New Substituted Thiazol-2-ylidene-benzamides and Their Reaction with 1-Aza-2-azoniaallene Salts. Synthesis and anti-HIV Activity

Aamer Saeed^a, Najim A. Al-Masoudi^b, Amjed A. Ahmed^a, and Christophe Pannecouque^c

^a Department of Chemistry, Quaid-I-Azam University 45320, Islamabad, Pakistan

^b Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq

^c Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium

Reprint requests to Prof. N. A. Al-Masoudi. E-mail: najim.al-masoudi@gmx.de or Prof. A. Saeed. E-mail: aamersaeed@yahoo.com

Z. Naturforsch. 2011, 66b, 512-520; received January 6, 2011

A series of *N*-(3-(substituted-alkyl- or halophenyl)-4-methylthiazol-2(3*H*)-ylidene)-substituted alkyl- or halo-benzamides **21** – **40** were prepared by base-catalyzed cyclization of the corresponding 1-(substituted-alkyl- or halo-benzoyl)-3-(substituted-halophenyl)thioureas **1** – **20**. Substituted pyrazolo[4,3-*d*]thiazol-5(6*aH*)-ylidene)benzamides **45a** – **d** were synthesized by cycloaddition of compound **45** with the reactive cumulene intermediates **42a** – **d**. All compounds were evaluated for their antiviral activity against the replication of HIV-1 and HIV-2 in MT-4. Compounds **35** and **39** showed an IC₅₀ of 2.02 μ g mL⁻¹ and 0.40 μ g mL⁻¹ against the HIV-2 strain ROD with CC₅₀ of \geq 104.00 μ g mL⁻¹ and > 125.00 μ g mL⁻¹, respectively, resulting in a selectivity index of \geq 52 and > 313. Based on the chemical structure of compounds **35** and **39**, these molecules can be proposed to act as NNRTIs. However, it is exceptional to observe an antiretroviral activity that is limited to HIV-2.

Key words: Anti-HIV Activity, Benzamides, Thiazolidones, Pyrazoles

Introduction

Thiazoles and thiazolidones have attracted continuing interest over the years because of their varied biological activities [1-4]. Thiazole and thiazolidone units have been incorporated into a wide variety of therapeutically interesting candidates which then exhibited a number of biological activities, such as antibacterial [5-7], anti-HIV [8], antiinflammatory [9], antiprotozoal [10, 11], anticonvulsant [12], anticancer [13, 14], and renin inhibitor properties [15]. 2-Aminothiazole analogs were reported as potential neuroprotective agents [16] for treatment of neurological diseases and modulators of transcriptional repression for treatment of Huntington's disease [17]. Further, some derivatives of thiazoles exhibited remarkable activity against the herpes simplex virus (HSV) [18]. Amin et al. [19] reported new substituted coumarinyl thiazolines, coumarinyl thiazolidin-4-ones and substituted chromenothiazoles and evaluated these species for anticonvulsant activity. A brief review of thiazoles associated with a large number of biological activities was presented by Siddiqui et al. [20].

Pyrazoles and their derivatives have been reported to be potent agents for the treatment of different diseases [21,22]. Jochims *et al.* [23] have synthesized new pyrazole analoges *via* [2+3] cycloaddition reactions of olefins with the reactive intermediates 1-aza-2-azoniallene salts (cumulene intermediates).

Prompted by the observed biological activities of the above mentioned derivatives and in continuation of our ongoing studies on N-(4-phenyl-3-aroylthiazol-2(3*H*)-ylidene)-substituted-benzamides [24], we report here the synthesis of some new fluoro-substituted benzamide analoges with evaluation of their anti-HIV activity as well as the synthesis of new substituted N-(pyrazolo[4,3-*d*]thiazol-5(6a*H*)-ylidene)benzamide derivatives.

Results and Discussion

Synthesis

Condensation of the 1-aroyl-3-arylthioureas 1-20 with α -haloketones in the presence of Et₃N for 1-2 h at r. t. afforded, after purification, the *N*-(3-(sub-stituted-alkyl- or halophenyl)-4-methylthiazol-2(3*H*)-ylidene)-substituted alkyl- or halo-benzamides 21-40

0932–0776 / 11 / 0500–0512 \$ 06.00 © 2011 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

Scheme 1. Synthesis of N-(3-(substituted-alkyl- or halophenyl)-4-methylthiazol-2(3H)-ylidene)-substituted alkyl- or halobenzamides.

in 82-91% yield. Compounds 1-20 were obtained according to the reported procedure [25] involving the preparation of the substituted benzoyl isothiocyanates from the reaction of halo-benzoyl chlorides, pivaloyl chloride or 3,4,5-trimethoxybenzoyl chloride with KSCN in anhydrous acetone and subsequent reaction with the respective halo-aniline (Scheme 1).

The structures of 21-40 were assigned on the basis of their ¹H and ¹³C NMR, IR and mass spectra. The ¹H NMR spectra of 21-40 showed similar patterns for the thiazole protons and carbon atoms. The IR spectra of 21-40 showed absorption bands in the region $\lambda_{\text{max}} = 1598 - 1664$ and 1443 - 1553 cm⁻¹, attributed to the C=O and C=N groups. In the ¹H NMR spectra, the doublet in the region $\delta = 2.07 - 2.16$ ppm (J = 0.9 - 1.2 Hz) was assigned to the methyl group at C-4, while the quartet in the region $\delta = 6.34 - 6.46$ ppm was assigned to 5-H of the thiazole backbone. The 13 C NMR spectra of **21–40** contained similar resonance signals for the thiazole carbon atoms. The signals between $\delta_{\rm C} = 175.1$ and 173.4 ppm was assigned to the carbonyl carbon atoms, while the resonance in the range of $\delta_{\rm C} = 163.7 - 165.2$ ppm was assigned to C-2 (C=N). C-4 displayed a signal in the region $\delta_{\rm C}$ = 151.2–149.3 ppm. A signal between $\delta_{\rm C}$ = 104.4 and 105.1 ppm was assigned to the olefinic carbon C-5, whereas the methyl carbon at C-4 was found in the region $\delta_{\rm C} = 14.3 - 15.1$ ppm. Compound **21** was selected for further NMR studies. From the gradient-selected HMBC [26] spectrum of 21, 5-H of the thiazole backbone at $\delta_{\rm H}$ = 6.43 ppm showed a ${}^2J_{\rm C,H}$ coupling with C-2 at $\delta_{\rm C}$ = 105.0 ppm, in addition to a ${}^3J_{\rm C,H}$ coupling with C-2 (C=N) at $\delta_{\rm C}$ = 165.8 ppm.

Next, we have selected the most potential anti-HIV-2 candidate, 2-chloro-N-(3-(4-fluorophenyl)-4methylthiazol-2(3H)-ylidene)benzamide (27), for a [2+3]-cycloaddition reaction with some reactive cumulenes. Thus, the intermediates 42, obtained from the α, α' -dichloroazo compounds 41 [23], were treated with 27 in the presence of SbCl₅ at -60 °C. At approximately -30 °C, the color changed from orange to brown, indicating that cumulates 42a - d underwent cycloaddition reactions with olefin 27 to give salts, presumably 1,2-pyrazolium hexachloroantimonates 43a d, which could not be isolated. After increasing the temperature to 23 °C, the CR₂Cl group at N-1' was eliminated, leading to the protonated salts 44a - d. In situ deprotonation of salts 44a - d with aqueous NaHCO₃ and NH₃ solution gave the desired products 45a-d in 52-67% yield (Scheme 2). The proposed regiochemistry of 45a - d is plausible.

