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Abstract i

Abstract

In this thesis, we characterized a new class of almost contact metric (ACR−)

manifolds and establish the equivalent conditions that characterize its identity in

sense of Kirichenko’s tensors. We demonstrate that the Kenmotsu manifold proves

that the mentioned class, that is, the new class, can be decomposed into a direct

sum of the Kenmotsu manifold and other classes. We prove that the manifold of

dimension 3 coincides with the Kenmotsu manifold and provide an example of the

new manifold of dimension 5, which is not the Kenmotsu manifold. Moreover, we

establish that the Cartan’s structure equations, components of Riemannian curva-

ture tensor, and the Ricci tensor of the class should be kept under consideration.

Further, the conditions required for the mentioned class to be an Einstein manifold

have been determined. We called the aforementioned characterized class the class

of the Kenmotsu type.

Furthermore, in this thesis, we provide an example of the class of Kenmotsu type

as a warped product of the Hermitian manifold by the real line. The conditions re-

quired for the mentioned class to be of constant pointwise Φ−holomorphic sectional

curvature tensor are obtained on the associated G−structure space. We classify new

classes of ACR−manifolds according to their curvature tensors and ascertain their

relationships with our class. Moreover, we investigate the conditions that make our

class satisfy the generalized Sasakian space forms, new classes, and Einstein mani-

folds.

The present thesis studies the generalized Φ−recurrent manifold of the Kenmotsu

type. The aim of this study is to determine the components of the covariant deriva-

tive of the Riemannian curvature tensor. Moreover, the conditions make a manifold

of Kenmotsu type a locally symmetric or generalized Φ−recurrent have been estab-

lished. We concluded that the locally symmetric manifold of the Kenmotsu type

is generalized Φ−recurrent under suitable conditions and vice versa. Furthermore,

the study shows the relationship between Einstein manifolds and locally symmetric

manifolds of the Kenmotsu type.



Abstract ii

For the same class, we determine the components of the generalized curvature

tensor and establish that the mentioned class is η−Einstein manifold in the flatness

of the generalized curvature tensor; the converse holds under suitable conditions.

Moreover, we introduced the notion of generalized Φ−holomorphic sectional curva-

ture tensor. Thus, we find the necessary and sufficient condition that makes the

aforementioned notion constant for the class of Kenmotsu type. In addition, the no-

tion of the Φ-generalized semi-symmetric is introduced and its relationship with the

class of Kenmotsu type and the η−Einstein manifold is established. Furthermore,

we generalize the notion of the manifold of constant curvature where the structure

is almost contact and we identify its relationship with the mentioned ideas. Finally,

we show that the class of Kenmotsu type exists as a hypersurface of the Hermitian

manifold and derive a relation between the components of the Riemannian curvature

tensors of the almost Hermitian manifold and its hypersurfaces.

This thesis also discusses the geometry of the ACR−manifolds of class C12. In

particular, it determines the structure equations, the components of curvature and

Ricci tensors on the associated G−structure space. It also studies some curvature

identities of this class. Moreover, this thesis investigates the (κ, µ)-nullity distri-

bution of the class C12 and establishes the sufficient and necessary conditions for

the mentioned class to have (κ, µ)-nullity distribution and satisfy the η−Einstein

criterion. Finally, an example of a 3-dimensional manifold of class C12 has been

constructed.



Symbols and Abbreviations

Characters Description

Mn The smooth manifold of dimension n

g The Riemannian metric

gij The components of g

gij The components of g−1

(Mn, g) The Riemannian manifold of dimension n

R The set of real numbers

Rn The Euclidean space
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Cn The complex Euclidean space

C∞(M) The set of all smooth functions f : M → R
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Introduction

The establishment of modern differential geometry is attributed to Chern [32],

who introduced the algebraic structures of the almost contact manifolds in 1953.

In 1958, Boothby and Wang [28] discussed the regular and homogeneous contac-

t manifolds and deduced their relationships with tangent sphere bundles. On the

other hand, in 1959, Gray [55] gave some examples of ACR−manifolds. In the

1960s, Sasaki [101] published lecture notes on the ACR−manifolds and character-

ized the special class was later called Sasakian manifolds. Blair [16] studied the

quasi-Sasakian structure; Blair and Ludden [22] considered the hypersurfaces on al-

most contact manifolds, whereas the concept of almost cosymplectic manifolds was

first introduced by Goldberg and Yano [52].

In 1971, the nearly cosymplectic structure was established by Blair [17], while

Blair and Yano [25] generalized the results that appeared in [17]. In 1972, Ken-

motsu [63] defined a class of ACR−manifolds, which was not Sasakian. Later, this

manifold bore the name of Kenmotsu manifolds. In 1973, Chen [30] concentrated

on the geometry of submanifolds. In 1974, Blair and Showers [23] applied some of

Gray’s conclusions [53] on nearly Kähler manifolds to nearly cosymplectic manifolds.

In 1976, Blair [18] discussed contact manifolds where the normal contact manifold-

s were Sasakian manifolds, whereas Blair et al. [24] highlighted nearly Sasakian

structures. In 1980, Vaisman [112] investigated the conformal transformation of

ACR−manifolds. In 1981, Olszak [90] gave examples of almost cosymplectic man-

ifolds and studied their existence with non-zero constant curvature, while Janssens

and Vanhecke [61] decomposed the ACR−manifolds that satisfied some curvature

tensors into irreducible components.

In 1983, Kirichenko [66] and [67] investigated the geometry of nearly Sasakian

1



Introduction 2

spaces and almost cosymplectic manifolds that satisfy the axiom of planes with

Φ−holomorphic. In 1984, the axiom of Φ−holomorphic planes on the contact met-

ric geometry was studied by Kirichenko [68]. In 1985, Oubiña [92] determined new

classes of ACR−manifolds. In 1986, Kirichenko [69] demonstrated an interesting

method to determine contact geometry from generalized Hermitian geometry. Local-

ly conformal almost cosymplectic manifolds were discovered in 1989 by Olszak [91].

In 1990, ACR−manifolds were classified according to their structure group into

a direct sum of twelve irreducible classes by Chinea and Gonzalez [34]. In 1992,

Tshikuna-Matamba [109] defined new classes of ACR−manifolds, which generalized

the Kenmotsu class, such as nearly Kenmotsu manifolds, quasi-Kenmotsu mani-

folds, and so on. In 1994, Rustanov [98] discussed the geometry of quasi-Sasakian

manifolds. In 1995, Chinea and et al. [35] studied almost contact submersions where

the locally conformal total space is a cosymplectic manifold. In 1997, the author

Volkova [115] studied normal manifolds of the Killing type, which satisfy the special

curvature identities.

In 2000, Boeckx [26] classified the contact manifolds that satisfy (κ, µ)-nullity

conditions. In 2001, Kirichenko [70] constructed a Kenmotsu manifold using a con-

formal transformation of cosymplectic manifold, while in [105], Stepanova and Ba-

naru extracted ACR−manifolds from quasi-Kählerian manifolds as hypersurface. In

2002, the geometry of Kenmotsu manifold and some of its interesting generalization-

s were discussed by Umnova [111], whereas Volkova [116] investigated the normal

manifolds of the Killing type, which satisfy the axiom of Φ-holomorphic planes. On

the other hand, Blair [19] studied the geometry of special Riemannian manifolds

that are contact and symplectic manifolds, while in [108], Terlizzi and Pastore in-

vestigated the K−manifolds with the quasi-Sasakian manifold as a special case of

it, defined an f−structure on a hypersurface of the K−manifold, and provided an

example of the K−manifold. In 2003, Kirichenko [71] introduced a separate study

of the differential geometric structures on the Riemannian manifolds by using the

method of associated G−structure space (briefly, AG−structure space).

In 2004, Alegre et al. [5] generalized the idea of Sasakian-space-forms, whereas

Falcitelli et al. [47] focused on Riemannian submersions and associated them with
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theoretical physics and the Einstein theory by providing examples. In 2005, Jun et

al. [62] studied certain curvature conditions such as semi-symmetric and Weyl semi-

symmetric of the Kenmotsu manifold. Moreover, they studied the transformation

that saves the invariant of the Ricci tensor. However, in [44], Endo investigated

nearly cosymplectic manifolds that had constant Φ−sectional curvature. In 2006,

Kirichenko and Dondukova [74] discussed the geodesic transformation of Kenmotsu

manifolds and proved there is only a trivial transformation, while Falcitelli and Pa-

store [48] discussed the curvature properties of the Kenmotsu f.pk−manifolds.

In 2007, Kirichenko and Polkina [77] showed that on the quasi-Sasakian struc-

tures there are no non-trivial contact-geodesic metric transformations. They also

proved that the normal regular locally conformally quasi-Sasakian (normal regular

lcQS−) structures allow nontrivial contact-geodesic metric transformations. More-

over, the second author studied the analogs of Gray identities (see [54]) on ACR−

and lcQS−structures in [96], while Kirichenko and Baklashova [73] derived Ikuta’s

theorem on ACR−manifolds. In particular, they proved that the locally conformally

cosymplectic manifold had closed contact form if and only if it is a normal regular

lcQS−manifold. The normal regular lcQS−manifold is a Kenmotsu manifold if and

only if its contact Lee form and the contact form are the same. At the same time,

Pitiş [95] studied the geometry of Kenmotsu manifolds in detail. On the other hand,

Dileo and Pastore [41] deduced the necessary and sufficient conditions for almost

Kenmotsu manifolds to be locally symmetric. Falcitelli and Pastore [49] introduced

and studied the notion of almost Kenmotsu f.pk−manifold.

In 2008, Kirichenko and Uskorev [80] described Kirichenko’s tensors of ACR−

manifold under conformal transformations, while Falcitelli [45] studied the Φ− sec-

tional curvature of manifolds with locally conformal cosymplectic structures. Addi-

tionally, Alegre and Carriazo [6] studied the trans-Sasakian manifolds that satisfy the

conditions of generalized Sasakian-space-forms (GS−space forms), and some general

outcomes for dimension ≥ 5 and special cases for 3-dimensional were determined.

In 2009, Dileo and Pastore [42] described the Riemannian geometry and Riemann

submanifolds of almost Kenmotsu manifolds that satisfy some geometric condition-

s. They also characterized the CR-integrable almost Kenmotsu, classified almost
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Kenmotsu manifolds based on certain nullity conditions, completely described the 3-

dimensional case, and gave examples in [43]. Furthermore, Alegre and Carriazo [7]

investigated the geometry of submanifolds in GS−space forms, while Kirichenko

and Pol’kina [78] detected necessary and sufficient conditions for the quasi-Sasakian

manifold to happen in a Fialkow space.

In 2010, Chinea [33] studied the harmonicity of special maps between ACR−

manifolds. In 2011, Kirichenko and Kusova [76] classified weakly cosymplectic man-

ifolds that satisfy contact analog curvature identities. At the same time, Dileo [40]

analyzed the geometry of almost α−Kenmotsu manifolds. She also focused on local

symmetries and certain vanishing conditions for the Riemannian curvature. Par-

allelly, Ignatochkina [58], Ignatochkina and Morozov [60] and Nikiforova and Igna-

tochkina [89] studied the ACR−manifolds induced from almost Hermitian (AH-)

manifolds by conformal transformations. On the other hand, Kharitonova [64] as-

certained necessary and sufficient conditions for an ACR−manifold to be an almost

C(λ)−manifold.

In 2012, Kirichenko and Kharitonova [75] determined the full group of structure

equations, components of the Riemannian curvature tensor, components of the Ricci

tensor, and components of the Weyl tensor on the AG−structure space for locally

conformal manifolds with almost cosymplectic structures. Additionally, Falcitel-

li [46] studied the class of ACR−manifolds considered twisted product manifolds

and derived theorems describing the aforementioned class with GS−space forms.

In 2013, Rehman [97] discussed the harmonic maps and morphisms between

Kenmotsu manifolds and an AH-manifold. Moreover, she studied the spectral the-

ory of these maps. Perrone [93] determined necessary and sufficient conditions for

the Reeb vector field of 3-dimensional almost cosymplectic manifold to be minimal.

Markellos and Tsichlias [85] constructed a new group of contact metric structures

on S3. In 2014, Banaru [9] discussed the necessary and sufficient conditions for the

ACR−manifold to be the hypersurface with type number 0 or 1 of the 6-dimensional

Kähler submanifold of Cayley algebra. Kim et al. [65] characterized quasi-contact

metric manifolds while De and Ghosh [36] studied E−Bochner curvature tensors

that satisfy certain conditions of the N(k)−contact metric manifold of dimension n.
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In 2015, Banaru and Kirichenko [13] derived the structure equations of ACR−

manifold on a hypersurface of AH-manifold. They determined sufficient and neces-

sary conditions for the Kenmotsu manifold on a hypersurface of the W3−manifold

(see Gray and Hervella [56]) to be minimal. Ghosh [50] examined contact met-

ric manifolds with quasi-Einstein metrics, and he proved that every quasi-Einstein

Sasakian manifold is an Einstein manifold. In 2016, Kirichenko and Pol’kina [79]

were studied the concircular geometry of lcQS−manifold according to its contact

Lie form. Banaru [11] showed that 2-hypersurfaces in a Kählerian manifold ad-

mit ACR−structures of a non-cosymplectic type. Wang [117] showed that a CR-

integrable almost Kenmotsu manifold of a dimension of > 3 with certain conditions

has constant sectional curvature of −1 if and only if it is conformally flat.

In 2017, Banaru [12] proved that hypersurfaces with type number 0 or 1 are

identical in the Hermitian submanifold of dimension 6 in Cayley algebra. Nicola

et al. [87] proved that each nearly Sasakian manifold with a dimension of > 5 is

Sasakian as well as classified the nearly cosymplectic manifolds with a dimension

of > 5. Loiudice [83] evaluated a class of contact manifolds of dimension 4n + 1

and deduced that this class should have a dimension of 5 if it has constant sec-

tional curvature. Alegre et al. [8] introduced a class of trans−S−manifolds that

included special classes that were studied previously and they presented examples

that supported their study. Petrov [94] studied the total space of the T 1−principal

fiber bundle with almost Hermitian structures and flat connection over some class-

es of ACR−manifolds. Nikiforova [88] assessed some generalizations of conformal

transformations for ACR−manifolds and discussed the invariance of six structure

tensors (Kirichenko’s tensors) under these transformations. In [59], Ignatochkina

studied the transformation of the AH-manifold induced by a linear extension of

ACR−manifolds having a conformal transformation. In 2018, Stepanova et al. [106]

established certain theorems on the geometry of quasi-Sasakian manifolds as hy-

persurfaces of the Kählerian manifold. Rustanov et al. [99] regarded the contact

formulae of Gray identities for ACR−manifolds of the class NC10.

Siddiqui et al. [104] proved certain inequalities for bi-slant submanifolds of nearly

trans-Sasakian manifolds and they found that the conditions of equality held. Addi-
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tionally, they provided some related examples. Uddin et al. [110] studied semi-slant

submanifolds and warped product semi-slant submanifolds of Kenmotsu manifolds.

They obtained some characterizations and generalized the sharp inequality of the

special form for such submanifolds and supported their work by providing signifi-

cant examples. Hui et al. [57] explained using an example of the existence of special

warped products and studied some inequalities of that warped product submani-

folds.

