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ABSTRACT

Bridges are one of the most important structures that must be protected from failure by safe design and continuous monitoring. In
the present study artificial neural network (ANN) model with feed-forward back-propagation algorithm is developed to
investigate the local scour depth around circular bridge piers using laboratory data of several researchers in addition to the
laboratory data of this study under clear water conditions. Pier diameter (D), flow velocity (V), flow depth (y) and mean particle
size (dsy) were selected to be input to the neural network. The results show that the artificial neural network is a good tool to
predict the maximum local scour depth at bridge piers. Comparison the results with twelve predictive formulas showed an
improved performance by using the artificial neural network model. Also it was found that pier diameter has the major effect on
the scouring process, followed by flow velocity.
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INTRODUCTION

Bridges are one of the principle components oftthasportation systems and their failure will résnl
economic losses as well as human life threat, thexethere is need to protect them by continuiragmenance
through proposing the required repair procedureglgBs might fail due to three main reasons: doltis
excessive loading and scour. Bridge scour has kegmorted all over the world as the most commonofafur
bridges failure, particularly in countries that atject to floods induced by annual typhoons.

Arnesonet al. [1] suggested that, the total scour at bridgesbeadivided into long-term degradation of the
river bed, contraction scour at the bridge andllscaur at the piers or abutments. Local scourbeadefined as
the removal of materials from around piers, abutsiespurs, and embankments. It is caused by ahesatien
of flow and resulting vortices induced by obstrans to the flow.

The presence of the bridge piers in the river aliér flow patterns in the vicinity of the piersuidts in an
increase in the sediments movement causing theoptemon of scour. To avoid a failure of the bridgés,
foundations depth (piers and abutments) shouldekepet than the maximum scour depth in its life fiarel the
old bridges should be checked from time to timeetaluate the maximum scour depth around the bridge
foundation to avoid bridge collapse.

Over the past decades many researchers studyirgddlescour {;) at bridge piers and variety predictive
formulas was developed based on laboratory and fibkervations, such as Laursen and Toch [2], daih
Fischer [3], Melville [4], Rukt al. and many other researchers, as shown in Tahle (1)

In the recent years, the application of Artifichural Networks (ANNS) is proposed to predict theal
scour depth as an alternative to the predictivmédas, Kambekar and Deo [14] used ANNSs to predlietscour
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depth as well as scour width for group of pilesekt al. [15] developed ANN model with five inputs in
normalized form to predict the local scour deptbuaid bridge pier, the measured data of thirteetiesia USA
used to test the performance of the ANN model. iageal. [16] showed that, ANN model with multi-layer
perceptron using back-propagation algorithm (MLB/BRvides a better prediction of scour depth thadial
basis using orthogonal least-squares algorithm (RBE) and adaptive neuro-fuzzy inference systemRFS).
Kaya [17] investigated different input variablesttwivarious ANNs models, the sensitivity analysididated
that pier scour depth can be estimated using fatiables: pier shape, pier skew, flow depth and fielocity.

Table 1: Scour Depth Formulas Proposed from Previous Studie

Author Formula
Laursen and Toch (1956) ds =1.35a%7y%3
Shenet al. (1969) d, = 0.0002Re%619 Re:#
ds _ 2V v? 1,
Hancu (1971) S=242 (V—c -1 )(g—a) 3
Neil (1973) d, =K. a
ds 2V
Bresuserst al. (1977) 2=(-1)(2 tanhZ— )
Jain and Fischer (1979) &= 1.84Fr025(X)02 | Fr, = ny
CSU ( Richardson and Davis 1995) ‘17 = 2K, KKy Ky (5) S Fr0* | Fr= %
Melville (1997) dy =Ky, KKK KoKg

I~N

Maatooq (1999)

s =0.519 + 2.5% -057)%

a
$ =250, (1-L75(Iny-)?)