Compounds 45a - d were identified by their ¹H and ¹³C NMR spectra. The singlet at lower field ($\delta_{\rm H} = 1.38 - 1.43$ ppm) was attributed to the methyl proton at C-3a, while the singlet of 6a-H appeared at $\delta_{\rm H} = 3.12 - 3.18$ ppm). In the ¹³C NMR spectra of 45a - d, the C=N signals appeared at higher field ($\delta = 183.3$, 183.6, 183.9 or 183.7 ppm, respectively), while the resonances at $\delta = 173.9$, 173.9, 173.8 or 174.1 ppm were assigned to C=O, respectively. The C-3a carbons ap-

Scheme 2. Reagents and conditions: (i) SbCl₅, CH₂Cl₂, -60 °C; (ii) CH₂Cl₂, -60 °C to 23 °C; (iii) NaHCO₃, NH₃, MeCN, 0 °C, 2 h. **41**-**45**: **a** R¹ = R² = Me; **b** R¹ = Me, R² = Et; **c** R¹ = Et, R² = Et; **d** R¹ = Me, R² = *i*-Pr.

peared at $\delta = 87.7$, 87.3, 87.0 or 75.8 ppm, respectively, and C-6a resonated at $\delta_{\rm C} = 70.1$, 69.8, 69.9 or 69.6 ppm, respectively. C-3 and C3a-*Me* carbons resonated at $\delta_{\rm C} = 62.3-74.2$ ppm and $\delta_{\rm C} = 11.0-11.7$ ppm, respectively.

Compound **45a** was selected for homo- and heteronuclear NMR studies. The gradient-selected HMBC [26] spectrum allowed *via*²*J*_{C,H} and ³*J*_{C,H} couplings the assignment of most of the carbon atoms. C-3 and C⁵=N ($\delta_{\rm C} = 62.3$ and 183.3 ppm) were identified from their ³*J*_{C,H} correlations to 6a-H at $\delta_{\rm H} = 3.18$ ppm, respectively, and C-3a' ($\delta_{\rm C} = 87.7$ ppm) was identified from its ²*J*_{C,H} correlation to 6a-H at $\delta_{\rm H} = 3.18$ ppm. The mass spectrum of **45a**, (FAB) exhibited the correct molecular ion (417/419 [M+H]⁺).

In-vitro anti-HIV assay

Compounds 21-40 and 45a-d were evaluated for their *in-vitro* anti-HIV activity using HIV-1 (strain III_B) for HIV-1 and HIV-2 (strain ROD) in cells of human T-lymphocyte cell line (MT-4). The results are summarized in Table 1, in which the data for nevirapine (BOE/BIRG587) [27], azidothymidine (AZT) [28], dideoxycytidine (DCC) [29] and didanosine [30] were included for comparison purposes. Compound-induced cytotoxicity was also measured in MT-4 cells parallel with the antiviral activity.

Compounds **35** and **39** were found to be the only compounds from the series inhibiting HIV-2 replication in a cell culture, which showed an IC₅₀ of 2.02 μ g mL⁻¹ and 0.40 μ g mL⁻¹ with CC₅₀ of \geq 104.0 μ g mL⁻¹ and > 125.00 μ g mL⁻¹, respectively, resulting in a selectivity index of \geq 52 and > 313.

Based on the chemical structure of compounds **35** and **39**, these molecules can be proposed to act as NNRTIs. However, the activity spectrum that is limited to HIV-2 is completely in contrast with what was observed with NNRTIs. On the other hand, **27** showed some activity against HIV-1 (III_B strain) with IC₅₀ \geq 12.70 µg mL⁻¹ and a CC₅₀ = 70.13 µg mL⁻¹, but with a low selectivity (SI \leq 6).

In conclusion, the above data suggest that substitution of the aromatic ring of a phenyl-4-methylthiazol-

Compound	HIV-1 (III _B)	HIV-2 (ROD)	CC_{50}	SI	SI
-	$IC_{50} (\mu g m L^{-1})^{a,c}$	$IC_{50} \ (\mu g m L^{-1})^{a,c}$	$(\mu g m L^{-1})^{b,c}$	(III _B) ^d	(ROD) ^d
21	> 55.65	> 55.65	55.65 ± 11.21	< 1	< 1
22	> 49.70	> 49.70	49.70 ± 10.60	< 1	< 1
23	≥ 17.20	> 17.20	17.20 ± 3.53	< 1	< 1
24	> 68.80	> 68.80	≥ 68.80	< 1	< 1
25	> 125	> 125	> 125	_	_
26	> 125	> 125	> 125	_	_
27	\geq 12.70	> 70.13	70.13 ± 7.00	≤ 6	< 1
28	> 125	> 125	> 125	_	_
29	> 125	> 125	> 125	_	_
30	> 17.63	> 17.63	17.63 ± 0.89	< 1	< 1
31	> 125	> 125	> 125	_	_
32	> 12.45	> 12.45	12.45 ± 0.73	< 1	< 1
33	> 15.23	> 15.23	15.23 ± 2.69	< 1	< 1
34	> 19.73	> 19.73	19.73 ± 8.18	< 1	< 1
35	> 104.00	2.02 ± 0.25	≥ 104.00	_	\geq 52
36	> 125	> 125	> 125	_	_
37	> 108.30	> 108.30	108.30 ± 14.39	< 1	< 1
38	> 125	> 125	> 125	-	-
39	> 125	0.40 ± 0.03	> 125	-	> 313
40	> 23.00	> 23.00	≥ 23.00	< 1	< 1
45a	> 3.34	> 3.34	\geq 3.34	< 1	< 1
45b	> 12.10	> 12.10	≥ 12.10	< 1	< 1
45c	> 6.72	> 6.72	≥ 6.72	< 1	< 1
45d	> 62.53	> 62.53	≥ 62.53	< 1	< 1
nevirapine	0.050 ± 0.011	>4	>4	> 80	-
AZT	0.0022 ± 0.0011	0.0009 ± 0.0005	> 25	> 11587	> 26731
ddC	0.16 ± 0.12	0.19 ± 0.11	> 20	> 127	> 108
ddI	2.09 ± 0.68	3.78 ± 1.22	> 50	> 24	> 13

Table 1. In-vitro anti-HIV-1 and HIV-2 activity and cytotoxicity of compounds 21-40.

^a IC₅₀: concentration of compound required to achieve 50 % protection of MT-4 cells from HIV-induced cytopathogenicity, as determined by the MTT method; ^b CC₅₀: concentration of compound that reduces the viability of mock-infected cells by 50 %, as determined by the MTT method; ^c all data represent mean values \pm standard deviations for at least two separate experiments; ^d SI: selectivity index.

2(3H)-ylidene)-3,4,5-trimethoxybenzamide backbone by a *meta* halogen atom (fluorine or chlorine) may engender an inhibitory activity on HIV-2 replication that is most exceptional.