On the other hand, Abood and Mohammed [4] studied the geometric proper-

ties of projective curvature tensor on AG−structure space of manifolds with n-

early cosymplectic structures. Additionally, on the AG−structure space, Abood

and Al-Hussaini [1] studied the geometry of conharmonic curvature tensors with

Φ−holomorphic sectional on manifolds having structures whose locally conformal

transformation is an almost cosymplectic structure. In 2019, Blair [20] discussed

his conjecture that a related metric to a given contact form for a contact manifold

of dimension ≥ 5 must have some positive curvature. Abood and Al-Hussaini [2]

determined the sufficient and necessary conditions for the manifold whose locally

conformal transformation is almost cosymplectic manifold to be of constant cur-

vature. Cabrera [29] proved the non-existence of 132 Chinea and González-Dávila

classes for connected ACR−manifolds with a dimension of > 3. Zengin and Bek-

taş [119] determined various properties of W2−curvature tensor on almost pseudo

Ricci symmetric manifolds and explained using an example of the existence of these

manifolds with certain conditions. Shanmukha and Venkatesha [103] studied the pro-

jective curvature tensor of generalized (k;µ)−space forms. Mandal and Makhal [84]

studied ∗−gradient Ricci solitons and ∗−Ricci solitons on 3-dimensional normal

ACR−manifolds. Deszcz et al. [39] investigated hypersurfaces on space forms that

satisfy certain conditions.

In 2020, Mohammed and Abood [86] constructed the generalized projective cur-

vature tensor and studied its flatness on nearly cosymplectic manifolds. Additionally,

they proved that the nearly cosymplectic manifold is a generalized Einstein mani-

fold under suitable conditions, and conversely, Abood and Al-Hussaini [3] studied

the flatness of the conharmonic curvature tensor on the locally conformal manifold
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for almost cosymplectic structure. They determined whether these manifolds are

normal or η−Einstein manifolds.

The present thesis consists of five chapters. Chapter One includes the funda-

mental concepts related to our work, particularly, the construction of the smooth

manifold, the ACR−manifold, the curvature tensors on the ACR−manifold, and

the hypersurfaces on the AH-manifold.

In Chapter Two, we characterize the manifold of Kenmotsu type on the AG−

structure space and we construct an example for the aforementioned manifold. More-

over, for the manifold of Kenmotsu type, we determine the Cartan’s structure equa-

tions, the components of Riemannian curvature tensor, and the components of Ricci

tensor, along with their applications on the AG−structure space.

Chapter Three is devoted to studying some curvature identities on the manifold

of Kenmotsu type as an analog to Gray identities on the AH-manifold. Moreover,

we determine the conditions that make the manifold of Kenmotsu type GS−space

forms, and we discuss the covariant derivative of Riemannian curvature tensor for

the manifold of Kenmotsu type. Thus, we investigate whether the manifold of Ken-

motsu type is locally symmetric or generalized Φ−recurrent.

Chapter Four discusses the generalized curvature tensor of the manifold of Ken-

motsu type from several aspects, such as its components on the AG−structure space

and its relationships with the other tensors. Moreover, we establish the manifold of

Kenmotsu type as being a hypersurface of Hermitian manifold.

Chapter Five determines Cartan’s structure equations of the ACR− manifolds

of the class C12 with examples on these manifolds of dimension 3. Moreover, we set

down the components of Riemannian curvature tensor and Ricci tensor. Finally, the

(κ, µ)-nullity conditions and Einstein situation of class C12 are investigated.





Chapter 1

Basic Definitions and Theorems

This chapter focuses on the preliminaries closely related to the subject of our study

in this thesis.

1.1 Smooth Manifolds

In this section, we recall the definitions related to the construction of smooth man-

ifold.

Definition 1.1.1 [82] A topological space M is called a topological n−manifold or

a topological manifold of dimension n if M possesses the following properties:

(i) M is a Hausdorff space;

(ii) M is second-countable;

(iii) Every point of M has a neighborhood which is homeomorphic to an open subset

of Rn.

Definition 1.1.2 [82] The pair (U,ϕ) is called a chart on a topological n−manifold

M if U ⊆M is open and ϕ : U → ϕ(U) ⊆ Rn is a homeomorphism.

Definition 1.1.3 [82] If U and V are open subsets of Euclidean spaces Rn and Rm,

respectively, a function F : U → V is said to be smooth if each of its component

functions has continuous partial derivatives of all orders.

8



Chapter One 9

Definition 1.1.4 [82] Suppose that U ⊆ Rn and V ⊆ Rm are open subsets. A

map F : U → V is called a diffeomorphism if F bijective, smooth and possesses the

smooth inverse map.

Definition 1.1.5 [82] Two charts (U,ϕ), (V, ψ) on a topological n−manifold M are

called smoothly compatible if either U ∩ V = φ or the map ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→

ψ(U ∩ V ) is a diffeomorphism.

Definition 1.1.6 [82] A family of charts {(Uα, ϕα) : α ∈ Λ} on a topological

n−manifold M is called an atlas if
⋃
α∈Λ Uα = M . Moreover, a smooth atlas is an

atlas A such that every two charts of it are smoothly compatible.

Definition 1.1.7 [82] A smooth atlas A on a topological n−manifold M is called

a maximal or a complete if it is not properly contained in any other smooth atlas.

The maximal smooth atlas A is called a smooth structure on M .

Definition 1.1.8 [82] The pair (M,A) is called a smooth n−manifold or a smooth

manifold of dimension n and denoted by Mn if M is a topological n−manifold and

A is a smooth structure on M .

Remark 1.1.1 The readers can return to the citation [82] for examples about the

smooth manifolds.

1.2 Tensor Analysis

This section introduces a brief part of the tensor analysis that makes the reader

surrounds by the subject.

Definition 1.2.1 [82] Suppose that M is a smooth n-manifold, k is a nonnegative

integer, and f : M → Rk is any function. We say that f is a smooth function if

for every p ∈ M , there exists a smooth chart (U,ϕ) for M whose domain contains

p and such that the composite function f ◦ ϕ−1 is smooth on the open subset Û =

ϕ(U) ⊆ Rn. Moreover, the set of all smooth functions f : M −→ R is denoted by

C∞(M).
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Definition 1.2.2 [14] A vector field on a smooth manifold M is an operator X :

C∞(M) −→ C∞(M) satisfies the following conditions:

(i) X(af + bg) = aX(f) + bX(g);

(ii) X(fg) = X(f)g + fX(g),

for all a, b ∈ R and f, g ∈ C∞(M).

We denote X(M) to set of all vector fields on the smooth manifold M .

Definition 1.2.3 [27] A tangent vector on a smooth manifold M at the point p ∈M

is a mapping Xp : C∞(M) −→ R satisfies the following conditions:

(i) Xp(af + bg) = aXp(f) + bXp(g);

(ii) Xp(fg) = Xp(f)g(p) + f(p)Xp(g),

for all a, b ∈ R and f, g ∈ C∞(M). Moreover, the set of all tangent vectors on M

at p is called a tangent space on M at p and denote by Tp(M).

Remark 1.2.1 [27] We can also define the vector field X ∈ X(M) as a map that

assigns for every point p ∈ M a tangent vector Xp ∈ Tp(M), such that X(f)(p) =

Xp(f) for all f ∈ C∞(M).

Definition 1.2.4 [27] For every vector fields X, Y ∈ X(M), we can define a new

vector field on X(M) by [X, Y ] = XY − Y X. The vector field [X, Y ] is called a

product of X and Y or a Lie bracket of them. In addition, the tangent vector [X, Y ]p

is given by:

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f)); f ∈ C∞(M); p ∈M.

Definition 1.2.5 [81] Suppose that V is a real vector space of finite dimension. A

tensor of type (r, s) on V is a map F : V × ...× V︸ ︷︷ ︸
r copies

×V ∗ × ...× V ∗︸ ︷︷ ︸
s copies

−→ R which is

linear in each argument, where V ∗ is the dual space of V . Moreover, a tensor of

type (r, 0) on V is called r−form.
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Definition 1.2.6 [81] Suppose that V is a real vector space of finite dimension. A

multilinear map F : V × ...× V︸ ︷︷ ︸
r copies

×V ∗ × ...× V ∗︸ ︷︷ ︸
s copies

−→ V is a tensor of type (r, s + 1)

on V .

Definition 1.2.7 [81] Suppose that F and G are tensors on V of types (p, q) and

(r, s) respectively. A tensor product F ⊗ G is a tensor of type (p + r, q + s) on V

defined by:

F ⊗G(X1, ..., Xp+r, θ
1, ..., θq+s)

=F (X1, ..., Xp, θ
1, ..., θq)G(Xp+1, ..., Xp+r, θ

q+1, ..., θq+s),

where X1, ..., Xp+r ∈ V and θ1, ..., θq+s ∈ V ∗.

Remark 1.2.2 [72] We denote T sr (V ) the set of all tensors of type (r, s) on V and

Tr(V ) to the set of all r−forms on V .

Definition 1.2.8 [81] The trace or contraction operator tr : T s+1
r+1 (V ) −→ T sr (V )

is defined by:

tr(F )(X1, ..., Xr, θ
1, ..., θs) = F (X1, ..., Xr, ·, θ1, ..., θs, ·);

=
n∑
k=1

F (X1, ..., Xr, ξk, θ
1, ..., θs, ηk),

where F ∈ T s+1
r+1 (V ), tr(F ) ∈ T sr (V ), Xi ∈ V , θj ∈ V ∗ for all i and j, such that

{ξ1, ..., ξn} is a basis of V with ηk(ξl) = δkl . Moreover, for any basis of the spaces

T sr (V ) and T s+1
r+1 (V ), we can define the components of tr(F ) in this basis by

(trF )j1...jsi1...ir
= F j1...jsk

i1...irk
,

where all indices take the values of {1, ..., n}.

Definition 1.2.9 [27] A form τ ∈ Tr(V ) is called a symmetric if for all 1 ≤ i, j ≤ r,

we have

τ(X1, ..., Xi, ..., Xj, ..., Xr) = τ(X1, ..., Xj, ..., Xi, ..., Xr).

Whereas, if for all 1 ≤ i, j ≤ r, we have

τ(X1, ..., Xi, ..., Xj, ..., Xr) = −τ(X1, ..., Xj, ..., Xi, ..., Xr),

then τ is called a skew or antisymmetric or alternating.
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Remark 1.2.3 [72] We denote Σr(V ) to the set of all symmetric r−forms on V

and Λr(V ) to the set of all alternating r−forms on V . Moreover, the Grassmann

algebra given by Λ(V ) =
⊕∞

r=0 Λr(V ).

Definition 1.2.10 [27] The transformations on Tr(V ), Sym : Tr(V ) −→ Tr(V )

and Alt : Tr(V ) −→ Tr(V ) are called respectively symmetrizing mapping and alter-

nating mapping which are defined by the following formulas:

Sym(F )(X1, ..., Xr) =
1

r!

∑
σ∈Sr

F (Xσ(1), ..., Xσ(r));

Alt(F )(X1, ..., Xr) =
1

r!

∑
σ∈Sr

sgn(σ)F (Xσ(1), ..., Xσ(r)),

where Sr is the group of all permutations of r letters and sgn(σ) is +1 if σ even and

−1 if σ odd.

Definition 1.2.11 [27] Suppose that ϕ ∈ Λr(V ) and ψ ∈ Λs(V ). The exterior

product ϕ ∧ ψ ∈ Λr+s(V ) is defined by:

ϕ ∧ ψ =
(r + s)!

r!s!
Alt(ϕ⊗ ψ).

Remark 1.2.4 In this thesis, we take V = X(M) or Tp(M). So, the above symbols

given by Symbol(X(M)) ≡ Symbol(M) and Symbol(Tp(M)) ≡ (Symbol)p(M).

Lemma 1.2.1 [82] Suppose that M is a smooth manifold, then there exists a

unique operator d : Λ(M)→ Λ(M), satisfies the following properties:

1. d is linear over R.

2. d(Λk(M)) ⊂ Λk+1(M).

3. d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k ω1 ∧ dω2, where ω1 ∈ Λk(M); ω2 ∈ Λl(M).

4. d ◦ d = 0.

5. For f ∈ C∞(M) and X ∈ X(M), then df(X) = X(f).

Lemma 1.2.2 [27] Suppose that ω ∈ Λ1(M) and X, Y ∈ X(M). Then the follow-

ing equality holds:

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]).
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1.3 Almost Contact Metric Manifolds

In this section, we recall the basic ideas about ACR−Manifolds and their charac-

terization in AG−structure space.

Definition 1.3.1 [27] A bilinear form g : X(M) × X(M) −→ R is said to be a

Riemannian metric on M if g is symmetric and positive definite.

Definition 1.3.2 [27] A smooth manifold M with the Riemannian metric g on M

is called a Riemannian manifold and denote it by the pair (M, g) or (Mn, g) if M

of dimension n.

Example 1.3.1 [27] An example on the Riemannian manifold is (M = Rn, g) such

that g(ei, ej) = δij and ej = ∂
∂xj
, i, j = 1, 2, ..., n. In addition, for any X ∈ X(M)

we have X =
∑n

i=1 αi ei and αi ∈ R.

Definition 1.3.3 [15] Suppose that (B, gB) and (F, gF ) are Riemannian manifolds

and f : B → B is a positive smooth function. The Riemannian manifold (B ×

F, g) is called a warped product manifold and denoted by B ×f F , if g(X, Y ) =

gB(π∗(X), π∗(Y )) + f 2(π(p))gF (ψ∗(X), ψ∗(Y )) for all X, Y belong to the tangent

space Tp(M), where M = B × F , and π : M → B, ψ : M → F are projections.

Moreover, π∗ and ψ∗ are the differential maps of π and ψ respectively.

Definition 1.3.4 [72] A Riemannian manifold (M2n+1, g) is said to be an ACR−

manifold if it is furnished by a structure of triple (ξ, η,Φ), where ξ is a characteristic

vector field, η is a 1-form and Φ is a tensor of type (1, 1) over X(M), such that

Φ(ξ) = 0; η(ξ) = 1; η ◦ Φ = 0; Φ2 = −id + η ⊗ ξ;

g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ); ∀ X, Y ∈ X(M).

We denote (M2n+1, ξ, η,Φ, g) to the ACR−manifold.

Remark 1.3.1 [72] If (M2n+1, ξ, η,Φ, g) is an ACR−manifold, then in X(M) there

are two complementary projections l = −Φ2 and m = η ⊗ ξ such that X(M) =

L ⊕M, where L = Im(l) = Im(Φ) = ker(η) and M = Im(m) = ker(Φ). Then
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dim(L) = 2n and dim(M) = 1. On the other hand, we have an almost Hermitian

structure on L with almost complex structure J = Φ|L.

Now, we take the complexification XC(M) = C⊗X(M) of X(M). That is every

elment of XC(M) written as follows:∑
i

ziXi; zi ∈ C; Xi ∈ X(M).

Therefore, XC(M) = D ⊕ D ⊕M, where D and D are given respectively by the

image of the following complementary projections on LC :

σ =
1

2
(id−

√
−1Φc); σ =

1

2
(id+

√
−1Φc),

where Φc(
∑

i ziXi) =
∑

i ziΦ(Xi). Also, there are another two projections from

XC(M) into D and D respectively defined by

Π = −1

2
{(Φc)2 +

√
−1Φc}; Π =

1

2
{−(Φc)2 +

√
−1Φc}.

Kirichenko [72] defined a new frame (p; ε0 = ξ, ε1, ..., εn, ε1̂, ..., εn̂) called A-frame

from the standard frame (p; e0 = ξ, e1, ..., en, e1̂, ..., en̂) which satisfies g(ei, ej) = δij,

where p ∈ M , {e0 = ξ, e1, ..., en, e1̂, ..., en̂} is a basis of X(M), εa =
√

2 σ(ea),

εâ =
√

2 σ(ea), a = 1, 2, ..., n, â = a+ n and i, j = 0, 1, ..., 2n.

Definition 1.3.5 [72] The set of all A-frames on ACR−manifold M2n+1 is called

an AG−structure space of M2n+1.