_ Y04 _ a/dso
fi= tanh(a) 2= 04 (a/dag)™ 4106 (@/dag) " T

L= (0.744 §) - 0.367)F g0 + (- 2.348%) + 2.683)

Sheppard and Miller (2006)

Khwairakpamet al. (2012) P =V Ag=L 1
as0 = o  Dg= -
Rui et al. (2013) & = KKK,

Where,a = Pier width, D = Pier diameted, = Maximum local scour deptks, = Mean sediment siZé; =
Froude numberFr. = Critical Froude numberFy;, = Densimetric Froude numbey = Gravitational
accelerationk; = Correction factor for pier nose shap®, = Correction factor for the angle of attack of the
flow, K; = Correction factor for bed condition&,=Correction factor for armoring by bed materialesiz
K,; = Sediment size facto#{, = Factor of channel geometry effeéf, = Shallowness factork;, = Flow
intensity factor,K; = Pier shape factok,, = Flow depth-pier size factok, = Pier alignment factor, Re =
Reynolds number for the piel, = Flow velocity,V, = Critical flow velocity, y = Flow deptAg = Reduced
gravitational acceleratiom, = Water densityp, = Sand densityy = Dynamic viscosity of the water.

In this research, feed-forward neural network viidtk-propagation algorithm will be used to prediet
maximum local scour depth around single cylindrizatige pier under clear water conditions and carepa
of the results with twelve of the most common pecéde formulas, listed in Table (1).

Experimental Work:

Experimental measurements were conducted at thvengity of Basrah, college of engineering, to araly
and observe the local scour around bridge piergraxentally. All laboratory experiments were conidac
under clear water conditions. Flume with a totalgh of 5.72 m, width 0.615 m and 0.2 m height wssd in
the experiments. At the entrance of the flume thera mesh screen to establish steady flow commditio
Discharge was measured by sharp crested rectangelarDepth of flow was controlled by an adjustakdil
gate at end of the flume and measured by pointgéag).1 mm accuracy ).

Uniform sand withds, = 0.348 mm used as a bed sediments. Single Jettitiadrical piers were made of
wood used in the experiments, place in the middielsaarea. before each experiment, the sand bestfecgy
leveled, Then the flume is filled with water grattyand the pump starts with low velocities untietdesired
value is reached. At the end of each run the flisnérainage and the scour depth is measured wjbira
gauge. The experimental data is presented in Tahle

Table 2: Experimental Data.

Run No. dso D v y ds
mm mm m/s mm mm

1 0.348 19 0.172 45 26.3

2 0.348 24.4 0.172 45 36.6

3 0.348 35.2 0.172 45 42.2

4 0.348 40.5 0.172 45 47

5 0.348 49 0.172 45 53.4

6 0.348 24.4 0.141 40 24
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7 0.348 24.4 0.16 40 30
8 0.348 24.4 0.18 40 34.8
9 0.348 24.4 0.2 40 42
10 0.348 24.4 0.2162 40 46
11 0.348 49 0.1768 35 475
12 0.348 49 0.1768 40 51
13 0.348 49 0.1768 44 53
14 0.348 49 0.1768 48 57
15 0.348 49 0.1768 51 61

Artificial Neural Network:

Artificial neural network is type of artificial ietligence (computer system) that attempt to sineutatd
mimic the way of the human brain in processing atatage information. ANN composed of collection of
interconnected processing elements called neunonsdes, it works by creating connections betwéembdes
and the strength of these connections called weigi#urons grouped in layers and most of ANN models
consist of three or more layers (input layer, hidteyers, output layer) as shown in Figure 1, TiNNAsystem
learns by determine the appropriate number of meuno the hidden layer or hidden layers and adjgstihe
weights of the connections based upon the traidiatg. Trial and error are the best way to deterntiee
appropriate number of hidden neurons and the nuofitée hidden layers [18].

Output Layer

Hidden Layer

Input Layer

Fig. 1: Schematic diagram for ANN model.

Where, W is the weight of the connection between the ifsutiayer neuron and jth hidden layer neuron,
Wy; is the weight of the connection between the jtldén layer neuron and the kth output layer neuron.

The input data is first fed directly to the netwdhkough the input layer, and subsequently to fldeldn
layer to produce an expected result through thputdayer. each node multiplies every input by esponding
weight and sums them together in addition to tlas b form the net input to the neuron, and thessgmthe net
input through the transfer function to produce tioele output. The transfer function for the hiddexles is
usually a sigmoid transfer function.