Experimental Section

General. Melting points are uncorrected and were measured on a digital Gallenkamp (SANYO) model MPD BM 3.5 apparatus. NMR spectra were recorded on 300 MHz (¹H) and 150.91 MHz (¹³C) spectrometers (Bruker AM-300, Germany) with TMS as internal standard and on the δ scale in ppm. Signal assignments for protons were identified by selective proton decoupling or by COSY spectra. Heteronuclear assignments were verified by ¹H-¹³C COSY, or HMQC experiments. FT IR spectra were recorded on a FTS 3000 MX spectrophotometer. Mass spectra (EI, 70 eV) were obtained on a GC-MS instrument (Agilent-technologies), using nitrobenzyl alcohol (NBOH) or glycerol as matrices. All compounds were purified by thick-layer chromatography using silica gel from Merck. Synthesis of N-(3-(substituted-alkyl- or halophenyl)-4-methylthiazol-2(3H)-ylidene)-substituted alkyl- or halo-benzamides (21-40)

To a stirred solution of 1-aroyl-3-arylthioureas 1-20 (1.0 mmol) in dry acetone (20 mL) was added Et₃N (1.0 mmol), followed by a dropwise addition of a bromine solution (1.0 mmol) in acetone (10 mL) under nitrogen. The reaction mixture was stirred for 1-2 h, and the progress of the reaction was monitored by TLC (hexane: ethyl acetate 4:1). After the reaction was completed, the mixture was filtered, and the filtrate was evaporated to dryness to give the desired products, which were purified by recrystallization from EtOH.

2-Chloro-N-(3-(2-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (21)

From 1-(2-chlorobenzoyl)-3-(2-fluorophenyl)thiourea (1) (308 mg). Yield: 291 mg (88 %), m. p. 133 °C. – IR (cm⁻¹): v = 1606 (C=O), 1458 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.81$ (dd, 1H, J = 1.8, 7.7 Hz, Ar-H); 7.55–7.16 (m, 7H,

Ar-H); 6.43 (q, 1H, J = 1.2 Hz, CH=C); 2.12 (d, 3H, J = 1.2 Hz, CH₃). $-^{13}$ C NMR (CDCl₃): $\delta = 174.1$ (C=O); 170.2 (C=N); 157.6 (d, $^{1}J_{C,F} = 251$ Hz); 136.0, 134.3, 133.6, 131.5 (d, $^{3}J_{C,F} = 8.3$ Hz); 131.2, 131.0, 130.7, 126.3, 125.1, 124.8 (d, $^{3}J_{C,F} = 12.8$ Hz), 124.6 (d, $^{4}J_{C,F} = 3.8$ Hz), 116.8 (d, $^{2}J_{C,F} = 19.5$ Hz), 104.6 (CH=C), 14.32 (CH₃). - MS (FAB): m/z = 346/348 [M+H]⁺. - C₁₇H₁₂ClFN₂OS: calcd. C 58.87, H 3.49, N 8.08; found C 58.57, H 3.37, N 7.40.

2-Fluoro-N-(3-(2-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (22)

From 1-(2-fluorobenzoyl)-3-(2-fluorophenyl)thiourea (2) (292 mg). Yield: 300 mg (91%), m. p. 165 °C. – IR (cm⁻¹): v = 608 (C=O), 1443 (C=N). – ¹H NMR (CDCl₃): $\delta = 77.88$ (dt, 1H, J = 1.8, 7.8 Hz, Ar-H); 7.55 – 7.02 (m, 7H, Ar-H); 6.43 (q, 1H, J = 1.2 Hz, CH=C); 2.16 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.4$ (C=O); 169.7 (C=N); 162.3 (d, ¹J_{C,F} = 257 Hz); 157.6 (d, ¹J_{C,F} = 251 Hz); 134.0, 132.6 (d, ³J_{C,F} = 8.3 Hz); 132.1 (d, ⁴J_{C,F} = 0.8 Hz); 131.2 (d, ³J_{C,F} = 8.8 Hz); 130.3, 125.1 (d, ³J_{C,F} = 7.5 Hz); 124.7 (d, ⁴J_{C,F} = 3.8 Hz); 123.4 (d, ⁴J_{C,F} = 3.8 Hz); 116.8 (d, ²J_{C,F} = 19.5 Hz); 116.7 (d, ²J_{C,F} = 230/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.60, H 3.61, N 8.25.

4-Fluoro-N-(3-(2-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (23)

From 1-(4-fluorobenzoyl)-3-(2-fluorophenyl)thiourea (**3**) (292 mg). Yield: 270 mg (82 %), m. p. 175 °C. – IR (cm⁻¹): v = 602 (C=O), 1455 (C=N). – ¹H NMR (CDCl₃): $\delta = 8.07$ – 6.95 (m, 8H, Ar-H); 6.43 (q, 1H, J = 1.2 Hz, CH=C); 2.12 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.4$ (C=O); 170.0 (C=N); 165.1 (d, ¹ $J_{C,F} = 250$ Hz); 157.5 (d, ¹ $J_{C,F} = 251$ Hz); 134.1, 133.0 (d, ⁴ $J_{C,F} = 3.0$ Hz); 131.7, 131.1 (d, 2C, ³ $J_{C,F} = 8.3$ Hz); 130.2, 124.9 (d, ⁴ $J_{C,F} = 3$ Hz); 124.8 (d, ³ $J_{C,F} = 6.75$ Hz); 116.9 (d, ² $J_{C,F} = 19.5$ Hz); 114.8 (d, 2C, ² $J_{C,F} = 21.8$ Hz); 104.5 (CH=C); 14.30 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.60, H 3.60, N 8.27.

2-Chloro-N-(3-(3-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (24)

From 1-(2-chlorobenzoyl)-3-(3-fluorophenyl)thiourea (4) (308 mg). Yield: 315 mg (91 %), m. p. 186 °C. – IR (cm⁻¹): v = 600 (C=O), 1461 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.82$ (dd, 1H, J = 1.8, 7.7 Hz, Ar-H); 7.57 (q, 1H, J = 8.1 Hz, Ar-H); 7.34 – 7.12 (m, 6H, Ar-H); 6.42 (q, 1H, J = 1.2 Hz, CH=C); 2.16 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 172.3$ (C=O); 169.3 (C=N); 162.7 (d, ¹J_{C,F} = 247 Hz); 138.4 (d, ³J_{C,F} = 9.75 Hz); 135.9, 134.4, 133.6, 131.8, 131.2, 130.9, 130.6 (*d*, ${}^{3}J_{C,F}$ = 9.0 Hz), 126.2, 123.9 (*d*, ${}^{4}J_{C,F}$ = 3.5 Hz); 116.5 (*d*, ${}^{2}J_{C,F}$ = 21 Hz); 115.9 (*d*, ${}^{2}J_{C,F}$ = 22.5 Hz); 105.0 (CH=C); 14.93 (CH₃). – MS (FAB): *m*/*z* = 346/348 [M]⁺. – C₁₇H₁₂ClFN₂OS: calcd. C 58.87, H 3.49, N 8.08; found C 58.61, H 3.41, N 7.37.

2-Fluoro-N-(3-(3-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (25)

From 1-(2-fluorobenzoyl)-3-(3-fluorophenyl)thiourea (**5**) (292 mg). Yield: 294 mg (89 %), m. p. 117 °C. – IR (cm⁻¹): v = 600 (C=O), 1461 (C=N). – ¹H NMR (CDCl₃): $\delta =$ 7.87 (dt, 1H, J = 1.8, 7.8 Hz, Ar-H); 7.60–7.01 (m, 7H, Ar-H); 6.43 (q, 1H, J = 1.2 Hz, CH=C); 2.10 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta =$ 172.4 (d, J = 3.3 Hz, C=O); 169.9 (C=N); 162.8 (d, ¹J_{C,F} = 247 Hz); 162.3 (d, ¹J_{C,F} = 251 Hz); 138.4 (d, ³J_{C,F} = 9.8 Hz); 133.9, 132.7 (d, ³J_{C,F} = 8.3 Hz); 132.2 (d, ⁴J_{C,F} = 0.8 Hz); 130.7 (d, ³J_{C,F} = 9.0 Hz); 125.2 (d, ³J_{C,F} = 7.8 Hz); 123.9 (d, ⁴J_{C,F} = 4.5 Hz); 123.4 (d, ²J_{C,F} = 18.8 Hz); 116.7 (d, ²J_{C,F} = 22.5 Hz); 116.3 (d, ²J_{C,F} = 21 Hz); 115.9 (d, ²J_{C,F} = 3.3 Hz); 105.1 (CH=C); 14.59 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.60, H 3.60, N 8.27.