Definition 1.3.6 [72] For an ACR−manifold (M2n+1, ξ, η,Φ, g), the Riemannian

metric g and the tensor Φ given by the following formulas on the AG−structure

space:

(gij) =


1 0 0

0 O In

0 In O

 ; (Φi
j) =


0 0 0

0
√
−1In O

0 O −
√
−1In

 ,

where In is n× n identity matrix.

Definition 1.3.7 [27] Suppose that M is a smooth manifold. A mapping ∇ :

X(M) × X(M) −→ X(M) defined by ∇ : (X, Y ) −→ ∇XY is called a connection

on M and it has the following properties:
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(1) ∇fX+gYZ = f∇XZ + g∇YZ;

(2) ∇X(fY + gZ) = f∇XY + g∇XZ +X(f)Y +X(g)Z,

for all f, g ∈ C∞(M) and X, Y, Z ∈ X(M).

Lemma 1.3.1 [27] Suppose that X, Y ∈ X(M) and ∇ is a connection on M . If

X = 0, or Y = 0 then ∇XY = 0.

Definition 1.3.8 [27] Suppose that (M, g) is a Riemannian manifold. A Riemann

connection on M is a connection which has the following properties:

(i) ∇XY −∇YX = [X, Y ];

(ii) X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ),

for all X, Y, Z ∈ X(M).

Theorem 1.3.1 [27] (The Fundamental Theorem of Riemannian Geometry) If

(M, g) is a Riemannian manifold then there exists on M a unique connection which

is Riemannian connection.

Theorem 1.3.2 [72] Suppose that (M2n+1, ξ, η,Φ, g) is an ACR−manifold, ∇ is

the Riemannian connection on M and θ is the 1-form of ∇ on AG−structure space

with components θij. Then on AG−structure space, we have:

dgij − gik θkj − gkj θki = 0;

dΦi
j − Φi

k θ
k
j + Φk

j θ
i
k = Φi

j,k ω
k,

where i, j, k = 0, 1, ..., 2n and ωk are the dual of an A-frame (1-forms), with ω0 = ω.

Regarding the above theorem, we have the following corollary:

Corollary 1.3.1 [74] Suppose that (M2n+1, ξ, η,Φ, g) is an ACR−manifold. The

components of the 1-form θ on AG−structure space are given by

θa
b̂

=
√
−1
2

Φa
b̂,k

ωk; θâb = −
√
−1
2

Φâ
b,k ω

k; Φa
b,k = 0;

θ0
â =

√
−1Φ0

â,k ω
k; θ0

a = −
√
−1Φ0

a,k ω
k; Φâ

b̂,k
= 0;

θâ0 = −
√
−1Φâ

0,k ω
k; θa0 =

√
−1Φa

0,k ω
k; Φ0

0,k = 0.



Chapter One 16

Moreover, θij + θĵ
î

= 0; θ0
0 = 0; Φi

j,k = −Φĵ

î,k
, where a, b = 1, 2, ..., n, â = a + n,

0̂ = 0, and ˆ̂i = i.

1.4 Curvature Tensors

In this section, we recall the most important curvature tensors which are studied in

this thesis.

Definition 1.4.1 [27] Suppose that (M, g) is a Riemannian manifold. A tensor

R : X(M) × X(M) × X(M) −→ X(M) of type (3, 1) is said to be a Riemannian

curvature tensor of type (3, 1) if

R(X, Y )Z = ([∇X ,∇Y ]−∇[X,Y ])Z,

for all X, Y, Z ∈ X(M), where ∇ is the Riemannian connection on M . Moreover,

the formula R(X, Y, Z,W ) = g(R(Z,W )Y,X) is a Riemannian curvature tensor of

type (4, 0).

Lemma 1.4.1 [81] Suppose that (M2n+1, ξ, η,Φ, g) is an ACR−manifold and R its

Riemannian curvature tensor of type (4, 0) with components Rijkl on AG−structure

space. Then R satisfies the following:

(1) Rijkl = −Rjikl;

(2) Rijkl = −Rijlk;

(3) Rijkl = Rklij;

(4) Rijkl +Riljk +Riklj = 0,

where i, j, k, l = 0, 1, ..., 2n.

Theorem 1.4.1 [27] (Cartan’s structure equations) Suppose that (Mn, g) is the

Riemannian manifold and θ is 1-form of the Riemannian connection, while R is the

Riemannian curvature tensor of type (3, 1) and {ω1, ..., ωn} is the dual frame to the

basis frame {E1, ..., En} of X(M). Then we have
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(1) dωi = −θij ∧ ωj; (first group)

(2) dθij = −θik ∧ θkj + 1
2
Ri
jkl ω

k ∧ ωl, (second group)

where θij and Ri
jkl are the components of θ and R respectively, whereas, i, j, k, l =

1, ..., n.

Definition 1.4.2 [5] An ACR−manifold (M2n+1, ξ, η,Φ, g) is called a GS−space

forms if there exist three functions f1, f2, f3 on M such that

R(X, Y )Z = f1{g(Y, Z)X − g(X,Z)Y }

+ f2{g(X,ΦZ)ΦY − g(Y,ΦZ)ΦX + 2g(X,ΦY )ΦZ}

+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ};

for all X, Y, Z ∈ X(M), where R is the Riemannian curvature tensor of M . Such

manifold is denoted by M(f1, f2, f3).

Definition 1.4.3 [81] A Ricci tensor of ACR−manifold is a tensor r of type (2,

0) which is the contracting of the Riemannian curvature tensor R of type (3, 1) as

follows:

rij = −Rk
ijk = −gklRkijl,

where rij and gkl are the components of r and g−1 on AG−structure space respec-

tively. Whereas, Rk
ijk and Rkijl are the components of R of type (3, 1) and (4, 0)

respectively. Moreover, rij = rji that is r symmetric tensor.

Definition 1.4.4 [63] (M2n+1, ξ, η,Φ, g) is called an η−Einstein manifold if its

Ricci tensor r satisfies the equation

r = αg + βη ⊗ η,

where α and β are suitable smooth functions. Moreover, if β = 0, then M is called

an Einstein manifold.

Definition 1.4.5 [72] The Ricci operator Q of (M2n+1, ξ, η,Φ, g) is a tensor of

type (1, 1), such that r(X, Y ) = g(QX, Y ) for all X, Y ∈ X(M), where r is the

Ricci tensor of type (2, 0).
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Definition 1.4.6 [72] (M2n+1, ξ, η,Φ, g) is said to have Φ−invariant Ricci tensor

if Φ ◦Q = Q ◦ Φ.

Lemma 1.4.2 [72] An ACR−manifold (M2n+1, ξ, η,Φ, g) has Φ−invariant Ricci

tensor if and only if, on AG−structure space, we have Qâ
0 = Qâ

b = 0, or equivalently,

ra0 = rab = 0, where a, b = 1, 2, ..., n and â = a+ n.

Definition 1.4.7 [102] The projective and concircular curvature tensors of type

(4, 0) on ACR−manifold (M2n+1, ξ, η,Φ, g) are defined by the following formulas

respectively:

P (X, Y, Z,W ) = R(X, Y, Z,W )− 1

2n
{g(X,Z)r(Y,W )− g(X,W )r(Y, Z)};

C̃(X, Y, Z,W ) = R(X, Y, Z,W )− s

2n(2n+ 1)
{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)},

for all X, Y, Z,W ∈ X(M), where s = gijrij, r and R are the scalar curvature, the

Ricci tensor and the Riemannian curvature tensor, respectively.

We can rewrite the above tensors on AG−structure space as follows:

Pijkl = Rijkl −
1

2n
{gik rjl − gil rjk}; (1.4.1)

C̃ijkl = Rijkl −
s

2n(2n+ 1)
{gik gjl − gil gjk}, (1.4.2)

where i, j, k, l = 0, 1, ..., 2n.

Definition 1.4.8 [38] The conharmonic curvature tensor H of type (3, 1) on

ACR− manifold (M2n+1, ξ, η,Φ, g) is defined by the following formula:

H(X, Y )Z = R(X, Y )Z − 1

2n− 1
{r(Y, Z)X − r(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY },

for all X, Y, Z ∈ X(M), where r is the Ricci tensor and r(X, Y ) = g(QX, Y ).

Definition 1.4.9 [102] The generalized curvature tensor B̃ of type (4, 0) on ACR−

manifold (M2n+1, ξ, η,Φ, g) is defined by the following formula:

B̃(X, Y, Z,W ) = a0R(X, Y, Z,W ) + a1{g(X,Z)r(Y,W )− g(X,W )r(Y, Z)

+ r(X,Z)g(Y,W )− r(X,W )g(Y, Z)}

+ 2a2s{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)},
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for all X, Y, Z,W ∈ X(M), where s is the scalar curvature and a0, a1, a2 are scalars.

Definition 1.4.10 [75] An ACR−manifold (M2n+1, ξ, η,Φ, g) is called a locally

symmetric, if ∇X(R)(Y, Z)W = 0, for all X, Y, Z,W ∈ X(M), where R is the

Riemann curvature tensor of M .

Definition 1.4.11 [114] An ACR−manifold (M2n+1, ξ, η,Φ, g) is called a general-

ized Φ−recurrent, if there are nonzero 1-forms ρ and λ such that the following hold

for all X, Y, Z,W ∈ X(M):

Φ2(∇X(R)(Y, Z)W ) = ρ(X)R(Y, Z)W + λ(X){g(Z,W )Y − g(Y,W )Z},

where R is the Riemannian curvature tensor of M .

On the other hand, Kirichenko [71] introduced six tensors called the first structure

tensor B, ..., and sixth structure tensor G on ACR−manifold (M2n+1, ξ, η,Φ, g)

which are described as follow:

B(X, Y ) = −1

8
{Φ ◦ ∇Φ2Y (Φ)(Φ2X) + Φ ◦ ∇ΦY (Φ)(ΦX) + Φ2 ◦ ∇ΦY (Φ)(Φ2X)

− Φ2 ◦ ∇Φ2Y (Φ)(ΦX)};

C(X, Y ) = −1

8
{−Φ ◦ ∇Φ2Y (Φ)(Φ2X) + Φ ◦ ∇ΦY (Φ)(ΦX) + Φ2 ◦ ∇ΦY (Φ)(Φ2X)

+ Φ2 ◦ ∇Φ2Y (Φ)(ΦX)};

D(X) =
1

4
{2Φ ◦ ∇Φ2X(Φ)ξ − 2Φ2 ◦ ∇ΦX(Φ)ξ − Φ ◦ ∇ξ(Φ)(Φ2X)

+ Φ2 ◦ ∇ξ(Φ)(ΦX)};

E(X) = −1

2
{Φ ◦ ∇Φ2X(Φ)ξ + Φ2 ◦ ∇ΦX(Φ)ξ};

F (X) =
1

2
{Φ ◦ ∇Φ2X(Φ)ξ − Φ2 ◦ ∇ΦX(Φ)ξ};

G = Φ ◦ ∇ξ(Φ)ξ.
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The above structure tensors have components on AG−structure space of M respec-

tively are described below.

Bab
c = −1

2

√
−1Φa

b̂,c
; B c

ab = 1
2

√
−1Φâ

b,ĉ;

Babc = 1
2

√
−1Φa

[b̂,ĉ]
; Babc = −1

2

√
−1Φâ

[b,c];

Bab =
√
−1(Φa

0,b̂
− 1

2
Φa
b̂,0

); Bab = −
√
−1(Φâ

0,b − 1
2
Φâ
b,0);

Ba
b =

√
−1Φa

0,b; B b
a = −

√
−1Φâ

0,b̂
;

Cab =
√
−1Φ0

[â,b̂]
; Cab = −

√
−1Φ0

[a,b];

Ca = −
√
−1Φ0

â,0; Ca =
√
−1Φ0

a,0;

and all other components of these tensors being zero, where a, b, c = 1, ..., n, â = a+n

and [., .] denotes the alternating operator of their indexes.

Remark 1.4.1 [72] If T is a tensor with components T i then T î = Ti and its

complex conjugate is T i = T î.

Definition 1.4.12 [21] A (κ, µ)-nullity distribution of (M2n+1, ξ, η,Φ, g) with the

Riemannian curvature tensor R and (κ, µ) ∈ R2 is

N(κ, µ) : p→ Np(κ, µ) = {Z ∈ Tp(M) : R(X, Y )Z = κ[g(Y, Z)X

− g(X,Z)Y ] + µ[g(Y, Z)hX − g(X,Z)hY ]},

for all X, Y ∈ Tp(M), where h = 1
2
Lξ(Φ) and L is the Lie derivative. Moreover,

h(X) =
1

2
{∇ξ(Φ)X −∇ΦXξ + Φ(∇Xξ)}; ∀ X ∈ X(M).

Definition 1.4.13 [75] A Φ−holomorphic sectional (ΦHS−) curvature of ACR−

manifold (M2n+1, ξ, η,Φ, g) in the direction of X (X 6= 0; X ∈ ker(η)) is defined by

H(X) =
g(R(X,ΦX)X,ΦX)

g(X,X)2
,

where R is the Riemannian curvature tensor of M . Moreover, M is called of a

pointwise constant ΦHS−curvature if H(X) = γ, where γ ∈ C∞(M) and γ does

not depend on X.

Theorem 1.4.2 [75] An ACR−manifold (M2n+1, ξ, η,Φ, g) has pointwise constant

ΦHS−curvature if and only if, on AG− structure space, the Riemannian curvature
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tensor R of M satisfies

R
(a d)
(bc) =

γ

2
δ̃adbc =

γ

2
(δab δ

d
c + δac δ

d
b ),

where (··) denotes the symmetric operator of the including indexes.

Definition 1.4.14 [63] An ACR−manifold (M2n+1, ξ, η,Φ, g) is called a Kenmotsu

manifold if

∇X(Φ)Y = −g(X,ΦY )ξ − η(Y )ΦX; ∀ X, Y ∈ X(M),

where ∇ is the Riemannian connection on M .

Theorem 1.4.3 [72] Suppose that (M2n+1, ξ, η,Φ, g) is Kenmotsu manifold. Then

the following are equivalent:

(1) ∇X(Φ)Y = −g(X,ΦY )ξ − η(Y )ΦX; ∀ X, Y ∈ X(M);

(2) B = C = D = F = G = 0, E = id;

(3) On AG−structure space, we have the following:

Bab
c = Babc = Bab = 0;

B c
ab = Babc = Bab = 0;

Ba
b = B a

b = δab ;

Cbc = Cbc = Cb = Cb = 0.

Theorem 1.4.4 [95] The ACR−manifold (M2n+1, ξ, η,Φ, g) is normal if and only

if,

Φ(∇X(Φ)Y )−∇ΦX(Φ)Y − (∇X(η)Y )ξ = 0; ∀ X, Y ∈ X(M).

Remark 1.4.2 [34] The normal ACR−manifold (M2n+1, ξ, η,Φ, g) has the follow-

ing class:

C3 ⊕ C4 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8,

where
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Classes Defining conditions

C3 ∇X(Ω)(Y, Z)−∇ΦX(Ω)(ΦY, Z) = 0; δΩ = 0

C4 ∇X(Ω)(Y, Z) = − 1
2(n−1)

[g(ΦX,ΦY )δΩ(Z)− g(ΦX,ΦZ)δΩ(Y )

−Ω(X, Y )δΩ(ΦZ) + Ω(X,Z)δΩ(ΦY )]; δΩ(ξ) = 0

C5 ∇X(Ω)(Y, Z) = 1
2n

[Ω(X,Z)η(Y )− Ω(X, Y )η(Z)]δη

C6 ∇X(Ω)(Y, Z) = 1
2n

[g(X,Z)η(Y )− g(X, Y )η(Z)]δΩ(ξ)

C7 ∇X(Ω)(Y, Z) = η(Z)∇Y (η)ΦX + η(Y )∇ΦX(η)Z; δΩ = 0

C8 ∇X(Ω)(Y, Z) = −η(Z)∇Y (η)ΦX + η(Y )∇ΦX(η)Z; δη = 0

for all X, Y, Z ∈ X(M), such that Ω(X, Y ) = g(X,ΦY ), and δη, δΩ are the coderiva-

tives of η and Ω respectively.