The ANN are trained with a set of input and knowatpait data, and the procedure to know the perfocman
of the network is based on the mean square errse)(and the regression value (R), they can be latdclias
below [19,20]:

mse = Y1, (Ti — 0; )? 1)
r-Eieiocs ®
Sr= | =0T — 1) 3)
S0 = (7 a0k — 0) (4)
T==%p.T, )
0=—Yr10: 6)

Where,T, is the actual targe@, is the network output) is the number of datd, is the mean value of the
targets,0 is the mean value of the network output.

One is the best condition for the regression valug Zero is the best condition for the mean sqama.
After training the network and get best trainingfpemance it should test the network with new deagger been
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presented in the training data and in the rangtheftraining data. Sometimes neural network giyeedect
performance for the training data but it fails tmguce a good results when applied to a new exar{pheer
fitting), [21]. Therefore, it is necessary to tést network and check if it memorizing the relatlmetween the
inputs and outputs when applying to a new datdénfuture. And the network with best testing parfance
will be choose as the proposed network.

RESULTSAND DISCUSSIONS

A. Experimental Results:

The laboratory experiments addressed three cdwegffect of pier size, flow velocity and flow dbpin
the local scour, as show in Figures (2, 3 and gpeetively. It is found that the larger pier diaenadives deeper
local scour upstream of the pier. This is becahsestrength of the horseshoe vortex which is prigmaal to the
diameter of the pier. Flow velocity increment leadsncrease the flow intensity under the same itimomg of
flow depth and pier diameter, in turn, this wilateto more scour depth as velocity is increaseceunbbar
water conditions. Flow depth has a proportionageffon the local scour depth. The results have shbat the
local scour depth increases as the depth of flosvesses under the range of the flow depth durirg th
experiments. this conforms with the previous reg®as in that: the scour depth is proportional aavflepth up
to limiting value where this effect is vanished.

5 4

Scour depth (cm)

2 T T T T 1
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Flow velocity (cm)

Fig. 2: Effect of pier diameter on the scour depth
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Fig. 3: Effect of flow velocity on the scour depth
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Fig. 4: Effect of flow depth on the scour depth
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B. Artificial Neural Network Results:

Feed-forward neural network with back-propagatitgoathm was used in this research to predict the
maximum local scour depth around bridge pier. Teat error process was used to configure the neural
networks parameter such as the training functionmber of the hidden layers and the number of gwans in
the hidden layers. Logsig transfer function wasdusethe hidden layer(s) and Purelin transfer fiorcin the
output layer. The network was trained with labonatdata from previous researchers shown in Tabl€hg.
laboratory data of Yanmaz and Altinbilek [22] wased to test the network performance. Table 4, shbess
input and output variables for the training anditgsand the range of each one of them.

Table 3: Training Data

The Researcher Number of Data set
Chabert and Engeldinger 12
Deyet al. [24] 18
Maatooq J.S. 82
Mia and Nago 5
Table4: Training and Testing Variables and the Range @frith
. Range of Data
Item Variables —= -
Training Testing

ds, (cm) 0.026 — 0.3 0.084 — 0.107
Input D (m) 0.01-0.15 0.047 — 0.067
variables V (m/s) 0.128 — 0.522 0.166 — 0.362

y (m) 0.02-0.35 0.045 - 0.165
ot d, (m) 0.0113 - 0.175 0.032 - 0.107

ANN was trained and tested with one and two hiddgers with different number of nodes (1-20) inteac
hidden layer, as shown in Table (5). Several tngrfiunctions was examined to reach the best appations.

Table5: ANN Performance with One Hidden Layer and Two Hidd.ayers

Training El)ng Hidden Layer R 'II\'Iwg Hidden Layers R
: odes mse test odes mse  (test

