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Abstract: In this paper, a new fractional order chaotic system without equilibrium is proposed,
analytically and numerically investigated, and numerically and experimentally tested. The analytical
and numerical investigations were used to describe the system’s dynamical behaviors including
the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents.
Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it
has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was
developed between two identical new systems (master and slave). The adaptive control laws are
derived based on synchronization error dynamics of the state variables for the master and slave.
Consequently, the update laws of the slave parameters are obtained, where the slave parameters are
assumed to be uncertain and are estimated corresponding to the master parameters by the synchro-
nization process. Furthermore, Arduino Due boards were used to implement the proposed system in
order to demonstrate its practicality in real-world applications. The simulation experimental results
were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency
between the simulation results and the experimental results, indicating that the new fractional order
chaotic system is capable of being employed in real-world applications.

Keywords: fractional order; dynamics; chaotic; system; synchronization; arduino due

1. Introduction

Research on chaotic systems has had a significant practical effect since Lorenz estab-
lished chaos theory in 1963 [1]. Over the last few decades, nonlinear phenomena in chaos
have been widely employed in engineering, science, and applied mathematics [2–4]. Chaos
systems with hidden attractors have been the focus of recent research. Self-excited attractors
and hidden attractors have been classed as chaotic attractors in dynamical systems since
the seminal article by Leonov et al. was investigated [5]. The unstable equilibrium points
(system equilibria) are responsible for exciting the basin of attraction in the self-excited
chaotic [6]. An attractor, on the other hand, is said to be hidden if its basin of attraction
does not intersect with any of the small neighborhoods of the unstable equilibrium [7].
Hidden chaotic attractors are chaotic attractors in dynamical systems with stable equilibria,
no equilibrium, and surfaces or lines of equilibria [8].

Chaotic complex systems with hidden attractors are vital in a wide range of scientific
and engineering fields, such as bridge wings design [9], induction motors for drilling [10],
chemical reactors systems [11], aircraft control systems [12], memristive circuits [13], encryp-
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tion [14], PLL systems [15], weather prediction systems [16], and secure communication
schemes [17].

Hidden attractors research in the past has primarily concentrated on integer-order
dynamical systems. There have been several studies on complicated chaotic systems with
hidden chaotic attractors, such as in [18–23]. The fractional order derivative and fraction
order integration calculus have recently received a lot of attention, owing to the fractional
calculus providing more accurate models than the integer order [24].

Fractional calculus can be thought of as an expansion of traditional calculus as a branch
of mathematical analysis. Due to its possible applications in a variety of domains, the study
of fractional calculus has recently received a lot of attention [25]. Fractional calculus can
describe many systems in transdisciplinary domains. Furthermore, the fractional-order
model can provide an explicit description of the physical process and provide additional
insight [26]. Fractional calculus can be used in control, bio-engineering, oscillators, analog
filters, circuit theory, image processing encryption systems, and chemistry [27]. Fractional
order chaotic models have a more complex dynamical behavior than integer models (since
they include the fractional order parameter as well as the original system characteristics);
as a result, they are important in secure communications systems [28,29].

The synchronization technique of chaos is based on the principle that two chaotic sys-
tems may develop on different attractors, but when synchronized, they begin on different
attractors and later follow a single trajectory. When the trajectories of two systems are
matched, this synchronization is achieved between these two systems [30]. The control
and synchronization techniques of the fractional order chaotic systems can be considered
the fundamental challenge of using these systems in many applications as robotics, cryp-
tography, mechanical, and secure communication applications [31,32]. To control and
synchronize the fractional-order chaotic systems, a variety of control and synchronization
techniques have been developed, such as active control [33], sliding mode control [34],
adaptive control [35], passive control [36], and impulsive control [37].

We suggested a new 3D fractional order chaotic system with no equilibrium in this
paper, so it can excite hidden chaotic attractors. The system dynamical behaviors including
the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov
exponents were analytically and numerically investigated. Then, two identical new systems,
one working as the master (drive) and the other as the slave (response), were used to
develop a synchronization mechanism based on adaptive control theory.

Based on Lyapunov’s stability theory, the adaptive control laws responsible for track-
ing and aligning the slave state variables (slave trajectories) with the equivalent trajectories
in the master side. Consequently, the update laws for updating the uncertain slave parame-
ters were obtained. By this scenario, the slave was well synchronized with the master. The
MATLAB was used to verify our work, testing, and results. Additionally, Arduino Due
boards were used to implement a workable hardware electronic circuit for the new system.

