1090 (2021) 012106

doi:10.1088/1757-899X/1090/1/012106

Mechanical Properties of Light Weight Aggregate Concrete Using Pumice as a Coarse Aggregate

Hayder Kadhem Adai Al-Farttoosi^{1,*}, Oday A. Abdulrazzaq², and Haleem K. Hussain²

¹ Ph.D. Candidate in Civil Eng. Department, College of Engineering, University of Basrah, Basra, Iraq

² Civil Eng. Department, College of Engineering, University of Basrah, Basra, Iraq

Abstract. This study investigates the mechanical properties of hardened lightweight coarse aggregate concrete (LWAC) using Pumice as a lightweight aggregate. Eleven concrete mixes were prepared to investigate the effects of pumice ratio to total aggregate, micro-silica to binder ratio (MS/b), and the water to binder ratio (w/b) on equilibrium density, compressive strength (f_{cu}), splitting tensile strength (f_{ct}), and modulus of rupture (f_r). The main parameters were performed by reducing Pumice to total aggregate ratio, reducing micro-silica to binder ratio, and water to binder ratio by reducing binder content. Six cubic specimens ($150 \times 150 \times 15$

Keywords: Light weight aggregate, Concrete, Pumice, Coarse aggregate

Nomenclature

 f_{ct} Concrete splitting tensile strength of three cylinders f_{cu} Concrete compressive strength of three cubic samples

 f_r Modulus of rupture

LWAC Lightweight aggregate concrete
MS/b Microsilica to binder ratio
w/b Water to binder ratio

1. Introduction

The high dead weight of a building is one of the main concerns that face the designers of concrete structures. Many researchers have studied the dead-weight reduction of the concrete structures using concrete with lower density and higher compressive strength. The seismic forces, which influence the

^{*}Corresponding author's e-mail address: hayder.k.alfarttoosi@gmail.com