to
the previous reasoning.

u∗stat(ad) =
q1 p2Tstat

p1VLKstat

[
k̂∗3e5 +

1
T2

(
ψn1/n2

2 + ψn2/n1
2

)]
= ustat (37)

Theorem 2. For the system (31), if the used control input law is given by (38), with parameter
adjustment law (39), then the macro-variable ψ2 defined in (32) will approach the synergetic
attractor ψ2 = 0 and the adjusted parameter k̂3 converges to the optimal value k̂∗3.
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ustat(ad) =
q1 p2Tstat

p1VLKstat

[
k̂3e5 +

1
T2

(
ψn1/n2

2 + ψn2/n1
2

)]
(38)

˙̂k3 = e5ψ2 (39)

Proof. By substituting ustat(ad) from (38) instead of ustat in (31) then:

ė5 = f10 −
(

k̂3e5 +
1
T2

(
ψn1/n2

2 + ψn2/n1
2

))
− q1 p2Tstat

p1VLKstat
ustat +

q1 p2Tstat

p1VLKstat
u∗stat(ad) (40)

Using (35), (37) and (40), then the controlled system (31) can be written as follows:{
ė4 = e5

ė5 =
(

k̂∗3 − k̂3 − k3

)
e5 − 1

T2

(
ψn1/n2

2 + ψn2/n1
2

) (41)

Choosing the Lyapunov candidate function as:

V2 =
1
2

ψ2
2 +

1
2

(
k̂3 − k̂∗3

)2
(42)

Then, the time derivative of V2:

V̇2 = ψ̇2ψ2 +
(

k̂3 − k̂∗3
)

˙̂k3

= ψ2(ė5 + k3e5) +
(

k̂3 − k̂∗3
)

˙̂k3

(43)

By combining (38), (39) and (41) with (43), obtain:

V̇2 = ψ2

[(
k̂∗3 − k̂3 − k3

)
e5 −

1
T2

(
ψn1/n2

2 + ψn2/n1
2

)
k3e5

]
+
(

k̂3 − k̂∗3
)

e5ψ2

= −k3e5ψ2 −
1
T2

ψ2

(
ψn1/n2

2 + ψn2/n1
2

)
+ k3e5ψ2

= − 1
T2

(
ψ
(n1+n2)/n2
2 + ψ

(n1+n2)/n1
2

)
,

(44)

since n1 and n2 are odd numbers then their sum (n1 + n2) is an even and V̇2 ≤ 0, so the
system is stable.

Therefore, the proof is completed.

According to that, the second objective of the designed control algorithm is achieved,
where the STATCOM compensator will drive ψ2 toward the artificial attractor ψ2 = 0,
therefore the system (31) reaches the origin equilibrium and restores the load bus voltage
VL to its rated value.

5. Simulation Results

The parameters values of the three-bus power system are adopted as in [25]. All
the parameters values are listed in Appendix B. The system (1) initial values are (δm(0),
sm(0), E

′
q(0), E f d(0), δL(0), VL(0)) = (1.3331, 0, 1.0312, 2.9982, 0.3858, 0.9845). The power

system (1) exhibits chaotic oscillation, the chaotic nature of the system is characterized
as in Figures 3 and 4. As can be seen from Figure 3a, chaotic signature of the power
system is illustrated by the trajectory evolution in the 3D phase plane which reflects the
strange nature of the orbits. The power spectral density for 100 (s) time waveforms and
sampling period of 0.005 (s) and the bicoherence diagram for the power system (1) are
given in Figure 3b. The bicoherence is significantly nonzero, and nonconstant, indicating a
strong nonlinear relationship between the power system states, and the broadened power
spectrum are both signatures of the chaos phenomenon. Figure 4a shows that the time
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waveforms of state variables (δm(t), sm(t), VL(t)) are aperiodic with irregular oscillatory
behaviors, therefore it is an impossible to predict their trajectories evolution after a long
period of time. Poincaré map is plotted in Figure 4b projected in the (δm(t), δL) plane,
which clearly reveals the chaotic dynamics of the power system. Further, employing
Wolf’s algorithm [45], the largest Lyapunov exponent found equals to 0.4360. The positive
Lyapunov exponent indicates the existence of chaotic attractor. Chaotic oscillation has
been considered as one of the main routes that will lead power system to voltage collapse.
Therefore, an immediate control action needs to be activated to suppress chaos and restore
the normal operation.