The remainder of this paper is organized as follows: the basic mathematical back-
ground of the fractional order systems is introduced in Section 2. Section 3 introduces a
new fractional order chaotic system and determines its chaotic attractors classes, as well as
the system equilibria. In Section 4, the suggested system’s dynamical behavior properties
are investigated using Lyapunov exponents and bifurcation diagrams. In Section 5, we
establish a synchronization approach between two identical new systems, using Lyapunov
stability to drive the adaptive control laws and the update laws to achieve the synchroniza-
tion mechanism and estimate the uncertain slave parameters, respectively. In Section 6,
we use the Arduino Due boards to implement the real electronic circuit for the suggested
system. In Section 7, we conclude this paper.

2. Fundamentals of Fractional Order Systems

Integer-order calculus is mathematically extended to fractional calculus. While it offers
the advantages of integer order calculus, it also has its own logic and laws. In the definitions
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of fractional calculus, the Caputo, Riemann–Liouville (RL), and Grunwald–Letnikov (GL)
concepts are commonly used [38].

The Gamma function noted by Γ(.), which is defined in Equation (1), is the basic
function used in fractional order calculus [39]:

Γ(n) =
+∞∫
0

e−ttn−1dt ; n > 0 (1)

where, Γ(1) = 1, Γ(0) = +∞.
The fractional order calculus introduced by Caputo is stated as follows in Equation (2) [40]:

t0Dq
t f (t) =


1

Γ(k−q)

t∫
t0

f (k)(τ)
(t−τ)q−k+1 dτ; k− 1 < q < k

dk f (t)
dtk ; q = k

(2)

where k is the first integer number that is greater than or equal to fractional q-order.
Equation (3) provides the fractional integral operator (Jq) established by Riemann–

Liouville for order (q ≥ 0) of function (f (t)) [41].

Jq f (t) =


1

Γ(q)

t∫
0

(t− τ)q−1 f (t)dτ ; q < 0

f (t) ; q = 0

(3)

As shown in Equation (4), Grunwald–Letnikov approaches the fractional derivative [42]:

Dqx(t) = f (x, t) = lim
h→0

h−q(−1)

t/h

∑
j=0

(−1)
(

q
j

)
x(t− jh) (4)

where, h is the step size.

3. A New Fractional Order Chaotic Model

Fractional order chaotic systems are a category of nonlinear systems that, in addition
to the fundamental characteristics of integer order chaotic systems, have extra features
such as extreme complexity and severe sadness behavior [43]. The following Equation (5)
can be used to describe the mathematical model of the new three-dimensional fractional
order chaotic system proposed in this paper:

dqx
dtq = az + xy;

dqy
dtq = b− x2;

dqz
dtq = −cx (5)

where the state variables are x, y, and z; the positive constant system parameters are a, b,
and c, and q presents the fractional order (0 < q < 1).

The system in Equation (5) exhibits chaotic behavior throughout a wide range of
a, b, and c parameter values, as well as fractional order (q). The system parameters for
the numerical simulation are a = 0.5, b = 1.8, c = 8, and q = 0.99, with initial conditions
(x(0), y(0), z(0)) = (1, 1, 1). In 2017, Roberto Garrappa [44] introduced a method for solving
the nonlinear fractional order systems, where the simulation results of system (Equation (5))
are obtained based on Roberto Garrappa’s method with step size (h = 0.005). As illustrated
in Figures 1 and 2, the relevant time series of the system states and phase portraits as
projections on various planes are obtained, respectively.
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Figure 1. States time series of proposed system; (a) x(t); (b) y(t); (c) z(t).
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Figure 2. System (Equation (5)) phase portraits: (a) x-y chaotic attractor; (b) y-z chaotic attractor;
(c) x-z chaotic attractor; (d) three-dimensional chaotic attractor.

For determining the equilibrium points (equilibria) of the proposed fractional order
chaotic system the state of Equation (5) is equaled by zero as follows in Equation (6):

dqx
dtq = az + xy = 0;

dqy
dtq = b− x2 = 0;

dqz
dtq = −cx = 0 (6)

As can be noted in Equation (6), there is an inconsistency in Equation (6), where the
state variable x = 0 can be obtained from the third term in Equation (6); however, it is not
possible to solve the second term in the same Equation (6) because the constant b cannot
equal zero. Therefore, Equation (6) has no solution, which leaves the proposed fractional
order chaotic system in Equation (5) without equilibrium points, i.e., the new fractional
order chaotic system can excite hidden chaotic attractors.

4. The System Dynamical Analyses

Generally, the bifurcation diagrams and Lyapunov exponents are the two main dy-
namical tools that can be used to investigate the dynamical behaviors of nonlinear chaotic
systems [45]. In this section, the bifurcation diagrams and the Lyapunov exponents are
numerically investigated by using MATLAB.