Theorem 1.4.5 [74] Suppose that (M2n+1, ξ, η,Φ, g) is an ACR−manifold and

{ω0 = ω, ω1, ..., ω2n} is the dual of A-frame on M . Then the first group of Cartan’s

structure equations on AG−structure space is given by

(1) dωa = −θab ∧ ωb +Bab
c ω

c ∧ ωb +Babc ωb ∧ ωc +Ba
b ω ∧ ωb +Bab ω ∧ ωb ;

(2) dωa = θba ∧ ωb +B c
ab ωc ∧ ωb +Babc ω

b ∧ ωc +B b
a ω ∧ ωb +Bab ω ∧ ωb ;

(3) dω = Cbc ω
b ∧ ωc + Cbc ωb ∧ ωc + Cb

c ω
c ∧ ωb + Cb ω ∧ ωb + Cb ω ∧ ωb,

where Cb
c = Bb

c −B b
c .

Theorem 1.4.6 [72] (The Fundamental Theorem of Tensor Analysis) Suppose that

(M2n+1, ξ, η,Φ, g) is an ACR−manifold. If T is a tensor of type (r, s) on M and ∇

is the Riemannian connection on M with components T j1...jsi1...ir
and θij respectively on

AG−structure space, then the following equality holds:

∇T j1...jsi1...ir
= dT j1...jsi1...ir

− T j1...jski2...ir
θki1 − ...− T

j1...js
i1...ir−1k

θkir

+ T kj2...jsi1...ir
θj1k + ...+ T

j1...js−1k
i1...ir

θjsk = T j1...jsi2...ir,k
ωk,

where ∇T is a tensor of type (r + 1, s) on M with components T j1...jsi1...ir,k
. Note that

all indexes run from 0 to 2n.
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1.5 Hypersurface on Almost Hermitian Manifolds

In this section, we recall an almost contact structure on a hypersurface of AH-

manifold and derive its basic relations.

Definition 1.5.1 [72] A Riemannian manifold (N2n, h) is said to be an almost

Hermitian (AH-) manifold if it is furnished by a tensor J of type (1, 1) over X(N),

such that J2 = −id; h(JX, JY ) = h(X, Y ); ∀ X, Y ∈ X(N). Tensor J is called

an almost complex structure.

Now, if M2n−1 is a hypersurface of (N2n, J, h) then we can define an almost

contact structure on M as follows [13]:

ξ = J(n0); η(X) = h(ξ,X); Φ(X) = J ◦ Π3(X); g(X, Y ) = h(X, Y );

where X, Y ∈ X(M), (n0)p is a unit tangent vector which form a basis of

T⊥p (M) = {X ∈ Tp(N) | h(X, Y ) = 0; ∀ Y ∈ Tp(M)},

for all p ∈M , Π3 = id− n3, n3 = n1 + n2, n2 = η ⊗ ξ, n1 = ζ ⊗ n0 and

ζ(X) = h(n0, X); X ∈ X(N).

Theorem 1.5.1 [13] An ACR−manifold (M2n−1, ξ, η,Φ, g) which is a hypersurface

of an AH-manifold (N2n, J, h) has the following first family of the Cartan structure

equations:

dωα = θαβ ∧ ωβ + Cαβ
γ ωγ ∧ ωβ + Cαβγ ωβ ∧ ωγ + (

√
2Cαn

β +
√
−1σαβ )ωβ ∧ ω

+ (
√
−1σαβ −

√
2C̃nαβ − 1√

2
Cαβ
n −

1√
2
C̃αβn)ωβ ∧ ω;

dωα = −θβα ∧ ωβ + Cγ
αβ ωγ ∧ ω

β + Cαβγ ω
β ∧ ωγ + (

√
2Cβ

αn −
√
−1σβα)ωβ ∧ ω

− (
√
−1σαβ +

√
2C̃nαβ +

1√
2
Cn
αβ +

1√
2
C̃αβn)ωβ ∧ ω;

dω =
√

2Cnαβ ω
α ∧ ωβ +

√
2Cnαβ ωα ∧ ωβ + (

√
2Cnα

β −
√

2Cα
nβ

− 2
√
−1σαβ )ωβ ∧ ωα + (C̃nβn + Cn

nβ +
√
−1σnβ)ω ∧ ωβ

+ (C̃nβn + Cnβ
n −

√
−1σβn)ω ∧ ωβ,
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where

C̃abc =
√
−1
2
Ja
b̂,ĉ

; C̃abc = −
√
−1
2
J âb,c ;

Cabc = C̃a[bc] ; Cabc = C̃a[bc] ;

Cab
c = −

√
−1
2
Ja
b̂,c

; Cc
ab =

√
−1
2
J âb,ĉ ,

and σ : X(M) × X(M) −→ X(M) is the second fundamental (quadratic) form

which is symmetric (σαβ = σβα) such that ∇̃XY = ∇XY + σ(X, Y ) with ∇̃ and

∇ are the Riemannian connections of N and M respectively (see [31]). Further,

α, β, γ = 1, 2, ..., n− 1, while a, b, c = 1, 2, ..., n and ω = ωn = ωn.





Chapter 2

The Geometry on the Manifold of

Kenmotsu Type

In this chapter, we generalize the Kenmotsu manifold to a new manifold called a

manifold of Kenmotsu type. Moreover, the characterization identity, the Cartan’s

structure equations, and another discussion of the manifold of Kenmotsu type are

written in more detail. In particular, we introduce a theoretical Physical application

for the mentioned manifold.

2.1 The Manifold of Kenmotsu Type

In this section, we introduce a new class of ACR−manifolds with the class of Ken-

motsu manifolds as a subclass. We called it a manifold of Kenmotsu type. Moreover,

we discuss its characterization on AG−structure space.

Definition 2.1.1 An ACR−manifold (M2n+1, ξ, η,Φ, g) is said to be a manifold of

Kenmotsu type if its Riemannian connection ∇ satisfies the following identity:

∇X(Φ)Y −∇ΦX(Φ)ΦY = −η(Y )ΦX; ∀ X, Y ∈ X(M).

Now, the manifold of Kenmotsu type can be characterized on the AG−structure

space by the following identity:

(Φi
j,k − Φi

l,t Φt
k Φl

j)X
k Y j εi = −ηj Φi

k X
k Y j εi; (2.1.1)

25
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where i, j, k, l, t = 0, a, â; a = 1, ..., n; â = a + n. Then we can rewrite the identity

(2.1.1) as follows:

Φi
j,k − Φi

l,t Φt
k Φl

j + ηj Φi
k = 0. (2.1.2)

Theorem 2.1.1 On the AG−structure space, the manifold (M2n+1, ξ, η,Φ, g) of

Kenmotsu type verifies the following conditions:

Φi
j,0 = Φi

a,b = 0; Φi
0,a = −

√
−1δia,

and their complex conjugate, where i, j = 0, 1, ..., 2n and a, b = 1, ..., n.

Proof : Regarding the identity (2.1.2) and the Definition 1.3.6, we have Φi
j,0 = 0

if we put k = 0 in (2.1.2). Moreover, if we put j = 0 and k = a in (2.1.2), we

obtain Φi
0,a = −

√
−1δia, while if j = a and k = b, we get that Φi

a,b = 0. Notice that

ηj = g0j. 2

Now, from the above theorem and the components of Kirichenko’s tensors in

chapter 1, we can deduce the following corollary:

Corollary 2.1.1 If (M2n+1, ξ, η,Φ, g) is the manifold of Kenmotsu type, then the

conditions below are equivalents.

(1) ∇X(Φ)Y −∇ΦX(Φ)ΦY = −η(Y )ΦX; ∀ X, Y ∈ X(M).

(2) C = D = F = G = 0; E = id.

(3) On the AG−structure space appears that

Bab
c = −Bba

c; B c
ab = −B c

ba ;

Babc = Bab = Cab = Ca = 0;

Babc = Bab = Cab = Ca = 0;

Ba
b = B a

b = δab .

Theorem 2.1.2 There is no 3-dimensional manifold of Kenmotsu type.

Proof : Suppose that M is a manifold of Kenmotsu type with dimension 2n+1 = 3.

Then n = 1 and a = b = c = 1. Moreover, the components of the first structure

tensor B are Bab
c = B11

1 and B c
ab = B 1

11 . But from the Corollary 2.1.1; item (4),
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we have B11
1 = −B11

1 and B 1
11 = −B 1

11 and this implies that Bab
c = B c

ab = 0.

Then according to the Theorem 1.4.3; item (4), we conclude that M is Kenmotsu

manifold. 2

Next, we construct an interesting example for a manifold of Kenmotsu type

which is not Kenmotsu.

Example 2.1.1 Suppose that (M5, ξ, η,Φ, g) is an ACR−manifold of dimension

5, such that

M = {(x, y, z, u, v) ∈ R5 : xzv 6= 0};

and {e0 = ξ, e1, e2, e3, e4} is a basis of X(M), given by

e0 =
∂

∂v
; e1 = exp(−v)

∂

∂x
; e2 = exp(−(v + x+ z))

∂

∂y
; e3 = exp(−v)

∂

∂z
;

e4 = exp(−(v + x+ z))
∂

∂u
.

Then we have the following Lie brackets:

[e1, e0] = e1; [e4, e1] = exp(−v)e4; [e3, e0] = e3; [e4, e0] = e4;

[e1, e3] = 0; [e2, e0] = e2; [e2, e3] = exp(−v)e2; [e2, e4] = 0;

[e2, e1] = exp(−v)e2; [e4, e3] = exp(−v)e4.

Moreover, if we have the following:

Φ(e0) = 0; Φ(e1) = e3; Φ(e2) = e4; Φ(e3) = −e1; Φ(e4) = −e2;

η(e0) = 1; η(e1) = η(e2) = η(e3) = η(e4) = 0;

g(ei, ej) =

 1, i = j;

0, i 6= j;

where i, j = 0, 1, 2, 3, 4. Then from the Koszul’s formula that given in [37] as follows:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))− g(X, [Y, Z])− g(Y, [X,Z])

+ g(Z, [X, Y ]); ∀ X, Y, Z ∈ X(M).
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We deduce the following values for the Riemannian connection ∇ of the metric g:

∇e0e0 = 0; ∇e0e1 = 0; ∇e0e2 = 0;

∇e1e0 = e1; ∇e1e1 = −e0; ∇e1e2 = 0;

∇e2e0 = e2; ∇e2e1 = exp(−v)e2; ∇e2e2 = − exp(−v)(e1 + e3)− e0;

∇e3e0 = e3; ∇e3e1 = 0; ∇e3e2 = 0;

∇e4e0 = e4; ∇e4e1 = exp(−v)e4; ∇e4e2 = 0;

∇e0e3 = 0; ∇e0e4 = 0;

∇e1e3 = 0; ∇e1e4 = 0;

∇e2e3 = exp(−v)e2; ∇e2e4 = 0;

∇e3e3 = −e0; ∇e3e4 = 0;

∇e4e3 = exp(−v)e4; ∇e4e4 = − exp(−v)(e1 + e3)− e0.

To clarify the above result, we apply Koszul’s formula only for ∇e2e3 and then

similarly for the rest.

2g(∇e2e3, e0) = −g(e2, [e3, e0])− g(e3, [e2, e0]) + g(e0, [e2, e3]) = 0;

2g(∇e2e3, e1) = −g(e2, [e3, e1])− g(e3, [e2, e1]) + g(e1, [e2, e3]) = 0;

2g(∇e2e3, e2) = −g(e2, [e3, e2])− g(e3, [e2, e2]) + g(e2, [e2, e3]) = 2g(exp(−v)e2, e2);

2g(∇e2e3, e3) = −g(e2, [e3, e3])− g(e3, [e2, e3]) + g(e3, [e2, e3]) = 0;

2g(∇e2e3, e4) = −g(e2, [e3, e4])− g(e3, [e2, e4]) + g(e4, [e2, e3]) = 0.

Then ∇e2e3 = exp(−v)e2 and regarding the above discussion, we deduce that M is

the manifold of Kenmotsu type, but M is not Kenmotsu manifold because if X = e4

and Y = e1, then

∇X(Φ)Y = ∇XΦ(Y )− Φ(∇XY )

= exp(−v)(e2 + e4) 6= 0 = −g(X,ΦY )ξ − η(Y )ΦX.

2.2 The Structure Equations of the Manifold of

Kenmotsu Type

In this section, we establish Cartan’s structure equations for the manifold of Ken-

motsu type.
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Theorem 2.2.1 If (M2n+1, ξ, η,Φ, g) is the manifold of Kenmotsu type with Rie-

mannian connection ∇, then the components of the connection form θ on the AG−

structure space are given by:

θa
b̂

= −Bab
c ω

c; θâb = θa
b̂
; θ0

0 = 0;

θ0
â = −ωa; θ0

a = θ0
â; θij + θĵ

î
= 0.

where Bab
c = B c

ab ; ωa = ωa; ωa = ωa.

Proof : According to the Corollary 1.3.1, the components of Kirichenko’s tensors

and the Theorem 2.1.1, we have

θa
b̂

=

√
−1

2
Φa
b̂,k
ωk;

=

√
−1

2
Φa
b̂,0
ω0 +

√
−1

2
Φa
b̂,c
ωc +

√
−1

2
Φa
b̂,ĉ
ωĉ;

=

√
−1

2
Φa
b̂,c
ωc;

= −Bab
c ω

c,

and similarly for the remaining components. 2

Theorem 2.2.2 The manifold of Kenmotsu type has the following Cartan’s struc-

ture equations (first group):

(1) dω = 0;

(2) dωa = −θab ∧ ωb +Bab
c ω

c ∧ ωb − ωa ∧ ω;

(3) dωa = θba ∧ ωb +B c
ab ωc ∧ ωb − ωa ∧ ω.

Proof : Regarding the Theorem 1.4.5 and the Corollary 2.1.1; item (4), yield the

results. 2

Theorem 2.2.3 The second family of Cartan’s structure equations for the manifold

of Kenmotsu type is given by:

(1) dθab = −θac ∧ θcb + Aadbc ω
c ∧ ωd + Aabcd ω

c ∧ ωd + Aacdb ωc ∧ ωd;

(2) dBab
c = Bab

d θ
d
c −Bdb

c θ
a
d −Bad

c θ
b
d +Bab

cd ω
d +Babd

c ωd −Bab
c ω;
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(3) dB c
ab = −B d

ab θcd +B c
db θda +B c

ad θdb +B cd
ab ωd +B c

abd ωd −B c
ab ω,

where Aa[bcd] = A
[bcd]
a = 0 and

Aad[bc] −Bad
[cb] −Bah

[b B
d

|h|c] = 0; Abacd +B b
a[cd] −B h

a[c B b
|h|d] = 0;

A
[bc]
ad +B

[cb]
ad +B

[b
ah B

|h|c]
d = 0; Aacdb −B

a[cd]
b +B

a[c
hB
|h|d]

b = 0.

Proof : By applying the exterior differentiation operator d on the Theorem 2.2.2;

item (2) and using the Lemma 1.2.1, we get

0 = −dθab ∧ ωb + θab ∧ (−θbc ∧ ωc +Bbc
d ω

d ∧ ωc − ωb ∧ ω)

+ dBab
c ∧ ωc ∧ ωb +Bab

c(−θcd ∧ ωd +Bcd
h ω

h ∧ ωd − ωc ∧ ω) ∧ ωb

−Bab
c ω

c ∧ (θdb ∧ ωd +B h
bd ωh ∧ ωd − ωb ∧ ω)

− (−θab ∧ ωb +Bab
c ω

c ∧ ωb − ωa ∧ ω) ∧ ω.