(a) (b)

Figure 3. The chaotic power system (1) attractor and bicoherence plot. (a) Phase portrait strange attractor of the chaotic
power system (1). (b) Power spectral density and bicoherence for the chaotic power system (1).
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Figure 4. The chaotic power system (1) time series waveforms and its Poincaré map projection. (a) Time response of some state
variables in the chaotic power system (1). (b) Poincaré map for the chaotic power system (1), projected in the δm − δL plane.
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The controller parameters should be selected to satisfy the following constraints
derived in stability analysis. The roots of the characteristic’s equation of the first manifold
(17) will be located at λ1,2 = −5, therefore the characteristic equation will be λ2 + 10λ +
25 = 0, from that it can be concluded that k1 = 25 and k2 = 10. For the second manifold
(32) the root of its characteristic equation will be located at λ = −10, then its characteristic
equation will be λ + 10 = 0, therefore k3 = 10. Noting that the largest values for |λ1,2,3|
the faster motion will be achieved on the synergetic attractor because the roots will be far
from the imaginary axis in the complex plane. Regarding the selection of m1, m2, n1 and
n2 they should be positive odd numbers and meet the conditions 0 < m2/m1 < 1 and
0 < n2/n1 < 1 as stated in Lemma 1. The strength of the nonlinear manifold will be more
obvious when these numbers are chosen somewhat large, so they are considered equal to
m1 = 9, m2 = 7, n1 = 9, n2 = 7. T1 and T2 which are designer-chosen determine the rate
of convergence to the synergetic manifold and can be made arbitrary small considering
only eventual control constraint. Hence T1 and T2 can arbitrarily be chosen equal to 0.05.
The initial values of the adaptive parameters can be randomly selected as k̂1(0) = 1,
k̂2(0) = 2 and k̂3(0) = 3. All the aforementioned controller parameters can be tuned
using different optimization algorithms such as evolutionary algorithm (EA), genetic
algorithm (GA), particle swarm optimization (PSO), bats algorithm (BA), and many other
methods [46–48], or can be simply selected by the trial-and-error method under the stated
conditions. On the other hand, the selection of Kes, Tes, Kstat, Tstat given in the same
framework as in [25,35,43]. These parameters are only used to illustrate the effectiveness
of the designed control algorithm. In practical applications, these values can be selected
according to the actual operating conditions of the system. Without loss of generality,
the design parameters can be selected as but not limited to Kes = 10, Tes = 0.1, Kstat = 1,
Tstat = 1.

The control objective is to suppress chaos in the power system and stabilize the power
system to its desired operating point δmd = 0, smd = 0 and VLd = 1. Three simulation
scenarios are conducted to examine the proposed controller performance in suppressing
chaos in the power system and managing STATCOM and the energy storage device through
an adaptive synergetic control algorithm.

In the first scenario, the controller has been activated from the beginning of simulation
time to stabilize the chaotic power system dynamics. The results of the first scenario are
given in Figure 5. The time waveforms of state variables of the three-bus chaotic power
system with the proposed controller are presented in Figure 5a. It clearly demonstrates
the chaotic oscillation has been suppressed completely and the controller achieved the
control objectives. The results verify the effectiveness of the designed controller scheme.

The STATCOM compensator and the energy storage device states are presented in
Figure 5b. The controller adaptive parameters converge to steady-state values in finite
time as shown in the parameters time courses that are given in Figure 5c. Figure 5d
shows the system auxiliary variables time-domain waveforms heading toward the origin.
The waveforms reveal that the controller can achieve as fast a convergence rate as required.
The controller output is presented in Figure 5e and it is chattering free and smooth signals.