4-Fluoro-N-(3-(3-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (26)

From 1-(4-fluorobenzoyl)-3-(3-fluorophenyl)thiourea (6) (292 mg). Yield: 277 mg (84 %), m. p. 146 °C. – IR (cm⁻¹): v = 606 (C=O), 1473 (C=N). – ¹H NMR (CDCl₃): $\delta = 8.08 - 8.05$ (m, 2H, Ar-H); 7.57 (q, 1H, J = 8.1 Hz, Ar-H); 7.30 – 7.24 (m, 2H, Ar-H); 7.17 (q, 1H, J = 8.1 Hz, Ar-H); 7.06 – 6.96 (m, 2H, Ar-H); 6.44 (q, 1H, J = 1.2 Hz, CH=C); 2.14 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 170.4$ (C=O); 169.9 (C=N); 164.9 (d, ¹ $J_{C,F} = 250$ Hz); 162.7 (d, ¹ $J_{C,F} = 247$ Hz); 138.4 (d, 1C, ³ $J_{C,F} = 9.8$ Hz); 133.9, 133.0 (d, 2C, ³ $J_{C,F} = 8.0$ Hz); 131.6, 130.3 (d, ³ $J_{C,F} = 9.0$ Hz); 124.0 (d, ⁴ $J_{C,F} = 4.5$ Hz); 116.6 (d, ² $J_{C,F} = 21.0$ Hz); 115.9 (d, ² $J_{C,F} = 23.3$ Hz); 114.8 (d, 2C, ² $J_{C,F} = 21.3$ Hz); 105.1 (CH=C); 14.8 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.60, H 3.60, N 8.27.

2-Chloro-N-(3-(4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (27)

From 1-(2-chlorobenzoyl)-3-(4-fluorophenyl)thiourea (7) (308 mg). Yield: 291 mg (84 %), m. p. 179 °C. – IR (cm⁻¹): v = 599 (C=O), 1554 (C=N). – ¹H NMR (CDCl₃): $\delta =$ 7.81 (dd, J = 2.1, 7.7 Hz, Ar-H); 7.36–7.15 (m, 7H, Ar-H); 6.44 (q, 1H, J = 1.2 Hz, CH=C); 2.06 (d, 3H, J =1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta =$ 174.0 (C=O); 170.2 (C=N); 162.6 (d, ¹J_{C,F} = 248 Hz); 136.0, 134.4, 133.5, 126.2, 133.1 (d, ${}^{4}J_{C,F}$ = 3 Hz); 131.8, 131.0, 130.8, 129.9 (d, 2C, ${}^{3}J_{C,F}$ = 8.3 Hz); 126.2, 116.6 (d, 2C, ${}^{2}J_{C,F}$ = 22.5 Hz); 104.9 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 346/348 [M]⁺. – C₁₇H₁₂ClFN₂OS: calcd. C 58.87, H 3.49, N 8.08; found C 58.59, H 3.38, N 7.34.

2-Fluoro-N-(3-(4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (28)

From 1-(2-fluorobenzoyl)-3-(4-fluorophenyl)thiourea (**8**) (292 mg). Yield: 297 mg (87 %), m. p. 103 °C. – IR (cm⁻¹): v = 605 (C=O), 1461 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.89$ – 7.01 (m, 8H, Ar-H); 6.43 (q, 1H, J = 0.9 Hz, CH=C); 2.09 (d, 3H, J = 0.9 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 172.4$ (d, J = 3.0 Hz, C=O); 170.1 (C=N); 162.6 (d, ¹ $J_{C,F} = 248$ Hz); 162.3 (d, ¹ $J_{C,F} = 257$ Hz), 134.2, 133.1 (d, ⁴ $J_{C,F} = 3.0$ Hz); 132.7 (d, ³ $J_{C,F} = 9.0$ Hz); 132.1 (d, ⁴ $J_{C,F} = 0.8$ Hz); 129.9 (d, 2C, ³ $J_{C,F} = 9.0$ Hz); 125.2 (d, ³ $J_{C,F} = 8.3$ Hz); 123.4 (d, ⁴ $J_{C,F} = 3.8$ Hz); 116.7 (d, ² $J_{C,F} = 22.5$ Hz); 116.6 (d, 2C, ² $J_{C,F} = 22.5$ Hz); 104.9 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.63, H 3.55, N 8.19.

4-Fluoro-N-(3-(4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (29)

From 1-(4-fluorobenzoyl)-3-(4-fluorophenyl)thiourea (**9**) (292 mg). Yield: 300 mg (91 %), m. p. 184 °C. – IR (cm⁻¹): v = 602 (C=O), 1450 (C=N). – ¹H NMR (CDCl₃): $\delta = 8.07$ –7.35 (m, 4H, Ar-H); 7.28 (dt, 2H,J = 2.1, 7.8 Hz, Ar-H); 7.02 – 6.95 (m, 2H, Ar-H); 6.42 (q, 1H, J = 1.2 Hz, CH=C); 2.07 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.8$ (C=O); 169.9 (C=N); 164.9 (d, ¹ $J_{C,F} = 250$ Hz); 162.6 (d, ¹ $J_{C,F} = 248$ Hz); 134.1, 133.4 (d, ⁴ $J_{C,F} = 3$ Hz); 133.0 (d, 2C, ³ $J_{C,F} = 8.0$ Hz), 131.6, 130.2 (d, 2C, ³ $J_{C,F} = 8.3$ Hz); 16.3 (d, 2C, ² $J_{C,F} = 23$ Hz); 114.9 (d, 2C, ² $J_{C,F} = 21.75$ Hz); 104.4 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.58, H 3.60, N 8.30.

3-Chloro-N-(3-(3-chlorophenyl)-4-methylthiazol-2(3H)-ylidene)-4-fluorobenzamide (**30**)

From 1-(3-chloro-4-fluorophenyl)-3-(2-chlorobenzoyl)thiourea (**10**) (343 mg). Yield: 285 mg (83%), m.p. 174 °C. – IR (cm⁻¹): v = 660 (C=O), 1553 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.82$ (dd, 1H, J = 2.1, 7.7 Hz, Ar-H); 7.39 – 7.19 (m, 6H, Ar-H); 6.45 (q, 1H, J = 0.9 Hz, CH=C); 2.11 (d, 3H, J = 0.9 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta =$ 174.1 (C=O); 170.2 (C=N); 158.3 (d, ¹ $J_{C,F} = 251$ Hz); 135.9, 134.2, 133.5, 133.4 (d, ⁴ $J_{C,F} = 3.0$ Hz); 131.8, 130.7, 130.6, 128.2 (d, ³ $J_{C,F} = 7.5$ Hz); 126.3, 122.1 (d, ² $J_{C,F} =$ 19.5 Hz); 121.8, 117.4 (d, ² $J_{C,F} = 23.5$ Hz); 105.2 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 381/383 [M+H]⁺. $C_{17}H_{11}FCl_2N_2OS:$ calcd. C 53.56, H 2.91, N 7.35; found C 53.29, H 2.85, N 7.12.