Then after changing the indexes of some terms, we obtain the following:

0 = −(dθab + θac ∧ θcb) ∧ ωb −B
a[c

h B
|h|d]

b ω
b ∧ ωc ∧ ωd

+ (dBab
c +Bdb

c θ
a
d +Bad

c ∧ θbd −Bab
d θ

d
c ) ∧ ωc ∧ ωb (2.2.3)

−Bab
c ω

c ∧ ω ∧ ωb +Bah
[b B

d
|h|c] ω

b ∧ ωc ∧ ωd.

Since dθab + θac ∧ θcb is a 2-form then it can be written according to the family of basis

for 2-forms on AG−structure space:

{θcd ∧ θ
f
h, θ

c
d ∧ ωh, θcd ∧ ωh, θcd ∧ ω, ωc ∧ ωd, ωc ∧ ωd, ωc ∧ ω, ωc ∧ ωd, ωc ∧ ω}

as follows:

dθab + θac ∧ θcb = Aadhbcf θ
c
d ∧ θ

f
h + Aadbch θ

c
d ∧ ωh + Aadhbc θcd ∧ ωh

+ Aadbc0 θ
c
d ∧ ω + Aabcd ω

c ∧ ωd + Aadbc ω
c ∧ ωd

+ Aabc0 ω
c ∧ ω + Aacdb ωc ∧ ωd + Aac0b ωc ∧ ω,

where {Aadhbcf , A
ad
bch, A

adh
bc , A

ad
bc0, A

a
bcd, A

ad
bc , A

a
bc0, A

acd
b , Aac0b } are suitable family of smooth

functions and all indexes are run from 1 to n.

In the same manner, dBab
c +Bdb

c θ
a
d +Bad

c θ
b
d−Bab

d θ
d
c can be written according

to the 1-forms family of basis on AG−structure space {θdh, ωd, ωd, ω} as follows:

dBab
c +Bdb

c θ
a
d +Bad

c θ
b
d −Bab

d θ
d
c = Babh

cd θ
d
h +Bab

cd ω
d +Babd

c ωd +Bab0
c ω,
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where also {Babh
cd, B

ab
cd, B

abd
c, B

ab0
c} are suitable family of smooth functions. Then

the equation (2.2.3) becomes

− Aadhbcf θ
c
d ∧ θ

f
h ∧ ω

b − Aad[b|c|h] θ
c
d ∧ ωh ∧ ωb − Aadhbc θcd ∧ ωh ∧ ωb − Aadbc0 θcd ∧ ω ∧ ωb

− Aa[bcd] ω
c ∧ ωd ∧ ωb − Aad[bc] ω

c ∧ ωd ∧ ωb − Aa[bc]0 ωc ∧ ω ∧ ωb − Aacdb ωc ∧ ωd ∧ ωb

− Aac0b ωc ∧ ω ∧ ωb +Babh
cd θ

d
h ∧ ωc ∧ ωb +Bab

[cd] ω
d ∧ ωc ∧ ωb

+Bab0
c ω ∧ ωc ∧ ωb −B

a[c
h B

|h|d]
b ω

b ∧ ωc ∧ ωd −Bab
c ω

c ∧ ω ∧ ωb

+Bah
[b B

d
|h|c] ω

b ∧ ωc ∧ ωd +Ba[bd]
c ωd ∧ ωc ∧ ωb = 0.

Then from the above discussion, we get

Aadhbcf = Aad[b|c|h] = Aadbc0 = Aa[bcd] = 0;

Aad[bc] −Bad
[cb] −Bah

[b B
d

|h|c] = 0;

Aacdb −B
a[cd]

b +B
a[c

hB
|h|d]

b = 0; (2.2.4)

Aac0b −Bac0
b −Bac

b = 0;

Aadhbc +Bahd
bc = 0; Aa[bc]0 = 0,

where [.|.|.] denotes the alternating operator of its indexes except |.|, while [..] just

the alternating operator of its indexes.

Now, applying the same argument above on the Theorem 2.2.2; item (3), we have

0 = dθba ∧ ωb − θba ∧ (θdb ∧ ωd +B h
bd ωh ∧ ωd − ωb ∧ ω)

+ dB c
ab ∧ ωc ∧ ωb +B c

ab (θdc ∧ ωd +B h
cd ωh ∧ ωd − ωc ∧ ω) ∧ ωb

−B c
ab ωc ∧ (−θbd ∧ ωd +Bbd

h ω
h ∧ ωd − ωb ∧ ω)

− (θba ∧ ωb +B c
ab ωc ∧ ωb − ωa ∧ ω) ∧ ω.

Rearrangement the above equation and interchanging some indexes, we get

0 = (dθba − θda ∧ θbd) ∧ ωb −B
[c

ah B
|h|b]

d ωb ∧ ωc ∧ ω
d

+ (dB c
ab −B c

db θda −B c
ad θdb +B d

ab θcd) ∧ ωc ∧ ωb (2.2.5)

+B c
ab ωc ∧ ωb ∧ ω +B h

a[b B d
|h|c] ωd ∧ ωc ∧ ωb.

Since θba = −θab and B c
ab = Bab

c, then from the equation (2.2.4), we get

dθba − θda ∧ θbd = Abchad θdc ∧ ωh + Abcadh θ
d
c ∧ ωh + Abcda ωc ∧ ωd + Abcad ωc ∧ ωd

+ Abc0a ωc ∧ ω + Abacd ω
c ∧ ωd + Abac0 ω

c ∧ ω,



Chapter Two 32

and

dB c
ab −B c

db θda −B c
ad θdb +B d

ab θcd = B cd
abh θhd +B cd

ab ωd +B c
abd ωd +B c

ab0 ω.

If we substitute the above equations in the equation (2.2.5), then we establish the

following:

0 = A
[b|c|h]
ad θdc ∧ ωh ∧ ωb + Abcadh θ

d
c ∧ ωh ∧ ωb + A[bcd]

a ωc ∧ ωd ∧ ωb

+ A
[bc]
ad ωc ∧ ωd ∧ ωb + A[bc]0

a ωc ∧ ω ∧ ωb + Abacd ω
c ∧ ωd ∧ ωb

+ Abac0 ω
c ∧ ω ∧ ωb +B cd

abh θhd ∧ ωc ∧ ωb +B
[cd]

ab ωd ∧ ωc ∧ ωb

+B c
a[bd] ω

d ∧ ωc ∧ ωb +B c
ab0 ω ∧ ωc ∧ ωb +B c

ab ωc ∧ ωb ∧ ω

+B h
a[b B d

|h|c] ωd ∧ ωc ∧ ωb −B
[c

ah B
|h|b]

d ωb ∧ ωc ∧ ω
d.

So, the above equation produce the following relations:

A
[b|c|h]
ad = A[bcd]

a = 0; Abcadh −B bc
ahd = 0;

A
[bc]
ad +B

[cb]
ad +B

[b
ah B

|h|c]
d = 0;

Abacd +B b
a[cd] −B h

a[c B
b

|h|d] = 0; (2.2.6)

Abac0 +B b
ac0 +B b

ac = 0; A[bc]0
a = 0.

Regarding Corollary 2.1.1; item (4), we have B
[ab]

c = Bab
c and B c

[ab] = B c
ab .

Therefore, all the components of their exterior differentiation have the same prop-

erty. Then from this fact, the equations (2.2.4) and (2.2.6), we deduce the required

results. 2

2.3 Curvature Tensors Components on Manifold

of Kenmotsu Type

This section establishes the components of Riemannian Curvature tensor and Ricci

tensor on the AG−structure space for the manifold of Kenmotsu type.

Theorem 2.3.1 On the AG−structure space, the components of Riemannian cur-

vature tensor R for the manifold of Kenmotsu type are given by
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(1) Ra
0c0 = −δac ;

(2) Ra
bcd = 2Aabcd;

(3) Ra
bcd̂

= Aadbc −Bah
c B

d
bh − δac δdb ;

(4) Ra
b̂cd

= 2(Bab
[cd] − δa[c δbd]) ;

(5) Ra
b̂cd̂

= Babd
c −Bab

h B
hd

c,

and the other components are identical to zero or given by the properties of R in

Lemma 1.4.1, or the complex conjugate to the above components.

Proof : Regarding the Cartan’s structure equations (second group) in the Theorem

1.4.1; item (2), we conclude the following:

dθij + θik ∧ θkj =
1

2
Ri
jkl ω

k ∧ ωl;

dθij + θi0 ∧ θ0
j + θic ∧ θcj + θiĉ ∧ θĉj = Ri

jc0 ω
c ∧ ω +Ri

jĉ0 ωc ∧ ω +
1

2
Ri
jcd ω

c ∧ ωd

+Ri
jcd̂

ωc ∧ ωd +
1

2
Ri
jĉd̂

ωc ∧ ωd. (2.3.7)

Moreover, we take i, j, k, l = 0, 1, ..., 2n and a, b, c, d = 1, 2, ..., n. So, there are

several cases regarding the values of i, j = 0, a, â. These cases are designing as the

following:

Case (1). If we put i = j = 0 in the equation (2.3.7), then the Theorem 2.2.1

produces the following:

R0
0c0 = R0

0ĉ0 = R0
0cd = R0

0cd̂
= R0

0ĉd̂
= 0.

Case (2). If we set i = a and j = 0 in the equation (2.3.7), then the Theorem 2.2.1

gives us the following:

dωa + θac ∧ ωc −Bac
d ω

d ∧ ωc = Ra
0c0 ω

c ∧ ω +Ra
0ĉ0 ωc ∧ ω +

1

2
Ra

0cd ω
c ∧ ωd

+Ra
0cd̂

ωc ∧ ωd +
1

2
Ra

0ĉd̂
ωc ∧ ωd.

Regarding the Theorem 2.2.2; item (2), then the above equation reduces to the

following:

−δac ωc ∧ ω = Ra
0c0 ω

c ∧ ω +Ra
0ĉ0 ωc ∧ ω +

1

2
Ra

0cd ω
c ∧ ωd

+Ra
0cd̂

ωc ∧ ωd +
1

2
Ra

0ĉd̂
ωc ∧ ωd.
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So, we have

Ra
0c0 = −δac ; Ra

0ĉ0 = Ra
0cd = Ra

0cd̂
= Ra

0ĉd̂
= 0.

Case (3). If we assign i = a and j = b in the equation (2.3.7) and using the

Theorem 2.2.1, then we conclude that

dθab − ωa ∧ ωb + θac ∧ θcb +Bac
d B

h
cb ωd ∧ ωh = Ra

bc0 ω
c ∧ ω +Ra

bĉ0 ωc ∧ ω

+
1

2
Ra
bcd ω

c ∧ ωd +Ra
bcd̂

ωc ∧ ωd +
1

2
Ra
bĉd̂

ωc ∧ ωd.

Interchanging the indexes of the fourth term on the left side for the above equation

by the permutation (chd), then it can be written as follows:

dθab − δac δdb ωc ∧ ωd + θac ∧ θcb −Bah
c B

d
bh ωc ∧ ωd = Ra

bc0 ω
c ∧ ω +Ra

bĉ0 ωc ∧ ω

+
1

2
Ra
bcd ω

c ∧ ωd +Ra
bcd̂

ωc ∧ ωd +
1

2
Ra
bĉd̂

ωc ∧ ωd.

Then taking into account the Theorem 2.2.3; item (1), we have

(Aadbc −Bah
c B

d
bh − δac δdb )ωc ∧ ωd + Aabcd ω

c ∧ ωd + Aacdb ωc ∧ ωd = Ra
bc0 ω

c ∧ ω

+Ra
bĉ0 ωc ∧ ω +

1

2
Ra
bcd ω

c ∧ ωd +Ra
bcd̂

ωc ∧ ωd +
1

2
Ra
bĉd̂

ωc ∧ ωd.

Thus we conclude that

Ra
bc0 = Ra

bĉ0 = 0; Ra
bcd = 2Aabcd; Ra

bcd̂
= Aadbc −Bah

c B
d

bh − δac δdb ;

Ra
bĉd̂

= 2Aacdb .

Case (4). If we determine i = a, and j = b̂ in the equation (2.3.7) and applying

the Theorem 2.2.1, we get

d(−Bab
d ω

d)− δa[c δbd] ω
c ∧ ωd −Bcb

d θ
a
c ∧ ωd +Bac

d ω
d ∧ θbc = Ra

b̂c0
ωc ∧ ω

+Ra
b̂ĉ0

ωc ∧ ω +
1

2
Ra
b̂cd

ωc ∧ ωd +Ra
b̂cd̂

ωc ∧ ωd +
1

2
Ra
b̂ĉd̂

ωc ∧ ωd.

Regarding the Lemma 1.2.1; item (3), then the above equation becomes

− dBab
d ∧ ωd −Bab

c dω
c − δa[c δbd] ω

c ∧ ωd −Bcb
d θ

a
c ∧ ωd +Bac

d ω
d ∧ θbc

= Ra
b̂c0

ωc ∧ ω +Ra
b̂ĉ0

ωc ∧ ω +
1

2
Ra
b̂cd

ωc ∧ ωd +Ra
b̂cd̂

ωc ∧ ωd +
1

2
Ra
b̂ĉd̂

ωc ∧ ωd.
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Then according to the Theorem 2.2.2; item (2) and the Theorem 2.2.3; item (2), we

have

dωc = −θcd ∧ ωd +Bcd
h ω

h ∧ ωd − ωc ∧ ω;

dBab
d = Bab

c θ
c
d −Bcb

d θ
a
c −Bac

d θ
b
c +Bab

dc ω
c +Babc

d ωc −Bab
d ω.

So, the substitution of them in the above equation and interchanging the indices of

certain terms as needed to get that

(Bab
[cd] − δa[c δbd])ω

c ∧ ωd + (Babd
c −Bab

h B
hd

c)ω
c ∧ ωd = Ra

b̂c0
ωc ∧ ω

+Ra
b̂ĉ0

ωc ∧ ω +
1

2
Ra
b̂cd

ωc ∧ ωd +Ra
b̂cd̂

ωc ∧ ωd +
1

2
Ra
b̂ĉd̂

ωc ∧ ωd.

So, we get

Ra
b̂c0

= Ra
b̂ĉ0

= Ra
b̂ĉd̂

= 0; Ra
b̂cd

= 2(Bab
[cd] − δa[c δbd]); Ra

b̂cd̂
= Babd

c −Bab
h B

hd
c.

This complete the proof. 2

Corollary 2.3.1 The Riemannian curvature tensor R of the manifold of Kenmotsu

type (M2n+1, ξ, η,Φ, g) satisfies the following:

(1) R(X, Y )ξ = η(X)Y − η(Y )X;

(2) R(X, ξ)Y = g(X, Y )ξ − η(Y )X,

for all X, Y ∈ X(M).

Proof : On the A-frame (p; ξ, ε1, ..., εn, ε1̂, ..., εn̂) of AG−structure space and regard-

ing the Theorem 2.3.1, we have

R(X, Y )ξ = Ri
0jk X

jY kεi;

= Ri
00b X

0Y bεi +Ri
00b̂

X0Y b̂εi +Ri
0b0 X

bY 0εi +Ri
0b̂0

X b̂Y 0εi;

= δib X
0Y bεi + δi

b̂
X0Y b̂εi − δib XbY 0εi − δib̂ X

b̂Y 0εi;

= η(X)Y − η(Y )X.