In the second scenario, the controller is deactivated at the outset of simulation, there-
fore, the power system state variables move chaotically with time, until when the controller
is switched on at an arbitrary time t = 5 (s) the state variables are controlled, the erratic
oscillation is damped out and the system dynamics converge to the desired states as shown
in Figure 6.
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Figure 5. The results of the first control scenario. (a) Controlled power system (12) state variables time series with control
in action at t = 0 (s). (b) Energy storage device and the STATCOM current states. (c) The controller adaptive parameters
time evolution. (d) The controlled auxiliary variables states times series. (e) The controller outputs with control in action
at t = 0 (s).
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Figure 6. Controlled system (12) state variables time series with control in action at t = 5 (s).

In the third scenario, power fluctuation due to load variation is applied to verify the
robustness of the designed control algorithm. The disturbance can be achieved in the
power system (1), by considering the parameters P1d that represents the load active power
and Q1d which defines the load reactive power, where changing these parameters, presents
mismatched-disturbances to the system (12) [25]. By setting the active power disturbance
as ∆P1(ds) = −0.2 · µ(t− 5) + 0.3 · µ(t− 6) [W], and the fluctuation in reactive power as
∆Q1(ds) = 0.2 · µ(t− 4)− 0.1 · µ(t− 6) [var] where µ(t) denotes the unit step function in
this context. The simulation result of this case is shown in Figure 7. Figure 7 shows the
time waveform of the controlled power system (12) states. The results in Figure 7 reveal
that the suggested controller is robust against the disturbances and successfully able to
suppress the chaotic oscillation effectively and maintain all state variables of the controlled
system at the objective state as required.
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Figure 7. Controlled system (12) state variables time series with control in action at t = 0 (s) and load
power disturbance.
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6. Conclusions

The intent of this paper is to investigate the problem of suppressing chaotic oscillation
in a three-bus power system. The chaotic power system is modeled using a six nonlinear
differential equations system. The system dynamics exhibit a critical chaotic oscillation at
specific system parameter values that affect the power system bus voltage stability. Chaos
phenomena in the power system can lead to system collapse, which highly affects the
quality of commercial power service. Therefore, an adaptive synergetic control algorithm
with the help of STATCOM and energy storage devices is designed to realize the controller.
The adaptive algorithm is designed, based on the Lyapunov approach, to overcome the
system complexity and reduce the controller structure. The simulation results provided for
different scenarios, indicated that the suggested control scheme effectively damped out
chaos oscillation in the power system, achieving an appropriate transient response with a
robust disturbance rejection feature.
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Appendix A. Proof of Lemma 1

Proof. (a) by using (9), the time-derivative of Ω(ψ) can be stated as follows:

Ω̇(ψ) =
m1

n1
ψ(m1−n1)/n1 +

n1

m1

1
ψ(m1−n1)/n1

(A1)

The parameters m1 and n1 are odd numbers, then (m1− n1) is even, therefore Ω̇(ψ) >
0, and Ω(ψ) in (9) is a monotone function. Since Ω(ψ) is a monotonic function therefore, it
satisfies the invertibility condition, that meets the first condition requirements.

(b) It is clear that Ω(0) = 0 according to (9), and this is enough to prove the sec-
ond condition.

(c) Using (9), the term Ω(ψ)ψ can be given as follows:

Ω(ψ)ψ = ψ
m1+n1

n1 + ψ
m1+n1

m1 . (A2)

Since m1 and n1 are odd numbers, then their sum (m1 + n1) is an even number,
therefore:

Ω(ψ)ψ > 0, ∀ψ 6= 0,
and this is meeting the requirements of the last condition.

The proof is completed.

Appendix B. System Parameters

• Network:
Y1 = 4.9752, Y2 = 1.6584, Y3 = 0, φ1 = φ2 = φ3 = −1.4711, Eb = 1.0,

• Generator:
xd = 1.79, xq = 1.71, x′d = 0.169 x′q = 0.23, T′d0 = 4.3, H = 2.894, ωB = 377, d = 0.05,
Pm = 1.12455.

• Load:
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P0 = 0.4, Q0 = 0.8, Q1d = 0, P1d = 0, Bc = 0.2, p1 = 0.24, p2 = 1.7, p3 = 0.2,
q1 = −0.02 q2 = −1.866, q3 = 1.6.

• Exciter:
TA = 0.05, KA = 200, Vre f = 1.1233.
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