N-(3-(3-Chloro-4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)-2-fluorobenzamide (31)

From 1-(3-chloro-4-fluorophenyl)-3-(2-fluorobenzoyl)thiourea (11) (326 mg). Yield: 305 mg (78%), m.p. 187 °C. – IR (cm⁻¹): v = 618 (C=O), 1521 (C=N). – ¹H NMR (CDCl₃): δ = 77.88 (dt, 1H, J = 1.8, 7.8 Hz, Ar-H); 7.46 (dd, 1H, J = 2.4, 6.3 Hz, Ar-H); 7.42-7.02 (m, 5H, Ar-H); 6.43 (q, 1H, J = 1.2 Hz, CH=C); 2.10 (d, 3H, $J_{C,F} = 1.2$ Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 172.4$ (d, J = 3.0 Hz, C=O); 170.1 (C=N); 162.3 (d, ${}^{1}J_{C,F} = 256$ Hz); 158.3 (d, ${}^{1}J_{C,F}$ = 255 Hz); 133.8, 133.4 (d, ${}^{4}J_{C,F}$ = 3.75 Hz); 132.8 (d, ${}^{3}J_{C,F} = 9.0$ Hz); 132.1, 130.5, 128.2 (d, ${}^{3}J_{C,F} =$ 7.5 Hz); 125.0 (d, ${}^{3}J_{C,F}$ = 7.5 Hz); 123.5 (d, ${}^{4}J_{C,F}$ = 4.5 Hz); 122.1 (d, ${}^{2}J_{C,F}$ = 18.8 Hz); 117.4 (d, ${}^{2}J_{C,F}$ = 22.5 Hz); 116.7 (d, ${}^{2}J_{C,F} = 22.5$ Hz); 104.6 (CH=C); 15.02 (CH₃). – MS (FAB): $m/z = 364/366 \, [M+H]^+ - C_{17}H_{11}ClF_2N_2OS$: calcd. C 53.56, H 2.91, N 7.35; found C 53.29, H 2.85, N 7.12.

N-(3-(3-Chloro-4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)pivalamide (32)

Fom 1-(3-Chloro-4-fluorophenyl)-3-pivaloylthiourea (**12**) (289 mg). Yield: 265 mg (81 %), m. p. 124 °C. – IR (cm⁻¹): v = 609 (C=O), 1502 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.41$ – 7.28 (m, 2H, Ar-H); 7.21 (s, 1H, Ar-H); 6.34 (s, 1H, CH=C); 2.08 (s, 3H, CH₃); 1.11 (s, 9H, CMe₃). – ¹³C NMR (CDCl₃): $\delta = 174.6$ (C=O); 169.0 (C=N); 158.1 (d, ¹J_{C,F} = 251 Hz); 128.2 (d, ³J_{C,F} = 7.5 Hz); 121.7 (d, ²J_{C,F} = 18.5 Hz); 117.1 (d, ²J_{C,F} = 22.5 Hz); 104.3 (CH=C); 40.7, 27.5 (CMe₃); 15.1 (CH₃). – MS (FAB): m/z = 326/328 [M+H]⁺. – C₁₅H₁₆ClFN₂OS: calcd. C 55.13, H 4.93, N 8.57; found C 54.89, H 4.82, N 8.32.

N-(3-(2-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)-3,4,5-trimethoxybenzamide (*33*)

From 1-(2-fluorobenzoyl)-3-(3,4,5-trimethoxybenzoyl)thiourea (**13**) (364 mg). Yield: 364 mg (84 %), m. p. 152 °C. – IR (cm⁻¹): v = 664 (C=O), 1479 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.58 - 7.51$ (m, 1H, Ar-H); 7.44 (dt, 1H, *J* = 1.8, 7.8 Hz, Ar-H); 7.39 – 7.31 (m, 4H, Ar-H); 6.43 (q, 1H, *J* = 1.2 Hz, CH=C); 3.86 (s, 3H, OCH₃); 3.77 (s, 6H, 2 × OCH₃); 3.23 (d, 3H, *J* = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.6$ (C=O); 169.6 (C=N); 157.7 (d, ¹*J*_{C,F} = 251 Hz); 152.5 (2C); 140.8, 133.9, 132.0, 131.2 (d, ³*J*_{C,F} = 7.5 Hz); 130.5, 125.1 (d, ³*J*_{C,F} = 12.8 Hz); 124.6 (d, ⁴*J*_{C,F} = 3.8 Hz); 116.7 (d, ²*J*_{C,F} = 19.5 Hz), 106.2 (2C); 104.3 (CH=C); 60.8 (OCH₃); 55.8 (2C, 2 × OCH₃); 14.3 (CH₃). – MS (FAB): m/z = 402/404 [M+H]⁺. – C₂₀H₁₉FN₂O₄S: calcd. C 59.69, H 4.76, N 6.96; found C 59.44, H 4.66, N 6.34. 2-Fluoro-N-(3-(3-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (34)

From 1-(3-fluorobenzoyl)-3-(2-fluorophenyl)thiourea (14) (292 mg). Yield: 254 mg (87%), m. p. 117 °C. – IR (cm⁻¹): v = 609 (C=O), 1467 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.31 - 7.69$ (m, 8H, Ar-H); 6.43 (q, 1H, J = 1.2 Hz, CH=C); 2.12 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.3$ (C=O); 169.6 (C=N); 162.4 (d, ¹J = 256 Hz); 157.9 (d, ¹J_{C,F} = 251 Hz); 134.0, 132.6 (d, ³J_{C,F} = 8.8 Hz); 132.2 (d, ⁴J_{C,F} = 0.8 Hz); 131.1 (d, ³J = 9.0 Hz); 130.3, 125.1 (d, ³J_{C,F} = 7.5 Hz); 124.6 (d, ⁴J_{C,F} = 3.0 Hz); 123.3 (d, ⁴J_{C,F} = 3.8 Hz); 116.9 (d, ²J_{C,F} = 21.0 Hz); 116.6 (d, ²J = 22.5 Hz); 105.1 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.67, H 3.60, N 8.22.

N-(3-(3-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)-3,4,5-trimethoxybenzamide (**35**)

From 1-(3-fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)thiourea (15) (364 mg). Yield: 390 mg (90%), m. p. 172 °C. – IR (cm⁻¹): v = 613 (C=O), 1509 (C=N). – ¹H NMR (CDCl₃): δ = 77.56 (q, 1H, J = 8.1 Hz, Ar-H); 7.37 (s, 2H, Ar-H); 7.29-7.20 (m, 1H, Ar-H); 7.14 (dt, 1H, J = 2.1, 8.1 Hz, Ar-H); 6.42 (q, 1H, J = 1.2 Hz, CH=C); 3.87 (s, 3H, OCH₃); 3.67 (s, 6H, $2 \times OCH_3$); 2.10 (d, 3H, J =1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): δ = 172.4 (C=O); 169.5 (C=N); 162.7 (d, ${}^{1}J_{C,F}$ = 247 Hz); 152.5 (2C); 140.7, 138.6 (d, ${}^{3}J_{C,F}$ = 9.75 Hz); 133.9, 132.0, 130.5 (d, ${}^{3}J_{C,F}$ = 8.25 Hz), 123.9 (d, ${}^{4}J_{C,F}$ = 3.8 Hz); 116.5 (d, ${}^{2}J_{C,F}$ = 21.5 Hz); 115.2 (d, ${}^{2}J_{C,F}$ = 22.5 Hz); 106.2 (2C); 104.3 (CH=C); 60.7 (OCH₃); 55.7 (2C, 2 × OCH₃); 14.2 (CH₃). -MS (FAB): $m/z = 402/404 \text{ [M+H]}^+$. - C₂₀H₁₉FN₂O₅S: calcd. C 59.69, H 4.76, N 6.96; found C 59.37, H 4.64, N 6.75.