R(X, ξ)Y = Ri
jk0 X

kY jεi;

= Ri
0b0 X

bY 0εi +Ri
0b̂0

XbY
0εi +Ri

bĉ0 XcY
bεi +Ri

b̂c0
XcYbεi;

= −δib XbY 0εi − δib̂ XbY
0εi + δi0 δ

c
b XcY

bεi + δi0 δ
b
c X

cYbεi;

= g(X, Y )ξ − η(Y )X.
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2

Theorem 2.3.2 The components of the Ricci tensor r on the AG−structure space

of the manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) are given by

(1) r00 = −2n;

(2) ra0 = 0;

(3) rab = −2Acabc +B c
cab −B h

ca B c
hb ;

(4) râb = −2(nδab +Bca
[bc]) + Aaccb −Bah

b B
c

ch ,

and the remaining components are given by the symmetric property or the complex

conjugate to the above components. Take into consideration, all indexes have a range

from 1 to n, except â = n+ 1, ..., 2n.

Proof : Suppose that r is the Ricci tensor of type (2, 0), then

r(X, Y ) =
2n∑
i=0

g(R(ei, Y )X, ei); ∀ X, Y ∈ X(M),

where {e0 = ξ, e1, ..., e2n} is orthonormal basis of X(M).

Regarding Corollary 2.3.1; item (2), we have

r(X, ξ) =
2n∑
i=0

g(R(ei, ξ)X, ei);

=
2n∑
i=0

[g(ei, X)g(ξ, ei)− η(X)g(ei, ei)];

=
2n∑
i=0

[g(ei, X)η(ei)− η(X)δii];

= η(X)− (2n+ 1)η(X);

= −2n η(X).

The above result follows from the fact that

g(ξ, ei) = η(ei) =

 1, if i = 0;

0, otherwise.
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Therefore, ri0 = −2n ηi with i = 0, 1, ..., 2n and since ηi = g0i, then from the

Definition 1.3.6, we determine the values of r00 and ra0 with a = 1, 2, ..., n.

After that, we compute the other components of the Ricci tensor on the AG−

structure space due to the following:

rij = −Rk
ijk;

= −R0
ij0 −Rc

ijc −Rĉ
ijĉ,

where i, j, k = 0, 1, ..., 2n, c = 1, ..., n and ĉ = c+ n. If a and b have the same range

of c, then according to the Theorem 2.3.1, we have

rab = −R0
ab0 −Rc

abc −Rĉ
abĉ;

= −2Acabc +B c
cab −B h

ca B c
hb .

râb = −R0
âb0 −Rc

âbc −Rĉ
âbĉ;

= −δab − 2(Bca
[bc] − δc[b δac]) + Aaccb −Bah

b B
c

ch − δab δcc;

= −2(nδab +Bca
[bc]) + Aaccb −Bah

b B
c

ch .

So, we conclude the requirement results. 2

The next theorem gives a theoretical Physical application for the manifold of

Kenmotsu type.

Theorem 2.3.3 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is an Einstein

manifold if and only if, the following conditions hold:

α = −2n; Acabc = 0; B c
cab = B h

ca B c
hb ; Bca

[bc] = 0; Aaccb = Bah
b B

c
ch .

Proof : Suppose that M is an Einstein manifold, then from the Definition 1.4.4, we

have on AG−structure space the following:

rij = α gij,

where i, j = 0, 1, ..., 2n. Especially, r00 = α g00 then regarding Theorem 2.3.2 and

the Definition 1.3.6, we have α = −2n. Moreover, we must have rab = 0 and

râb = −2n δab . This equivalent to the following equations:

−2Acabc +B c
cab −B h

ca B c
hb = 0; −2Bca

[bc] + Aaccb −Bah
b B

c
ch = 0.
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From the fact that B c
ab = −B c

ba and Bab
c = −Bba

c, we get

−2Acabc −B c
acb +B h

ac B c
hb = 0; 2Bac

[bc] + Aaccb +Bah
b B

c
hc = 0.

Since Ra
bcd = 2Aabcd = −Ra

bdc = −2Aabdc, then by taking the alternating operator of

the indexes b and c of the above equations, we obtain

3Acacb−(Acacb+B
c

a[cb]−B h
a[c B c

|h|b]) = 0; 3Bac
[bc]+(Aac[cb]−Bac

[bc]−Bah
[c B

c
|h|b]) = 0.

Now, from Theorem 2.2.3, we deduce that Acacb = Bac
[bc] = 0 and this gives the

required conditions. Conversely, if the conditions hold then Theorem 2.3.2 gives

that M is Einstein manifold. 2

Corollary 2.3.2 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is an Einstein

manifold if and only if it has Φ−invariant Ricci tensor and satisfies the following

equations:

α = −2n; Bca
[bc] = 0; Aaccb = Bah

b B
c

ch .

Proof : The result follows from Theorem 2.3.3 and Lemma 1.4.2. 2

Theorem 2.3.4 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is η−Einstein

manifold if and only if the following conditions hold:

α + β = −2n; Acabc = 0; B c
cab = B h

ca B c
hb ;

Bca
[bc] =

β

3
δab ; Aaccb = Bah

b B
c

ch −
β

3
δab .

Proof : Suppose that M is an η−Einstein manifold, then regarding Definition 1.4.4,

we have r00 = α + β. So, Theorem 2.3.2 gives α + β = −2n. Moreover, we must

have rab = 0 and râb = α gâb = (−2n− β)δab . Similar to the manner in the proof of

Theorem 2.3.3, we get this theorem’s conditions. The converse also true by simple

calculations. 2

Corollary 2.3.3 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is η−Einstein

manifold if and only if, M has Φ−invariant Ricci tensor and satisfies the following

equations:

α + β = −2n; Bca
[bc] =

β

3
δab ; Aaccb = Bah

b B
c

ch −
β

3
δab .
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Proof : The assertion of this corollary follows from the Theorem 2.3.4 and the

Lemma 1.4.2. 2

Remark 2.3.1 From the above discussion, it is clearly that α and β are scalars.





Chapter 3

The Curvature Identities and

Curvature Derivation for the

Manifold of Kenmotsu Type

This chapter deals with two types of study, the first study devotes to the manifold

of Kenmotsu type which satisfies the GS−space forms and (or) some curvature

identities that similar to the Gary identities in the AH-manifolds [54]. Whereas, the

second study concentrated on the covariant derivative of the Riemannian curvature

tensor of the manifold of Kenmotsu type.

3.1 The Curvature Identities for the Manifold of

Kenmotsu Type

We begin this section with an example on the manifold of Kenmotsu type and then

discuss some curvature identities including ΦHS−curvature.

Example 3.1.1 Suppose that (N2n, J, h) is an AH-manifold of class W3⊕W4 (see

Gray and Hervella [56]), then N satisfies the following identity:

DX(J)Y −DJX(J)JY = 0; ∀ X, Y ∈ X(N), (3.1.1)

where D is the Riemannian connection of N with respect to the metric h. We

take M = R ×f N , where f(t) = et defined on R. If N has local coordinates

40
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(x1, x2, ..., x2n), then M has local coordinates (t, x1, x2, ..., x2n). Now, suppose that

ξ = ∂
∂t

is the Reeb vector field of M . Let X ∈ X(M), then X = X0 + η(X)ξ,

where X0 ∈ X(N) and η(X0) = 0. Then we define the endomorphism Φ on M

by Φ(X) = J(X0). Suppose that g is the Riemannian metric of M and ∇ is the

Riemannian connection on M . Then from Goldberg [51] we obtain

∇X0Y0 = DX0Y0 −H(X0, Y0)ξ; ∀ X0, Y0 ∈ X(N) (3.1.2)

where H(X0, Y0) = g(∇X0ξ, Y0). If we put Y = ξ in the identity of the manifold of

Kenmotsu type, we get

∇Xξ = X − η(X)ξ = −Φ2(X).

Since η(X0) = 0, then H(X0, Y0) = g(X0, Y0) and the equation (3.1.2) becomes

∇X0Y0 = DX0Y0 − g(X0, Y0)ξ.

Moreover, for any X, Y ∈ X(M) we have

∇X(Φ)Y = ∇XΦ(Y )− Φ(∇XY );

= ∇X0+η(X)ξΦ(Y )− Φ(∇X0+η(X)ξ(Y0 + η(Y )ξ));

= ∇X0Φ(Y ) + η(X)∇ξΦ(Y )− Φ{∇X0Y0 + η(X)∇ξY0

+ (∇X0(η)Y )ξ + η(Y )∇X0ξ + η(X)(∇ξ(η)Y )ξ + η(X)η(Y )∇ξξ};

= ∇X0Φ(Y ) + η(X)∇ξΦ(Y )− Φ(∇X0Y0)− η(X)Φ(∇ξY0)

− η(Y )Φ(∇X0ξ).

Since Φ(X) ∈ X(N), then [Φ(X), ξ] = 0 and according to the equality [X, Y ] =

∇XY −∇YX, we get

∇ξΦ(Y ) = ∇Φ(Y )ξ = Φ(Y ); ∇ξY0 = ∇Y0ξ = Y0.

Then from the previous discussion and the fact Φ(X0) = Φ(X), we deduce that

∇X(Φ)Y = DX0(J)Y0 − g(X,Φ(Y ))ξ − η(Y )Φ(X). (3.1.3)

Now, regarding the equation (3.1.3), we conclude that

∇Φ(X)(Φ)Φ(Y ) = DJ(X0)(J)J(Y0)− g(X,Φ(Y ))ξ. (3.1.4)
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So, subtracting equation (3.1.4) from equation (3.1.3), and using equation (3.1.1),

imply to attain the identity of the manifold of Kenmotsu type.

Theorem 3.1.1 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) has pointwise

constant ΦHS−curvature if and only if the following equality holds on the AG−

structure space:

Aadbc = B
[ad]

bc −B a
hb Bdh

c +
γ + 1

2
δ̃adbc .

Proof : Suppose that M is the manifold of Kenmotsu type and has pointwise

constant ΦHS−curvature. According to Theorem 2.3.1, we have the Riemanni-

an curvature tensor for the manifold of Kenmotsu type owned the following on the

AG−structure space:

Ra d
bc = Ra

bcd̂
= Aadbc −Bah

c B
d

bh − δac δdb .

Regarding Theorem 1.4.2 and the above equation, the following equation holds on

the AG−structure space:

A
(ad)
(bc) = B

(a|h|
(c B

d)
b)h +

γ + 1

2
δ̃adbc ,

where |h| means the index h does not act by the symmetric operator (..). Then

using the fact B d
bh = −B d

hb and the symmetric property of the indexes a and d,

we get

A
(ad)
(bc) = −B(d|h|

(c B
a)

|h|b) +
γ + 1

2
δ̃adbc ;

= −B (a
h(b B

d)h
c) +

γ + 1

2
δ̃adbc .

Since Aadbc = A
[ad]
[bc] + A

[ad]
(bc) + A

(ad)
[bc] + A

(ad)
(bc) . Then regarding the Theorem 2.2.3, the

alternating (symmetric) property and the Corollary 2.1.1; item (4), we get

A
[ad]
[bc] = B

[ad]
bc −B [a

h[b B
d]h

c];

A
[ad]
(bc) = −B [a

h(b B
d]h

c);

A
(ad)
[bc] = −B (a

h[b B
d)h

c].

From the above discussion, we have the required assertion. 2
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Theorem 3.1.2 If the manifold of Kenmotsu type is Einstein manifold and has

pointwise constant ΦHS−curvature γ, then γ = −1.

Proof : Suppose that M is the manifold of Kenmotsu type and satisfies Einstein’s

criterion. Then Theorem 2.3.3 gives the following:

Bca
[bc] = 0; Aaccb = Bah

b B
c

ch . (3.1.5)

Since M has pointwise constant ΦHS−curvature γ, then from Theorem 3.1.1, and

the fact δcc = n, we get

Aaccb = B
[ac]

cb −B a
hc Bch

b +
(γ + 1)(n+ 1)

2
δab . (3.1.6)

Now, combine equations (3.1.5) and (3.1.6), we obtain

Bah
b B

c
ch −B a

ch Bch
b =

(γ + 1)(n+ 1)

2
δab .

Since n > 1, then by contracting the above equation with respect to the indexes a

and c, we conclude the result. 2

Corollary 3.1.1 If the manifold of Kenmotsu type is Einstein manifold and has

pointwise constant ΦHS−curvature, then it is locally isometric to the warped product

R×f Cn.

Proof : The result follows from the above theorem and Tanno [107]. 2

According to Vanhecke [113], we can define new classes of ACR−manifolds as

the following:

Definition 3.1.1 An ACR−manifold (M2n+1, ξ, η,Φ, g) is called of class

G1 if R(ΦX,ΦY,ΦZ,ΦW ) = R(X, Y, Z,W ); ∀ X, Y, Z,W ∈ ker(η);

G2 if R(X, Y,ΦZ,ΦW ) = R(X, Y, Z,W ); ∀ X, Y, Z,W ∈ ker(η);

G3 if R(ΦX, Y, Z,ΦW ) = R(X, Y, Z,W ); ∀ X, Y, Z,W ∈ ker(η);

G4 if R(Φ2X,Φ2Y,Φ2Z,Φ2W ) = R(X, Y, Z,W ); ∀ X, Y, Z,W ∈ X(M).

Moreover, ACR−manifold of class G1 and G4 can be called classes of Φ−invariant

and Φ2−invariant Riemann curvature tensor respectively.

Theorem 3.1.3 On the AG−structure space, the ACR−manifold (M2n+1, ξ, η,Φ, g)

is of class
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1. G1 if and only if, Râbcd = 0;

2. G2 if and only if, Râb̂cd = 0;

3. G3 if and only if, Râbcd̂ = 0;

4. G4 if and only if, Ra0b0 = Râ0b0 = Ra0bc = Râ0bc = Ra0b̂c = 0.

Proof : Since R(X, Y, Z,W ) = Rijkl X
i Y j Zk W l, where i, j, k, l = 0, 1, ..., 2n and

for short, we set i, j, k, l = 0, a, â, where a = 1, 2, ..., n and â = a+ n. Then we have

M of class G1 if and only if,

R(ΦX,ΦY,ΦZ,ΦW ) = R(X, Y, Z,W ); ∀ X, Y, Z,W ∈ ker(η).

Then the above equation equivalent to

Rrstu (ΦX)r (ΦY )s (ΦZ)t (ΦW )u = Rijkl X
i Y j Zk W l,

where i, j, k, l, r, s, t, u have the same range and do not vanish because X, Y, Z,W ∈

ker(η). Then the last equation simplifies to

Rrstu Φr
i Φs

j Φt
k Φu

l X
i Y j Zk W l = Rijkl X

i Y j Zk W l.

Then Rrstu Φr
i Φs

j Φt
k Φu

l = Rijkl and regarding the values of the indexes and Φ in

Definition 1.3.6, we attain the result. Similarly, if M of class G2 or G3.

Now, if M of class G4, then we have

R(Φ2X,Φ2Y,Φ2Z,Φ2W ) = R(X, Y, Z,W ).

The above equation can be written in the following form:

0 = η(X)η(Z)R(ξ, Y, ξ,W ) + η(X)η(W )R(ξ, Y, Z, ξ) + η(Y )η(Z)R(X, ξ, ξ,W )

+ η(Y )η(W )R(X, ξ, Z, ξ)− η(X)R(ξ, Y, Z,W )− η(Y )R(X, ξ, Z,W )

− η(Z)R(X, Y, ξ,W )− η(W )R(X, Y, Z, ξ).