function No. x107* | (test) Epoch No. x107* | (test) Epoch
trainlm 19 0.29363 0.95924 17 12-3 0.26916 0.96873| 46
trainrp 9 0.37733 0.94761 100 2-5 0.39655 0.94623| 73 4
traingda 19 0.52304 0.94109 669 5-9 0.74826 0.92518 193
traingdx 19 0.45525 0.93719 316 8-20 0.49918 0.6434 | 2121
traincgf 3 0.39637 0.94624 79 7-20 0.59609 0.91539| 48
traincgp 19 0.55217 0.92923 8 18-18 1.5486 0.76494| 17
traincgb 16 0.41094 0.95476 137 7-20 0.58251 0.p180 | 32
trainscg 3 0.41031 0.94644 184 3-14 0.36133 0.950446 198
trainbfg 2 0.37213 0.94882 163 11-19 0.61022 0.9132 | 30
trainoss 16 0.36099 0.95173 1600 3-6 0.37339 08515 | 12000
traingda 4 6.3467 0.81467 100000 9-17 4.5898 05330 | 30000
traingdm 4 6.3467 0.81465 100000 9-17 4.5875 02332 | 30000

As can be seen in Table 5, (trainlm) training fiottgave the best testing performance with onetewad
hidden layers. There is no big difference betwees itesults but using two hidden layers gave thd bes
performance with mse = 0.2693%610~* and R = 0.96873, therefore, it can be choseneagnbposed network
to predict the local scour depth. Figures 5 andshlgw the regression and mse of the proposed network
respectively. Table 6, shows the specificationthefproposed network.
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Test: R=0.96873

Fig. 5: Regression of the Proposed Network
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Fig. 6: Performance of the proposed network
Table 6: Specifications of the Proposed Network
Item Description
No. of nodes in the input layer 4
No. of hidden layers 2
. . First layer 12
No. of nodes in the hidden layers Second layer 3
First hidden layer logsig
Type of activation function Second hidden layer logsig
Output layer purelin
Training function Levenberg-marquardt (trainim)
No. Nodes in the output layer 1

C.

Importance of the Input Variables:

Artificial neural network can be used to find thgnificant input variables that have the most dffat the
scouring process and the prediction of the neuetvork. Test runs were conducted without contairgng
particular one input variable among the four inpiitse results are shown in Table (7). It is shothed the pier
diameter has the most effect on the local scollovied by the flow velocity.
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Table 7: Input variables importance

msex 107* R
Case (Test) (Test)
Allinputs 0.26916 0.96873
No d., 1.0032 0.86557
No D 3.1935 0.77783
NoV 2.4934 0.68938
Noy 0.66757 0.94003

D. Comparison with Previous Formulas:

Experimental data of this study in addition to tbst data of yanmaz and altinbilek [22] were apbtithe
proposed neural network and the previous formulagable 1, to show their performance. Figure (dvahthe
performance of ANN and the predictive formulas.

18

16

14

- II |
. A /

b

o

—

x

(%]

=’ I\ /)\/
4 A

NIIYIVY

2
0 " -

. — - .
z5SR3T s o282
Zzo_.2 e L5503z 0o
<I—mmm®.£HEg§wN

T c I <K 2 wm S T g =
€ g5 & —§§c o
© c I~ w 8 3~ c 8
- c > Q
c v o 3 E o ) )
c O o ©® Eo 2 T ¥
v © 5 £ 0492 & £5
59 S 25 x
g N 3 g 3
o o~ D < £
) - o un wn X
o - QO © N
it S o
S o
N N

Formulas

Fig. 7: mse of the ANN and the predictive formulas

From Figure 7, it is found that the ANN model gdkie best approximation to the actual values froen th
previous formulas with mse = 0.2162390~%. Also, it can be seen that, shetral. [6] and CSU [10] formulas
gave a good approximation among the twelve formulas

Conclusions:

In this paper, the application of Artificial Neusdktwork is used to predict the maximum local sadepth
at cylindrical bridge piers. it is found that Fefetward neural network with back-propagation algori has
proved to be a good tool for predicting the locadws depth at bridge piers and much more accuhzte the
predictive formulas used in this study. By makihg sensitivity analysis to the input variablessitound that
pier diameter has the significant effect on thealagcour depth prediction followed by flow velocityorm
Figure 7, it can be found that Shetral. [6] and CSU [10] formulas are the best amongwedve formulas. The
laboratory experiments show that both pier diamatet flow velocity are directly proportional withe local
scour depth. Also, it is shown that the local scdepth is increased as the flow depth increasecrutick
limitation of the experiments.
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