3-Fluoro-N-(3-(3-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (36)

From 1-3-fluorobenzoyl)-3-(3-fluorophenyl)thiourea (**16**) (400 mg). Yield: 261 mg (79 %), m. p. 166 °C. – IR (cm⁻¹): v = 605 (C=O), 1588 (C=N). – ¹H NMR (CDCl₃): $\delta = 77.68 - 7.26$ (m, 8H, Ar-H); 6.43 (q, 1H, J = 0.9 Hz, CH=C); 2.11 (d, 3H, J = 0.9 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.7$ (C=O); 169.2 (C=N); 162.6 (d, ¹ $J_{C,F} = 257$ Hz); 157.9 (d, ¹ $J_{C,F} = 3.75$ Hz); 134.1, 132.5 (d, ³ $J_{C,F} = 8.8$ Hz); 132.1 (d, ⁴ $J_{C,F} = 3.75$ Hz); 131.2 (d, ³ $J_{C,F} = 8.8$ Hz); 130.4, 125.2 (d, ³ $J_{C,F} = 3$ Hz); 116.9 (d, ² $J_{C,F} = 18.8$ Hz); 116.6 (d, ² $J_{C,F} = 21.0$ Hz); 104.8 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 330/332 [M+H]⁺. – C₁₇H₂₂FN₂O₅S: calcd. C 61.81, H 3.66, N 8.48; found C 61.63, H 3.59, N 8.29.

N-(3-(4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)-3,4,5-trimethoxybenzamide (**37**)

From 1-(4-fluorobenzoyl)-3-(3,4,5-trimethoxybenzoyl)thiourea (**17**) (364 mg). Yield: 381 mg (88 %), m. p. 180 °C. – IR (cm⁻¹): v = 599 (C=O), 1498 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.39 - 7.35$ (m, 4H, Ar-H); 7.28 (dt, 2H, J =2.1, 8.3 Hz, Ar-H); 6.41 (q, 1H, J = 1.2 Hz, CH=C); 3.86 (s, 3H, OCH₃); 3.79 (s, 6H, 2 × OCH₃); 2.11 (d, 3H, J =1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.0$ (C=O); 169.9 (C=N); 162.6 (d, ¹ $J_{C,F} = 248$ Hz); 152.5 (2C); 140.8, 134.1, 133.3 (d, ⁴ $J_{C,F} = 3.0$ Hz); 132.1, 130.2 (d, ³ $J_{C,F} =$ 8.3 Hz); 116.3 (d, ² $J_{C,F} = 23.0$ Hz); 106.1 (2C); 104.5 (CH=C); 60.9 (OCH₃); 55.77 (2C, 2 × OCH₃); 15.0 (CH₃). – MS (FAB): m/z = 402/404 [M+H]⁺. – C₂₀H₁₉FN₂O₅S: calcd. C 59.69, H 4.76, N 6.96; found C 59.39, H 4.68, N 6.80.

3-Fluoro-N-(3-(4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)benzamide (38)

From 1-(3-fluorobenzoyl)-3-(4-fluorophenyl)thiourea (**18**) (292 mg). Yield: 271 mg (82%), m.p. 174 °C. – IR (cm⁻¹): v = 660 (C=O), 1467 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.39-7.35$ (m, 4H, Ar-H); 7.28 (dt, 2H, J = 2.1, 8.3 Hz, Ar-H); 6.41 (q, 1H, J = 1.2 Hz, CH=C); 3.86 (s, 3H, OCH₃); 3.79 (s, 6H, 2 × OCH₃); 2.11 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.0$ (C=O); 169.9 (C=N); 162.6 (d, ¹ $J_{C,F} = 248$ Hz); 152.5 (2C); 140.8, 134.1, 133.3 (d, ⁴ $J_{C,F} = 3.0$ Hz); 132.1, 130.2 (d, ³ $J_{C,F} = 8.3$ Hz); 116.3 (d, ² $J_{C,F} = 23.0$ Hz); 106.1 (2C); 104.5 (CH=C); 60.9 (OCH₃); 55.77 (2C, 2 × OCH₃); 15.0 (CH₃). – MS (FAB): m/z = 402/404 [M+H]⁺. – C₁₇H₁₂F₂N₂OS: calcd. C 61.81, H 3.66, N 8.48; found C 61.60, H 3.60, N 8.27.

N-(3-(3-Chloro-4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)-3,4,5-trimethoxybenzamide (**39**)

From 1-(3-chloro-4-fluorophenyl)-3-(3,4,5-trimethoxybenzoyl)thiourea (**19**) (400 mg). Yield: 376 mg (86%), m. p. 137 °C. – IR (cm⁻¹): v = 608 (C=O), 1543 (C=N). – ¹H NMR (CDCl₃): $\delta = 7.57$ (dd, 1H, J = 2.7, 6.3 Hz, Ar-H); 7.39 – 7.24 (m, 4H, Ar-H); 6.42 (q, 1H, J = 1.2 Hz, CH=C); 3.87 (s, 3H, OCH₃); 3.82 (s, 6H, 2 × OCH₃); 2.14 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 173.6$ (C=O); 169.9 (C=N); 158.2 (d, ¹ $J_{C,F} = 251$ Hz); 152.6 (2C); 140.9, 133.6 (d, ⁴ $J_{C,F} = 3.8$ Hz); 133.5, 131.8, 131.0, 128.2 (d, ³ $J_{C,F} = 7.5$ Hz); 121.8 (d, ² $J_{C,F} = 18.8$ Hz); 117.1 (d, ² $J_{C,F} = 21.7$ Hz); 106.1 (2C); 104.8 (CH=C); 60.9 (OCH₃); 55.8 (2C, 2 × OCH₃); 15.0 (CH₃). – MS (FAB): m/z = 436/438 [M+H]⁺. – C₂₀H₁₈CIFN₂O₄S: calcd. C 54.98, H 4.15, N 6.41; found C 54.77, H 4.03, N 6.20.

N-(3-(3-Chloro-4-fluorophenyl)-4-methylthiazol-2(3H)-ylidene)-3-fluorobenzamide (40)

From 1-(3-chloro-4-fluorophenyl)-3-(4-fluorobenzoyl)-thiourea (**20**) (326 mg). Yield: 324 mg (83%), m.p. 185 °C. – IR (⁻¹): v = 604 (C=O), 1506 (C=N). – ¹H NMR (CDCl₃): $\delta = 8.08 - 8.01$ (m, 2H, Ar-H); 7.46 (dd, 1H, J = 2.4, 6.3 Hz, Ar-H); 7.40 – 6.94 (m, 4H, Ar-H); 6.44 (q, 1H, J = 1.2 Hz, CH=C); 2.13 (d, 3H, J = 1.2 Hz, CH₃). – ¹³C NMR (CDCl₃): $\delta = 172.4$ (C=O); 170.1 (C=N); 164.8 (d, ¹ $J_{C,F} = 250$ Hz); 158.2 (d, ¹ $J_{C,F} = 255$ Hz); 134.1, 133.5 (d, ⁴ $J_{C,F} = 3.8$ Hz); 133.0 (d, 2C, ³ $J_{C,F} = 8.3$ Hz); 131.7, 130.5, 128.3 (d, ³ $J_{C,F} = 7.5$ Hz); 122.1 (d, ² $J_{C,F} = 18.8$ Hz); 117.4 (d, ² $J_{C,F} = 22.5$ Hz); 114.6 (d, 2C, ² $J_{C,F} = 21.8$ Hz); 105.1 (CH=C); 15.0 (CH₃). – MS (FAB): m/z = 364/366 [M+H]⁺. – C₁₇H₁₁ClF₂N₂OS: calcd. C 55.97, H 3.04, N 7.68; found C 55.79, H 2.98, N 7.50.