4.1. Bifurcation Diagrams

The bifurcation diagrams are important means in the nonlinear dynamics and chaos
theory. In this work, for exploring the system’s dynamical behavior by the bifurcation
diagrams, the state variable y(t) of the suggested system is plotted in contradiction with
the system parameter b, and with respect to the system fractional order (q).

The influence of the system parameter a on the system dynamical behavior are ob-
tained by the bifurcation diagrams as illustrated in Figure 3, where Roberto Garrappa’s
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method with step size (h = 0.005) and an original program we designed were used for
plotting the bifurcation diagrams. The other system parameters are chosen as a = 0.5 and
c = 8, with initial conditions (x(0), y(0), z(0)) = (1, 1, 1) and fractional order (q = 0.98). As can
be seen in Figure 3, the new system exhibits chaotic behavior when the parameter b > 0.

Figure 3. The bifurcation diagram verse system parameter (b).

We then choose the fractional order (q) to be the bifurcation parameter and fixed the
parameters a = 0.5, b = 1.8, and c = 8 with the initial conditions (1, 1, 1); the dynamical behav-
ior of the system shown in Equation (5) is obtained by the bifurcation diagrams as shown
in Figure 4. As can be noted from the bifurcation diagram in Figure 4, the chaotic behavior
is excited when the system fractional order q > 0.965. It can be seen from Figures 3 and 4,
that the system in Equation (5) displays various bifurcation topological patterns.

Figure 4. The bifurcation diagram verses the system fractional order (q).

This result shows that the selected system fractional order determines the generation
of the hidden chaotic attractor.
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4.2. Lyapunov Exponents

The Lyapunov exponents are calculated to strongly indicate that the new system ex-
hibits the chaoticity phenomenon; at least one positive Lyapunov exponent in the nonlinear
dynamics system ensures these systems exhibit chaos [46].

Figure 5 demonstrates the Lyapunov exponents with respect to the time (1000 s), where
the system parameters are chosen as a = 0.5, b = 1.8, and c = 8, with initial conditions (x(0),
y(0), z(0)) = (1, 1, 1) and fractional order (q = 0.98). The consistent Lyapunov exponents
are obtained as Le1 = 0.2384, Le2 = −0.2859, and Le3 = −0.3681. The existence of the
positive Lyapunov exponent (Le3) is enough to prove the system in Equation (5) can exhibit
the chaos. It should be noted that because Le1 + Le2 + Le3 = −0.3256, the system in
Equation (5) is dissipative, i.e., the new system state trajectories converge into a weird
attractor upon conclusion.

Figure 5. Lyapunov exponents corresponding to time.

In addition, Lyapunov exponents are calculated with respect to changing the fractional
order to q ∈ [0.95,1] as shown in Figure 6. The used system parameters are as mentioned
in the first Lyapunov exponents calculations. As can be seen in Figure 6, the Lyapunov
exponents are Le1 = 0.0287, Le2 = 0.0019, and Le3 = −0.0017, which clearly indicate chaotic
attractors in the proposed system.

Figure 6. Lyapunov exponents corresponding to the system in Equation (5) fractional order (q).
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5. Adaptive Synchronization of Two New Fractional Order Chaotic Systems

Particularly, because the fractional order chaotic complex systems have an extra
complexity in dynamical behavior and cannot be described by classical mathematical
methods (i.e., deterministic systems), these systems are capable of being widely used in
secure communication, image processing, and cryptography systems [47]. Therefore, the
fractional order chaotic system synchronization mechanisms have received much attention
due to the importance of applications that can be extended into many fields such as physics,
engineering, computer science, biology, economics, and brain science. The drive-response
(master-slave) form is considered the basic configuration of the chaos synchronization
mechanism, where the trajectories of the slave chaotic system must track the trajectories
of the master chaotic system. Several methods have been developed to attain the chaos
synchronization in fractional-order chaotic systems as mentioned in Section 1.

In this work, we developed an adaptive synchronization technique in order to achieve
synchronization between two identical new systems, where the first acts as the master
(drive) system and the second acts as the slave (response) system. Based on Lyapunov’s
theory, the synchronization controllers and the slave parameter estimation laws were
derived. The adaptive control laws drive the slave so its trajectories and track the analogues
master trajectories, and the slave parameter estimation laws are used for updating the
uncertain slave parameters corresponding to the known analogous master parameters.

The adaptive synchronization technique has many benefits, such as good transient
performance, rapid dynamics responses, and a robust system for parameter variations and
initial conditions.