If we replace X, Y, Z,W, ξ by the indexes i, j, k, l, 0 respectively in the last equation,

we get

0 = ηiηkR0j0l + ηiηlR0jk0 + ηjηkRi00l + ηjηlRi0k0 − ηiR0jkl

− ηjRi0kl − ηkRij0l − ηlRijk0.
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So, if we take the values of i, j, k, l as above and use the properties of Riemannian

curvature tensor, then we obtain the result. 2

Corollary 3.1.2 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) can not be of

class G4.

Proof : Suppose that M is the manifold of Kenmotsu type, then from Theorem

2.3.1, we have

Râ0b0 = Ra
0b0 = −δab 6= 0.

Therefore from Theorem 3.1.3, we arrive to the substance of this corollary. 2

Corollary 3.1.3 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) belong to the

class of

1. G1 if and only if, Aabcd = 0; or equivalently B a
bcd = B h

bc B a
hd ;

2. G2 if and only if, Bab
[cd] = δa[c δ

b
d];

3. G3 if and only if, Aadbc = Bah
c B

d
bh + δac δ

d
b .

Proof : The results follow from Theorems 2.3.1 and 3.1.3. 2

Corollary 3.1.4 If (M2n+1, ξ, η,Φ, g) is the manifold of Kenmotsu type and of class

G3, then M is a manifold of class G2.

Proof : The assertion of the present corollary follows from the conditions of Theorem

2.2.3 and Corollary 3.1.3. 2

Corollary 3.1.5 If (M2n+1, ξ, η,Φ, g) is an ACR−manifold of class G3, then M

posses vanishing ΦHS−curvature tensor H.

Proof : Suppose that M of class G3, then for all X ∈ ker(η), we get

H(X) =
R(ΦX,X,X,ΦX)

(g(X,X))2
=
R(X,X,X,X)

(g(X,X))2
= 0.

2
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3.2 The Generalized Sasakian Space Forms for

the Manifold of Kenmotsu Type

In this section, we characterize the definition of GS−space forms on AG−structure

space and we derive the conditions for the manifold of Kenmotsu type to be GS−

space forms.

Remark 3.2.1 According to the Definition 1.4.2, the components of Riemannian

curvature tensor of the GS−space forms M(f1, f2, f3) on the AG−structure space

are given by

Rijkl = f1{gik gjl − gil gjk}+ f2{Ωil Ωkj − Ωlj Ωik + 2Ωij Ωkl}

+ f3{ηj ηk gil − ηj ηl gik + ηi ηl gjk − ηi ηk gjl}, (3.2.7)

where Ω(X, Y ) = g(X,ΦY ) for all X, Y ∈ X(M). Moreover, the components of Ω

on the AG−structure space for any ACR−manifold are given by

Ω00 = Ωa0 = Ωâ0 = Ωab = Ωâb̂ = 0; Ωâb =
√
−1δab ; Ωij = −Ωji. (3.2.8)

Theorem 3.2.1 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is a GS−space

forms if and only if, M attains the following on the AG−structure space:

1. f3 = f1 + 1; Aabcd = 0;

2. Aadbc = Bah
c B

d
bh + (f2 + f3)δac δ

d
b + 2f2 δ

a
b δ

d
c ;

3. Bad
[cb] = (f3 − f2)δa[c δ

d
b]; Babd

c = Bab
h B

hd
c.

Proof : Regarding Theorem 2.3.1, Definition 1.3.6 and equations (3.2.7) and (3.2.8),

we get the requirements. For instance, if (i, j, k, l) = (â, 0, b, 0), then

Râ0b0 = f1{gâb g00 − gâ0 g0b}+ f2{Ωâ0 Ωb0 − Ω00 Ωâb + 2Ωâ0 Ωb0}

+ f3{η0 ηb gâ0 − η0 η0 gâb + ηâ η0 g0b − ηâ ηb g00};

−δab = f1 δ
a
b − f3 δ

a
b .

So, we have f3 = f1 + 1. Similarly for the others. 2
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Theorem 3.2.2 The GS−space forms M(f1, f2, f3) has pointwise constant ΦHS−

curvature γ if and only if, γ + f1 + 3f2 = 0.

Proof : M(f1, f2, f3) has pointwise constant ΦHS−curvature γ if and only if,

R(ΦX,X,X,ΦX) = γ(g(X,X))2; ∀ X ∈ ker(η).

But the Riemann curvature tensor of M(f1, f2, f3) satisfies the following:

R(ΦX,X,X,ΦX) = −(f1 + 3f2)(g(X,X))2; ∀ X ∈ ker(η).

Then the subtracting of the above equations confirm the result. 2

Theorem 3.2.3 The GS−space forms M(f1, f2, f3) is of class

1. G1 constantly;

2. G2 if and only if, n = 1 or f1 = f2;

3. G3 if and only if, f1 = f2 = 0;

4. G4 if and only if, f1 = f3.

Proof : Taking the equation (3.2.7) into account, we conclude that

Râbcd = 0;

Râb̂cd = (f1 − f2){δac δbd − δadδbc};

Râbcd̂ = (f1 + f2)δac δ
d
b + 2f2 δ

a
b δ

d
c ;

Ra0b0 = Ra0bc = Râ0bc = Ra0b̂c = 0; Râ0b0 = (f1 − f3)δab .

Compare the above equations with Theorem 3.1.3, we deduce the results. 2

On the AG−structure space, we can determine the components of the Ricci

tensor of M(f1, f2, f3) from the equation (3.2.7) as follows:

rjk = −gilRijkl

= (2nf1 + 3f2 − f3)gjk − (3f2 + (2n− 1)f3)ηj ηk;

where gil are the components of g−1. Then we deduce the following theorem:
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Theorem 3.2.4 The GS−space forms M(f1, f2, f3) is an η−Einstein manifold with

α = 2nf1 + 3f2 − f3 and β = −(3f2 + (2n− 1)f3).

Theorem 3.2.5 If the manifold of Kenmotsu type is GS−space forms M(f1, f2, f3)

and it has pointwise constant ΦHS−curvature γ, then

γ =
1

3
; f3 =

n

3(n− 1)
; f2 =

n− 2

9(n− 1)
; f1 =

−2n+ 3

3(n− 1)
.

Proof : Combine the value of Aadbc from Theorem 3.1.1 with its value in Theorem

3.2.1, we get

B
[ad]

bc −B a
hb Bdh

c +
γ + 1

2
δ̃adbc = Bah

c B
d

bh + (f2 + f3)δac δ
d
b + 2f2 δ

a
b δ

d
c .

If we applying the symmetric operator on the indexes a and d of the above equation,

then we deduce that

γ + 1

2
δ̃adbc = (f2 + f3)δ̃adbc + 2f2 δ̃

ad
bc .

So, we have γ+1
2

= 3f2 + f3. Regarding Theorems 3.2.1 and 3.2.2, directly, we get

the value of γ.

Since M(f1, f2, f3) is η−Einstein manifold with β = −(3f2 + (2n − 1)f3), then the

manifold of Kenmotsu type is an η−Einstein manifold with β = −(3f2 +(2n−1)f3).

But from Theorem 2.3.4, we have Bca
[bc] = β

3
δab . So, regarding Theorem 3.2.1, we

attain the values of {f1, f2, f3}. 2

3.3 The Covariant Derivative Curvature for the

Manifold of Kenmotsu Type

In this section, we investigate the geometric properties of the covariant derivative for

the Riemannian curvature tensor which denotes ∇R, on the manifold of Kenmotsu

type by determining its components on the AG−structure space.
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Theorem 3.3.1 On the AG−structure space, the manifold of Kenmotsu type sat-

isfies the following equations:

∆Aabcd = Aabcdh ω
h + Aahbcd ωh − 2Aabcd ω; (3.3.9)

∆Aadbc = Ãadbch ω
h + Ãadhbc ωh − 2Aadbc ω; (3.3.10)

∆Bab
cd = Bab

cdh ω
h +Babh

cd ωh − 2Bab
cd ω; (3.3.11)

where h = 1, ..., n, and

∆Aabcd = dAabcd + Ahbcd θ
a
h − Aahcd θhb − Aabhd θhc − Aabch θhd ;

∆Aadbc = dAadbc + Ahdbc θ
a
h + Aahbc θ

d
h − Aadhc θhb − Aadbh θhc ;

∆Bab
cd = dBab

cd +Bhb
cdh θ

a
h +Bah

cd θ
b
h −Bab

hd θ
h
c −Bad

ch θ
h
d .

Proof : If we differentiate the Cartan’s second structure equations in Theorem 2.2.3

exteriorly, then on the AG−structure space, there are suitable smooth functions

such that the target equations are attained. 2

Now, we can establish the components of ∇R on (M2n+1, ξ, η,Φ, g) from the

following identity [75]:

dRijkl −Rtjkl θ
t
i −Ritkl θ

t
j −Rijtl θ

t
k −Rijkt θ

t
l = Rijkl,t ω

t; (3.3.12)

where R(X, Y, Z,W ) = g(R(Z,W )Y,X), Rijkl = Rî
jkl, t = 0, 1, ..., 2n and

Rijkl,t = g(∇εt(R)(εk, εl)εj, εi).

Theorem 3.3.2 On the AG−structure space, the components of ∇R for the man-

ifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) are given by

1. Ra0b0,0 = Ra0b0,h = Ra0b0,ĥ = 0;

2. Râ0b0,0 = Râ0b0,h = Râ0b0,ĥ = 0;

3. Ra0bc,0 = Ra0bc,h = 0; Ra0bc,ĥ = 2Ahabc;

4. Râ0bc,0 = 0; Râ0bc,h = −2Aahbc; Râ0bc,ĥ = −2Bah
[bc];

5. Ra0b̂c,0 = 0; Ra0b̂c,h = −2Abcah; Ra0b̂c,ĥ = −Ahbac +Bhd
c B

b
ad ;
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6. Rabcd,0 = Rabcd,h = 0; Rabcd,ĥ = 4{B h
f [a Afb]cd +B h

f [c Afd]ab};

7. Râbcd,0 = −4Aabcd; Râbcd,h = 2Aabcdh;

8. Râbcd,ĥ = 2{Aahbcd +Baf
[cd] B

h
fb + Aafb[c B

h
|f |d] +B h

f [c Baf̃
d] B

f

bf̃
};

9. Râbcd̂,0 = −2{Aadbc −Baf
c B

d
bf };

10. Râbcd̂,h = 2Aabcf B
fd

h − 2Adcfb B
fa

h −Baf
c B

d
bfh −B d

bf Baf
ch + Ãadbch;

11. Râbcd̂,ĥ = Ãadhbc −B d
bf Bafh

c −Baf
c B

dh
bf + 2Adafc B h

fb − 2Aafdb B h
fc ;

12. Râb̂cd,0 = −4Bab
[cd]; Râb̂cd,h = 2Bab

[cd]h + 4B
f [b

h A
a]
fcd;

13. Râb̂cd,ĥ = 2Babh
[cd] + 4B h

f [d Afabc] .

Proof : The results follow from equation (3.3.12) by taking

(i, j, k, l) =(a, 0, b, 0), (â, 0, b, 0), (a, 0, b, c), (â, 0, b, c), (a, 0, b̂, c), (a, b, c, d),

(â, b, c, d), (â, b, c, d̂), (â, b̂, c, d);

t =0, h, ĥ,

and regarding Theorems 2.2.1 and 2.3.1. For instance, if (i, j, k, l) = (a, 0, b, 0), then

the equation (3.3.12) given by

dRa0b0 −Rt0b0 θ
t
a −Ratb0 θ

t
0 −Ra0t0 θ

t
b −Ra0bt θ

t
0 = Ra0b0,t ω

t.

The above equation can be simplified by using the Theorems 2.2.1 and 2.3.1, as the

following:

Ra0b0,t ω
t = −Rĥ0b0 θ

ĥ
a −Ra0ĥ0 θ

ĥ
b ;

= δhb θ
ĥ
a + δha θ

ĥ
b ;

= θb̂a + θâb = 0.

So, we have Ra0b0,h ω
h +Ra0b0,ĥ ωh +Ra0b0,0 ω = 0, and then

Ra0b0,h = Ra0b0,ĥ = Ra0b0,0 = 0.
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We use the same technique for the other cases and for some cases we must use the

equations (3.3.9), (3.3.10), or (3.3.11). For example, if (i, j, k, l) = (â, b, c, d), then

the equation (3.3.12) given by

dRâbcd −Rtbcd θ
t
â −Râtcd θ

t
b −Râbtd θ

t
c −Râbct θ

t
d = Râbcd,t ω

t.

According to the Theorem 2.3.1, we get

Râbcd,t ω
t = 2dAabcd −Rĥbcd θ

ĥ
â −Râhcd θ

h
b −Râĥcd θ

ĥ
b −Râbhd θ

h
c

−Râbĥd θ
ĥ
c −Râbch θ

h
d −Râbcĥ θ

ĥ
d ;

= 2∆Aabcd −Râĥcd θ
ĥ
b −Râbĥd θ

ĥ
c −Râbcĥ θ

ĥ
d ;

= 2∆Aabcd −Râf̂ cd θ
f̂
b +Râbdf̂ θ

f̂
c −Râbcf̂ θ

f̂
d ;

where f = 1, 2, ..., n. If we return to the Theorem 2.2.1, we have θf̂b = −B h
fb ωh.

So regarding the Theorem 2.3.1, the equation (3.3.9) and the previous results, we

obtain the following:

Râbcd,0 = −4Aabcd;

Râbcd,h = 2Aabcdh;

Râbcd,ĥ = 2{Aahbcd +Baf
[cd] B

h
fb + Aafb[c B

h
|f |d] +B h

f [c Baf̃
d] B

f

bf̃
}.

The proof of the remaining items becomes obvious, therefore, we omit it. 2

Theorem 3.3.3 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is locally sym-

metric if and only if the following conditions hold:

Aabcd = 0; Bab
[cd] = 0; Aadbc = Bah

c B
d

bh .

Proof : Suppose that M2n+1 is locally symmetric, then ∇U(R)(Z,W )Y = 0, (see

the Definition 1.4.10) and thus we have

g(∇U(R)(Z,W )Y,X) = 0; ∀ X, Y, Z,W,U ∈ X(M).

Therefore, the components Rijkl,t are identically zero for all i, j, k, l, t = 0, 1, ..., 2n.

Regarding the Theorem 3.3.2, we have Aabcd = 0; Bab
[cd] = 0; and Aadbc = Bah

c B
d

bh .

Conversely, if Aabcd = 0; Bab
[cd] = 0; Aadbc = Bah

c B
d

bh , then ∆Aabcd = 0;
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∆Bab
[cd] = 0; and according to the Lemma 1.2.1; item (3), as well as the Theo-

rem 2.2.3; items (2) and (3), yield the following equation:

∆Aadbc = {Baf
c B

d
bfh +B d

bf Baf
ch}ω

h + {B d
bf Bafh

c +Baf
c B

dh
bf }ωh − 2Aadbc ω.

So, regarding the equations (3.3.9), (3.3.10), and (3.3.11) and the Theorem 3.3.2,

we get Rijkl,t = 0. Therefore, M2n+1 is locally symmetric. 2

Theorem 3.3.4 The locally symmetric manifold (M2n+1, ξ, η,Φ, g) of Kenmotsu

type is an Einstein manifold with α = −2n if and only if M satisfies the following

condition:

B c
cab = B h

ca B c
hb .

Proof : Suppose that M2n+1 is an Einstein manifold with α = −2n, then from the

Definitions 1.4.4 and 1.3.6, we have

r00 = −2n; ra0 = rab = 0; râb = −2nδab .

Since M2n+1 is a locally symmetric manifold of Kenmotsu type, then regarding

Theorems 2.3.2, 3.3.3 and the above relations achieve the condition.