General procedure for the preparation of substituted (pyrazolo[4,3-d]thiazol-5(6aH)-ylidene)benzamides (45a - d)

To a stirred, cooled (-60 °C) solution of the required azo compound **41a** – **d** (3.0 mmol) and thiazolylidene-benzamide (**27**) (694 mg, 2.0 mmol) in dry CH₂Cl₂ (20 mL) was added dropwise a solution of SbCl₅ (3.0 mmol) in dry CH₂Cl₂ (30 mL). Stirring was continued at -60 °C for 1 h, then at 0 °C for 1 h and finally at 23 °C for 10 min, followed by addition of pentane (50 mL). The precipitated solid was dissolved in MeCN (40 mL), cooled to 0 °C, followed by addition of aqueous NaHCO₃ solution (2.52 g, 30 mmol in 30 mL of water) and NH₃ solution (2 mL). The mixture was stirred at r.t. for 2 h, then the organic solvents were evaporated, and the residue was extracted with CHCl₃ (3 × 20 mL). The combined organic extracts were dried (Na₂SO₄), filtered, and evaporated to dryness. The residue was recrystallized from EtOH or CHCl₃-pentane.

2-Chloro-N-(4-(4-fluorophenyl)-3,3,3a-trimethyl-3a,4dihydro-3H-pyrazolo[4,3-d]thiazol-5(6aH)-ylidene)benzamide (**45a**)

From **41a** (549 mg). Yield 467 mg (56%), m. p. 168–171 °C. – ¹H NMR (CDCl₃): δ = 7.78–7.21 (m, 8H, H_{arom}); 3.18 (s, 1H, H-6a); 1.43 (s, 3H, C^{3a}-*Me*); 1.38 (s, 6H, C³-*Me*₂). – ¹³C NMR (CDCl₃): δ = 183.3 (C⁵=N); 173.7 (C=O); 151.4 (d, *J*_{C4,F} = 248 Hz, C⁴_{arom-F}); 138.8 (d, *J*_{C1,F} = 3.3 Hz; C¹_{arom-F}); 136.9, 135.8, 134.2, 131.0, 128.5, 126.4 (C_{arom-Cl}); 117.2 (d, *J*_{C2-F,C6-F} = 8.5 Hz, C^{2,6}_{arom-F}); 115.6 (*J*_{C3-F,C5-F} = 22.0 Hz, C^{3,5}_{arom-F}); 87.7 (C-3a); 70.1 (C-6a); 62.3 (C-3); 19.9 (C³-*Me*₂); 11.2 (C^{3a}-*Me*). – MS (FAB): *m*/*z* = 417/419 [M+H]⁺. – C₂₀H₁₈ClFN₄OS: calcd. C 57.62, H 4.35, N 13.44; found C 57.38, H 4.29, N 13.21. 2-Chloro-N-(3-ethyl-4-(4-fluorophenyl)-3,3a-dimethyl-3a,4dihydro-3H-pyrazolo[4,3-d]thiazol-5(6aH)-ylidene)benzamide (45b)

From **41b** (633 mg). Yield: 534 mg (62%), m. p. 154–157 °C. – ¹H NMR (CDCl₃): δ = 7.74–7.17 (m, 8H, H_{arom}); 3.15 (s, 1H, H-6a); 1.62 (q, 2H, *J* = 7.1 Hz, C³-*C*H₂CH₃); 1.45 (s, 3H, C^{3a}-*Me*); 1.31 (s, 6H, C²-*Me*); 0.98 (t, 3H, C³-CH₂*CH*₃). – ¹³C NMR (CDCl₃): δ = 183.6 (C⁵=N); 173.9 (C=O); 151.0 (d, *J*_{C4,F} = 250 Hz, C⁴_{arom-F}); 138.9 (d, *J*_{C1,F} = 3.2 Hz; C¹_{arom-F}); 137.0, 135.6, 134.5, 131.2, 128.4, 126.6 (C_{arom-Cl}); 116.9 (d, *J*_{C2-F,C6-F} = 8.3 Hz, C^{2,6}_{arom-F}); 115.2 (*J*_{C3-F,C5-F} = 22.2 Hz, C^{3,5}_{arom-F});), 87.3 (C-3a); 69.8 (C-6a); 68.7 (C-3); 24.0 (C³-*C*H₂CH₃); 11.0 (C³-*Me*); 7.2 (C³-CH₂*CH*₃). – MS (FAB): *m/z* = 431/433 [M+H]⁺. – C₂₁H₂₀ClFN₄OS: calcd. C 58.53, H 4.68, N 13.00; found C 58.21, H 4.59, N 12.74.

2-Chloro-N-(3,3-diethyl-4-(4-fluorophenyl)-3a-methyl-3a,4dihydro-3H-pyrazolo[4,3-d]thiazol-5(6aH)-ylidene)benzamide (45c)

From **41c** (717 mg). Yield: 596 mg (67%), m. p. 169– 172 °C. – ¹H NMR (CDCl₃): δ = 7.78–7.11 (m, 8H, H_{arom}.); 3.12 (s, 1H, H-6a); 1.59 (2 × q, 4H, *J* = 7.0 Hz, C³-*CH*₂CH₃); 1.38 (s, 3H, C^{3a}-*Me*); 1.01 (2 × t, 3H, C³-CH₂*CH*₃). – ¹³C NMR (CDCl₃): δ = 183.9 (C⁵=N); 173.8 (C=O); 151.2 (d, *J*_{C4,F} = 249 Hz, C⁴_{arom-F}); 138.7 (d, *J*_{C1,F} = 3.1 Hz; C¹_{arom-F}); 137.6, 135.5, 133.9, 130.9, 128.5, 126.9 (C_{arom-Cl}); 116.5 (d, *J*_{C2-FC6-F} = 8.0 Hz, C^{2,6}_{arom-F}); 115.0 (*J*_{C3-FC5-F} = 21.9 Hz, C^{3,5}_{arom-F}); 87.0 (C-3a); 73.4 (C-3); 69.9 (C-6a); 21.1 (2 × C³-*CH*₂CH₃); 11.7 (C³-*Me*); 7.0 (2 × C³-CH₂*CH*₃). – MS (FAB): *m/z* = 445/447 [M+H]⁺. – C₂₂H₂₂ClFN₄OS: calcd. C 59.39, H 4.98, N 12.59; found C 59.11, H 4.90, N 12.31.