5.1. Adaptive Controller Design Process

In this subsection, we present the design of the adaptive controller for achieving the
synchronization between two identical new fractional order chaotic systems. The master
and slave state equations are presented by Equations (7) and (8), respectively:

dqxm

dtq = amzm + xmym;
dqym

dtq = bm − xm
2;

dqz
dtq = −cmxm (7)

dqxs

dtq = as(t)zs + xsys + u1;
dqys

dtq = bs(t)− xs
2 + u2;

dqz
dtq = −cs(t)xs + u3 (8)

where, u1, u2, and u3 are the adaptive synchronization controllers that we want to design;
am, bm, and cm are the known master parameters; and as(t), bs(t), and cs(t) present the
uncertain slave parameters that must be estimated. The master-slave synchronization
errors can be determined by Equation (9).

ex = xs − xm; ey = ys − ym; ez = zs − zm (9)

The dynamic errors are determined as in Equation (10).

dqex
dtq = a2ez + xsys − xmym + zmea + u1; dqey

dtq = eb − xs
2 + xm

2 + u2;
dqez
dtq = c2ex + xmec + u3

(10)

where ea, eb, and ec are the errors of master-slave parameters and can be determined as in
Equation (11).

ea = as(t)− am; eb = bs(t)− bm ; ec = cs(t)− cm (11)

The dynamics of the parameter errors can be calculated by Equation (12).

.
ea =

.
as(t) ;

.
eb =

.
bs(t);

.
ec =

.
cs(t) (12)

We used the Lyapunov strategy to design the adaptive controllers to verify the adap-
tive master-slave synchronization mechanism. Consequently, the update laws for estimat-
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ing the uncertain parameters were obtained. Therefore, the quadratic positive Lyapunov
functions are used as in Equation (13).

V
(
ex, ey, ez, ea, eb, ec

)
=

1
2

(
e2

x + e2
y + e2

z + e2
a + e2

b + e2
c

)
(13)

The results of the Lyapunov function dynamics are obtained as in Equation (14).

.
V = (ex

dqex

dtq + ey
dqey

dtq + ez
dqez

dtq + ea
.
ea + eb

.
eb + ec

.
ec) (14)

Equations (10)–(12) are substituted in Equation (14) to obtain the following Equation (15).

.
V = (ex(a2ez + xsys − xmym + zmea + u1) + ey

(
eb − xs

2 + xm
2 + u2

)
+ez(c2ex + xmec + u3) + (as(t)− am)

.
as(t) + (bs(t)

−bm)
.
bs(t) + (cs(t)− cm)

.
cs(t)

(15)

Thus, Equation (15) was used to design the synchronization controllers as in the
following Equation (16).

u1 = −kxex − asez − yszs + ymzm ; u2 = −kyey + xs
2 − xm

2 ; u3 = −kzez − csex (16)

In Equation (16), kx, ky, and kz present positive constants, and the uncertain slave sys-
tem parameters included (as, bs, and cs) are estimated by updated laws as in the following
Equation (17).

.
as(t) = −zmex;

.
bs(t) = −ey;

.
cs(t) = −xmez (17)

Finally, the following Equation (18) is obtained by substituting Equations (16) and (17)
in Equation (15).

.
V = −kxex

2 − kyey
2 − kzy2 (18)

As can be seen from Equation (17), there is a negative definite function [48]. As a
result, given any initial conditions, the synchronization state errors and the master-slave
parameter estimation error converge to zero exponentially with respect to time.

5.2. Simulation Results

Numerical studies using the MATLAB platform are used to confirm the efficiency of
the suggested synchronization strategy. Table 1 shows the values of the master and slave
parameters, fractional orders, and initial conditions utilized to simulate the aforementioned
synchronization technique.

Table 1. Master and slave parameters values.

Master System Slave System

Parameter Value Parameter Value

am 0.5 as(t) Estimated
bm 1.8 bs(t) Estimated
cm 8 cm(t) Estimated

fractional order (q) 0.98 fractional order (q) 0.98
Xm(0) 1 Xs(0) 2
ym(0) 1 ys(0) 0
zm(0) 1 zs(0) −1

The slave trajectories (state variables) effectively follow the master trajectories based
on the derived adaptive control laws in Equation (16) as shown in Figure 7. Although
initial conditions have different signs and values, the simulation results demonstrate that
the master and slave state variables were synchronized in a short time, indicating that the
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developed controller is efficient. In Figure 8, the synchronization errors (ex, ey, and ez) are
illustrated. It can be seen that the synchronization errors rapidly (in less than 1.5 s) decrease
to zero values exponentially. As illustrated in Figure 9, these uncertain slave parameters
were appropriately estimated to the corresponding master parameters using the updated
laws in Equation (17).