2-Chloro-N-(4(4-fluorophenyl)-3-isopropyl-3,3a-dimethyl-3a,4-dihydro-3H-pyrazolo[4,3-d] thiazol-5(6aH)-ylidene)benzamide (**45d**)

From **41d** (714 mg). Yield: 463 mg (52 %), m. p. 159– 161 °C. – ¹H NMR (CDCl₃): δ = 7.74–7.17 (m, 8H, H_{arom}.); 3.15 (s, 1H, H-6a); 2.02 (m, 1H, C³-CHMe₂); 1.35 (s, 3H, C^{3a}-Me); 1.12 (m, 6H, C³-CHMe₂). – ¹³C NMR (CDCl₃): δ = 183.7 (C⁵=N); 174.1 (C=O); 151.1 (d, J_{C4,F} = 249 Hz, C⁴_{arom-F}); 138.9 (d, J_{C1,F} = 3.0 Hz; C¹_{arom-F}); 136.8, 135.5, 133.7, 131.2, 127.7, 126.8 (C_{arom-Cl}); 116.8 (d, J_{C2-F,C6-F} = 8.3 Hz, C^{2.6}_{arom-F}); 115.9 (J_{C3-F,C5-F} = 21.7 Hz, C^{3.5}_{arom-F}); 75.8 (C-3a); 74.2 (C-3); 69.6 (C-6a); 31.0 (C³ – CHMe₂); 16.3 (C³-CHMe₂); 11.6 (C³-Me). – MS (FAB): m/z = 445/447 [M+H]⁺. – C₂₂H₂₂ClFN₄OS: calcd. C 59.39, H 4.98, N 12.59; found C 59.04, H 4.83, N 12.23.

- [1] J. Quiroga, P. Hernandez, B. P. Insuasty, R. Abonia, J. Cobo, A. Sanchez, M. Nogueras, J. N. Low, J. Chem. Soc., Perkin Trans. 1 2002, 555–559.
- [2] I. Hutchinson, S. A. Jennings, B. R. Vishnuvajjala, A. D. Westwell, M. F. Stevens, *J. Med. Chem.* **2002**, *45*, 744–747.
- [3] J.L. Kane, B.H. Hirth, B. Liang, B.B. Gourlie, S. Nahill, G. Barsomian, *Bioorg. Med. Chem. Lett.* 2003, 13, 4463–4463.
- [4] A. C. L. Leite, L. M. F. Santos, D. R. de M. Moreira, D. J. Brondani, *Quím. Nova* **2007**, *30*, 284–286, and refs. cited therein.
- [5] C. G. Bonde, N. J. Gaikwad, *Bioorg. Med. Chem.* 2004, 12, 2151–2161.
- [6] G. Kucukguzel, A. Kocatepe, E. De Clercq, F. Sahi, M. Gulluce, *Eur. J. Med. Chem.* **2006**, *41*, 353 – 359.
- [7] P. Vicini, A. Geronikaki, K. Anastasia, M. Incerti, F. Zani, *Bioorg. Med. Chem.* 2006, 14, 3859–3864.
- [8] F. W. Bell, A. S. Cantrell, M. Hogberg, S. R. Jaskunas, N. G. Johansson, C. L. Jordon, M. D. Kinnick, P. Lind, J. M. Morin, Jr., R. Noreen, B. Oberg, J. A. Palkowitz, C. A. Parrish, P. Pranc, C. Sahlberg, R. J. Ternansky, R. T. Vasileff, L. Vrang, S. J. West, H. Zhang, X. X. Zhou, J. Med. Chem. 1995, 38, 4929-4936.
- [9] P.K. Sharma, S. N. Sawhney, *Bioorg. Med. Chem. Lett.* 1997, 7, 2427–2430.
- [10] R. A. Tapia, L. Alegria, C. D. Pessoa, C. Salas, M. J. Cortés, J. A. Valderrama, M. E. Sarciron, F. Pautet, N. Walchshofer, H. Fillion, *Bioorg. Med. Chem.* 2003, *11*, 2175–2182.
- [11] A. J. Alves, A. C. L. Leite, D. P. Santana, M. T. Beltrão, M. R. Coelho, P. Gayral, *Il Farmaco* **1993**, 48, 1167– 1171.
- [12] E. Medime, G. Çapan, Il Farmaco 1994, 49, 449-451.
- [13] X. Zhou, L. Shao, Z. Jin, J.-B. Liu, H. Dai, J.-X. Fang, *Heteroatom Chem.* 2007, 18, 55 – 59.
- [14] P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C. A. Cabras, P. La Colla, *Bioorg. Med. Chem.* 2003, 11, 4785–4789.
- [15] W. C. Patt, H. W. Hamilton, M. D. Taylor, M. J. Ryan, D. G. Taylor, Jr., C. J. C. Connolly, A. M. Doherty, S. R. Klutchko, I. Sircar, *J. Med. Chem.* **1992**, *35*, 2562– 2572.

[16] W.-T. Zhang, J.-L. Ruan, P.-F. Wu, F.-C. Jiang, L.-N. Zhang, W. Fang, X.-L. Chen, Y. Wang, B.-S. Cao, G.-Y. Chen, Y.-J. Zhu, J.-G. Chen, *Med. Chem.* **2009**, *52*, 718–725.

A. Saeed et al. · Substituted Thiazol-2-ylidene-benzamides

- [17] S. Leone, C. Mutti, A. Kazantsev, M. Sturlese, S. Moro, E. Cattaneo, D. Rigamonti, A. Contini, *Bioorg. Med. Chem.* 2008, 16, 5695–5703.
- [18] F.C. Spector, L. Linag, H. Giordano, M. Shivaraja, G. Peterson, *J. Virol.* **1998**, 72, 6979 – 2589 – 2593.
- [19] K. M. Amin, A.D. E. Rahman, Y.A. Al-Eryani, *Bioorg. Med. Chem.* 2008, 16, 5377 – 5388.
- [20] N. Siddiqui, M. F. Arshad, W. Ahsan, M. S. Alam, *Intern. J. Pharm. Sci. Drug Res.* 2009, *1*, 136–143.
- [21] R.N. Sharma, K.P. Sharma, S.N. Dixit, *Intern. J. ChemTech Res.* 2010, 2, 800–806, and refs. cited therein.
- [22] R. Brown, R. Fischer, J. Blunk, K. D. Berlin, K. Ramalingam, N. N. Durham, *Proc. Okla. Acad. Sci.* 1976, 56, 15–17.
- [23] Y.A. Al-Soud, W. Wirschun, N.A. Hassan, G.M. Maier, J.C. Jochims, *Synthesis* 1998, 721–728, and refs. cited therein.
- [24] A. Saeed, S. Zamani, M. Jamil, B. Mirza, *Turk. J. Chem.* 2008, 32, 585–592.
- [25] a) A. T. Kabbani, H. Ramadan, H. H. Hammud, A. M. Ghannoum, Y. Mouneimne, *J. Univ. Chem. Techn. Metal.* **2005**, *40*, 339–344; b) C. B. Singh, S. Murru, V. Kavala, B. K. Patel, *Org. Lett.* **2006**, *8*, 5397–5400.
- [26] W. Willker, D. Leibfritz, R. Kerssebaum, W. Bermel, Mag. Reson. Chem. 1993, 31, 287–292.
- [27] K. D. Hargrave, J. R. Proudfoot, K. G. Grozinger, E. Cullen, A. S. Kapadia, J. Adams, *J. Med. Chem.* 1991, *34*, 2231–2241.
- [28] H. Mitsuya, K.J. Weinhold, P.A. Furman, M.H. St. Clair, S. N. Lehrman, R. C. Gallo, D. Bolognesi, D. W. Barry, S. Broder, *Proc. Natl. Acad. Sci. USA* **1985**, *82*, 7096–7100.
- [29] H. Mitsuya, S. Broder, Proc. Natl. Acad. Sci. USA 1986, 83, 1911–1915.
- [30] J. S. Lambert, M. Seidlin, R. C. Reichman, C. S. Plank, M. Laverty, G. D. Morse, C. Knupp, C. McLaren, C. Pettinelli, F. T. Valentine, R. Dolin, *N. Engl. J. Med.* **1990**, *322*, 1333–1340.