Figure 7. Tracking the slave trajectories corresponding to master trajectories; (a) xs track xm; (b) ys track ym; (c) zs track zm.

Figure 8. The state variables synchronization errors.
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Figure 9. Estimation of uncertain slave parameters corresponding to master trajectories.

As can be seen from Figure 9, that the uncertain slave parameters, as and bs, are rapidly
estimated corresponding to the master parameter am and bm, respectively (in less than 1.5 s),
which is an exact match to the time duration of the synchronization errors to reach zero.
On the other hand, the time duration was about 3.5 s for estimating the third uncertain
slave parameter cs corresponding to the master parameter cm, where it does not affect the
synchronization process. This is because the dynamical behavior of the nonlinear systems
is not affected by the same degree of sensitivity for all its parameters as mentioned in [49].

6. Digital Implementation of New Fractional Order Chaotic System

The major goal of the hardware is to test the possibility of implementing fractional
order chaotic systems so that they can be employed in real-world applications. Fractional
order chaotic systems can be implemented in hardware utilizing a variety of embedded
devices, such as microcontrollers, Raspberry Pi, FPGAs, and DSPs as well as implemen-
tation by analog electronic circuit as in [29]. In this work, we implemented the new
three-dimensional system in Equation (5) by using a microcontroller (Arduino Due) based
on a discrete method as in [50].

The Arduino Due is a digital board with Atmel SAM3X8E and ARM Cortex-M3 CPU.
It consists of an ideal structure for performing complex arithmetic operations. Briefly, it
has the following characteristics: 32-bit ARM core microcontroller; 84 MHz clock; 54 digital
input/output pins; 12 analog inputs; USB OTG capable connection; 4 UARTs; 2 DAC
(digital to analog); power jack 2 TWI; SPI header; and JTAG header. The primary reasons
to use this microcontroller are: 12 bit resolution for its two peripherals, DAC0 and DAC1,
and its attractive cost advantage compared with the FPGAs or DSPs boards. An Arduino
specified programing language similar to C++ language is used for programing the ARM
microcontroller by the Arduino IDE through the native USB port (serial port) [51]. The
hardware implementation of the new fractional order chaotic system is shown in Figure 10.

The system parameters for the experimental test are a = 0.5, b = 1.8, c = 8, and
q = 0.99, with initial conditions (x(0), y(0), and z(0)) = (1, 1, 1). The ADC0 and DAC1 are
used to give the system in Equation (5) phase portraits of chaotic attractors by analog
oscilloscope as displayed in Figure 11. In fact, because the microcontroller’s digital to
analog converters (DAC0 and DAC1) operate between 0.5 V and 2.7 V, the amplitudes
of the simulation results by MATLAB and the experimental results by the Arduino Due
will differ for the system’s (Equation (5)) state variables (system trajectories). It would be
necessary to install an external operational amplification stage in order to achieve the same
amplitude values as the computed numerical simulations. Based on the approach that was
used for implementing the system (Equation (5)) by the Arduino Due board, there is a level
of error of about ±1.56% compared with the simulation results obtained by MATLAB.
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Figure 10. Hardware implementation of the system in Equation (5) based on Arduino Due board.

Figure 11. The experimental results of the proposed system phase portraits: (a) x-y chaotic attractors;
(b) y-z chaotic attractors; (c) x-z chaotic attractors.

7. Conclusions

A new three-dimensional nonlinear autonomous system with fractional order and
chaos exhibition was suggested. The nonlinear dynamical behaviors of this system were
analytically and numerically investigated, where these dynamics are the equilibrium points,
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chaotic attractors, bifurcation diagrams, and Lyapunov exponents. Because the system has
no equilibrium, the observed dynamics showed that the system can excite hidden chaotic
attractors and display extremely complex dynamics. Afterwards, an adaptive synchro-
nization strategy was formulated. This synchronization approach was set up between two
identical new fractional order chaotic systems: one serving as the master and the other
as the slave. The adaptive control principles responsible for synchronization verification
were derived. Furthermore, in order to estimate the unknown slave parameters, the update
laws were determined. Finally, to show the feasibility of using the proposed system in
real-world applications, the system was implemented with Arduino Due boards. The
obtained numerical results by MATLAB simulation are consistent with the experimental
results of the hardware implementation, which show the feasibility of the system to be
used in real-world applications in various fields. The main advantage of implementation
of this system with Arduino Due boards is the low cost of implementation compared with
alternative devices such as FPGAs and DSPs, which require large costs.
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