Conversely, if the condition is valid, then the conditions of the Theorem 3.3.3 with

Theorem 2.3.2, lead to the result. 2

Corollary 3.3.1 The locally symmetric manifold (M2n+1, ξ, η,Φ, g) of Kenmotsu

type is an Einstein manifold with α = −2n if and only if, M2n+1 has Φ−invariant

Ricci tensor.

Proof : The assertion of this corollary follows from Definition 1.4.4, Lemma 1.4.2

and Theorem 3.3.4. 2

Now, suppose that (M2n+1, ξ, η,Φ, g) is a generalized Φ−recurrent manifold, then

regarding Definition 1.4.11, we get

Φ2(∇U(R)(Z,W )Y ) = ρ(U)R(Z,W )Y + λ(U){g(Y,W )Z − g(Y, Z)W},

for all U,W, Y, Z ∈ X(M). So, for all X ∈ X(M), we have

g(Φ2(∇U(R)(Z,W )Y ), X) = g(∇U(R)(Z,W )Y,Φ2(X));

= −g(∇U(R)(Z,W )Y,X) + η(X)g(∇U(R)(Z,W )Y, ξ).



Chapter Three 53

Then the generalized Φ−recurrent ACR−manifold has curvature components which

are given by

−Rijkl,t + ηi R0jkl,t = ρt Rijkl + λt{gik gjl − gil gjk}. (3.3.13)

So, if M2n+1 is the manifold of Kenmotsu type, then regarding Theorem 2.3.1 and

Definition 1.3.6, equation (3.3.13) looks like the following:

1. Ra0b0,t = 0;

2. Râ0b0,t = ρt δ
a
b − λt δab ;

3. Ra0bc,t = 0;

4. Râ0bc,t = 0;

5. Ra0b̂c,t = 0;

6. Rabcd,t = 0;

7. Râbcd,t = −2ρt A
a
bcd;

8. Râbcd̂,t = ρt(−Aadbc +Bah
c B

d
bh + δac δ

d
b )− λt δac δdb ;

9. Râb̂cd,t = 2ρt(−Bab
[cd] + δa[c δ

b
d])− 2λt δ

a
[c δ

b
d].

Now, if we use Theorem 3.3.2, then item 2 above gives ρt = λt, and this implies that

the 1-forms ρ and λ must be equal. Moreover, if we combine the above items again

with Theorem 3.3.2, then we deduce the following theorem:

Theorem 3.3.5 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is a generalized

Φ−recurrent if and only if, M satisfies the following conditions:

ρ = λ; Aabcd = 0; Bab
[cd] = 0; Aadbc = Bah

c B
d

bh .

Corollary 3.3.2 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) is locally sym-

metric if and only if, M2n+1 is a generalized Φ−recurrent with ρ = λ.

Proof : The result follows from Theorems 3.3.3 and 3.3.5. 2
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Theorem 3.3.6 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) satisfies the fol-

lowing relations:

1. g(∇ξ(R)(Z,W )Y,X) = −2g(R(Z,W )Y + g(Y,W )Z − g(Y, Z)W,X);

2. g(∇U(R)(Z,W )ξ,X) = −g(R(Z,W )U + g(U,W )Z − g(U,Z)W,X);

3. g(∇U(R)(Z, ξ)Y,X) = −g(R(Z,U)Y + g(Y, U)Z − g(Y, Z)U,X).

Proof : Since the components of g(∇ξ(R)(Z,W )Y,X), g(∇U(R)(Z,W )ξ,X) and

g(∇U(R)(Z, ξ)Y,X) are Rijkl,0, Ri0kl,t and Rijk0,t respectively. Then the claim of the

present theorem achieving from the Theorems 2.3.1, 3.3.2 and the Definition 1.3.6.

2





Chapter 4

The Generalized Curvature Tensor

on the Manifold of Kenmotsu

Type and the Hypersurfaces of the

Hermitian Manifold

This chapter divides into two parts, the first one focusses on the generalized curva-

ture tensor for the manifold of Kenmotsu type. Whereas, the second part discusses

the manifold of Kenmotsu type as a hypersurface of the Hermitian manifold.

4.1 The Geometry of the Generalized Curvature

Tensor on the Manifold of Kenmotsu Type

In this section, we investigate the geometric properties, especially the flatness prop-

erty of the generalized curvature tensor on the manifold of Kenmotsu type.

Remark 4.1.1 On the AG−structure space, the generalized curvature tensor B̃

which mentioned in Definition 1.4.9, has the following components form:

B̃ijkl = a0Rijkl+a1{gik rjl−gil rjk+rik gjl−ril gjk}+2a2s{gik gjl−gil gjk}. (4.1.1)

54



Chapter Four 55

Theorem 4.1.1 On AG−structure space, the components of the generalized curva-

ture tensor B̃ for the manifold of Kenmotsu type are given by

1. B̃a0b0 = a1 rab;

2. B̃â0b0 = −(a0 + 2na1 − 2a2s)δ
a
b + a1 râb;

3. B̃âbcd = 2a0 A
a
bcd + a1{δac rbd − δad rbc};

4. B̃âbcd̂ = a0(Aadbc −Bah
c B

d
bh ) + a1{δac Qd

b + δdb Q
a
c}+ (2a2s− a0)δac δ

d
b ;

5. B̃âb̂cd = 2a0 B
ab

[cd] + 4a1 δ
[a
[c Q

b]
d] + 2(2a2s− a0) δ

[a
[c δ

b]
d];

and the remaining components are identical to zero or given by the same properties

of R or the conjugate to the above components.

Proof : Since r(X, Y ) = g(X,QY ), then rij = gikQ
k
j . Consquently, regarding the

Definition 1.3.6, we have

râb = gâkQ
k
b = gâ0Q

0
b + gâcQ

c
b + gâĉQ

ĉ
b = Qa

b .

Since B̃ defined on the manifold of Kenmotsu type, then the substitutions of the

values of Rijkl = Rî
jkl and gij from Theorem 2.3.1 and Definition 1.3.6, respectively

in the equation (4.1.1), we get the desired. 2

Theorem 4.1.2 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) has flat gen-

eralized curvature tensor if and only if, M is an η−Einstein manifold with α =

1
a1

(a0 + 2na1 − 2a2s), Aabcd = 0, β = −(2n + α), Aadbc = Bah
c B

d
bh + a1

a0
β δac δ

d
b and

Bab
[cd] = a1

a0
β δa[cδ

b
d], provided that a0, a1 6= 0.

Proof : Suppose that M2n+1 has a flat generalized curvature tensor with a0 6= 0 and

a1 6= 0, then B̃ijkl = 0 and according to the Theorem 4.1.1, we have

rab = 0; râb =
1

a1

(a0 + 2na1 − 2a2s)δ
a
b ; Aabcd = 0.

Then taking into account Definition 1.4.4 and the above value of râb, we get α =

1
a1

(a0 +2na1−2a2s). Since M is the manifold of Kenmotsu type, then from Theorem

2.3.2, we have r00 = −2n = α + β and this gives β. Again, Theorem 4.1.1; item
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4 gives Aadbc = Bah
c B

d
bh + a1

a0
β δac δdb . Moreover, Theorem 4.1.1; item 5 gives

Bab
[cd] = a1

a0
β δa[c δ

b
d]. The converse is also true. 2

Now, we introduce the notion of generalized Φ−holomorphic sectional (GΦHS−)

curvature tensor which is embodied in the following definition:

Definition 4.1.1 A GΦHS−curvature tensor S of any (M2n+1, ξ, η,Φ, g) manifold

is defined by

S(X) =
B̃(ΦX,X,X,ΦX)

(g(X,X))2
; ∀ X ∈ ker(η); X 6= 0.

Moreover, M is called of pointwise constant GΦHS−curvature if S(X) = γ and γ

does not depend on X.

Clearly that, GΦHS−curvature tensor is ΦHS−curvature tensor if and only if,

a0 = 1, and a1 = a2 = 0. Therefore, we can drive the necessary and sufficien-

t condition for ACR−manifold to have pointwise constant GΦHS−curvature on

AG−structure space.

Theorem 4.1.3 (M2n+1, ξ, η,Φ, g) has pointwise constant GΦHS−curvature if and

only if, on AG−structure space, the generalized curvature tensor B̃ of M satisfies

the equality below.

B̃
(a d)
(bc) =

γ

2
δ̃adbc .

Proof : Since the tensor B̃ has the same properties of Riemannian curvature tensor

R, then we can follow the same proof in [71] or equivalently in [111]. 2

Theorem 4.1.4 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) has pointwise

constant GΦHS−curvature if and only if, on AG−structure space, M satisfies the

following equality:

Aadbc = B
[ad]

bc −B a
hb Bdh

c −
2a1

a0

δ
(a
(bQ

d)
c) +

γ − 2a2s+ a0

2a0

δ̃adbc .

Proof : Suppose that M is the manifold of Kenmotsu type and has pointwise con-

stant GΦHS−curvature. Regarding the Theorem 4.1.3 and Theorem 4.1.1; item 4,

we get

A
(ad)
(bc) = B

(a|h|
(b B

d)
c)h −

2a1

a0

δ
(a
(bQ

d)
c) +

γ − 2a2s+ a0

2a0

δ̃adbc .
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The above equation can be rewritten as follows:

A
(ad)
(bc) = −B (a

h(b B
d)h

c) −
2a1

a0

δ
(a
(bQ

d)
c) +

γ − 2a2s+ a0

2a0

δ̃adbc .

Since Aadbc = A
[ad]
[bc] + A

[ad]
(bc) + A

(ad)
[bc] + A

(ad)
(bc) , then taking into account the Theorem

2.2.3 with the technique of the Theorem 3.1.1 and the above result, we attain the

requirement. 2

Recently, Yildiz and De [118] introduced the notions of Φ-projectively semisym-

metric and Φ-Weyl semisymmetric. Regarding these ideas, we can introduce the

following definition:

Definition 4.1.2 An ACR−manifold (M2n+1, ξ, η,Φ, g) is called a Φ-generalized

semi (ΦGS−) symmetric if B̃(Z,W ) · Φ = 0, for all Z,W ∈ X(M), or equivalently

B̃(X,ΦY, Z,W ) + B̃(ΦX, Y, Z,W ) = 0; ∀ X, Y, Z,W ∈ X(M).

Lemma 4.1.1 On AG−structure space, the ACR−manifold (M2n+1, ξ, η,Φ, g) is

ΦGS−symmetric if and only if,

B̃a0b0 = B̃â0b0 = B̃a0bc = B̃â0bc = B̃a0b̂c = B̃abcd = B̃âb̂cd = 0.

Proof : According to the Definition 4.1.2, we have M is ΦGS−symmetric if and

only if,

B̃(X,ΦY, Z,W ) + B̃(ΦX, Y, Z,W ) = 0; ∀ X, Y, Z,W ∈ X(M).

On the AG−structure space, the above identity equivalent to the following:

B̃iqkl Φq
j + B̃tjkl Φt

i = 0; q, t = 0, 1, ..., 2n.

If we take

(i, j, k, l) = (a, 0, b, 0), (â, 0, b, 0), (a, 0, b, c), (â, 0, b, c), (a, 0, b̂, c), (a, b, c, d), (â, b̂, c, d),

and using the Definition 1.3.6, we obtain the result. 2

It is not hard to conclude the following:

Corollary 4.1.1 The ACR−manifold (M2n+1, ξ, η,Φ, g) of flat generalized curva-

ture tensor is usually ΦGS−symmetric.
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Corollary 4.1.2 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) has flat gen-

eralized curvature tensor if and only if, M is ΦGS−symmetric with Aabcd = 0 and

Aadbc = Bah
c B

d
bh + a1

a0
µ δac δ

d
b , where µ = − 1

a1
(a0 + 4na1 − 2a2s), provided that

a0, a1 6= 0.

Proof : Suppose that M is the manifold of Kenmotsu type and it has flat generalized

curvature tensor, then from Corollary 4.1.1, we see that M is ΦGS−symmetric and

regarding Theorem 4.1.1, we get the other conditions.

Conversely, If M is ΦGS−symmetric with the above conditions then according to

Lemma 4.1.1 and Theorem 4.1.1, we have M has flat generalized curvature tensor.

2

Theorem 4.1.5 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) posses ΦGS−

symmetric if and only if, M is an η−Einstein manifold with α = 1
a1

(a0+2na1−2a2s),

β = −(2n+ α) and Bab
[cd] = a1

a0
β δa[cδ

b
d], provided that a0, a1 6= 0.

Proof : Suppose that M is ΦGS−symmetric manifold of Kenmotsu type, then from

Lemma 4.1.1 and Theorem 4.1.1, we have

rab = 0; râb =
1

a1

(a0 + 2na1 − 2a2s)δ
a
b ; Bab

[cd] = − 1

a0

(a0 + 4na1 − 2a2s)δ
a
[cδ

b
d].

Regarding Definition 1.4.4 and Theorem 2.3.2, we attain the values of α and β.

The converse is verified directly from Theorem 4.1.1 and Lemma 4.1.1. 2

Corollary 4.1.3 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) posses ΦGS−

symmetric and GΦHS−curvature if and only if, M is η−Einstein manifold with

α = 1
a1

(a0 + 2na1 − 2a2s), β = −(2n+ α), Bab
[cd] = a1

a0
βδa[cδ

b
d], and

Aadbc =
γ

2a0

δ̃adbc −B a
hb Bdh

c +
a1

a0

βδab δ
d
c ,

provided that a0, a1 6= 0.

Proof : Suppose that M is the manifold of Kenmotsu type, then the necessary and

sufficient conditions for the present corollary are satisfied from the Theorems 4.1.4

and 4.1.5. 2
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Now, we introduce a generalization of the notion of ACR−manifold of constan-

t curvature used by Abood and Al-Hussaini [2]. We shall show this idea in the

following definition:

Definition 4.1.3 An ACR−manifold (M2n+1, ξ, η,Φ, g) is said to have constant

generalized curvature κ if the following identity holds:

B̃(X, Y, Z,W ) = κ{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)}; ∀ X, Y, Z,W ∈ X(M).

On the AG−structure space, Definition 4.1.3 equivalent to the identity below.

B̃ijkl = κ{gik gjl − gil gjk}. (4.1.2)

Directly, regarding Definitions 4.1.3, 1.4.8 and 1.4.9, we have the following result:

Theorem 4.1.6 Suppose that (M2n+1, ξ, η,Φ, g) is an ACR−manifold of constant

generalized curvature κ = 2a2s. Then M has flat conharmonic curvature tensor if

and only if, a0 = 1 and a1 = − 1
2n−1

.

Theorem 4.1.7 An ACR−manifold (M2n+1, ξ, η,Φ, g) has constant generalized cur-

vature κ if and only if, on the AG−structure space, B̃ has the following components:

1. B̃â0b0 = κ δab ;

2. B̃âbcd̂ = κ δac δ
d
b ;

3. B̃âb̂cd = 2κ δa[cδ
b
d];

and the remaining components are identical to zero or establishing from the above

components by the same properties of R or by taking the conjugate operation.

Proof : The result follows from equation (4.1.2) by taking

(i, j, k, l) = (â, 0, b, 0), (â, b, c, d̂), (â, b̂, c, d);

and regarding Definition 1.3.6. 2

Theorem 4.1.8 The ACR−manifold (M2n+1, ξ, η,Φ, g) is ΦGS−symmetric if and

only if, M has constant generalized curvature κ = 0.
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Proof : The claim of this theorem is achieving from Lemma 4.1.1 and Theorem

4.1.7. 2

Theorem 4.1.9 If an ACR−manifold (M2n+1, ξ, η,Φ, g) has constant generalized

curvature κ, then M has pointwise constant GΦHS−curvature equal to γ = κ.

Proof : The allegation of the present theorem occurs from the Theorems 4.1.3 and

4.1.7. 2

Theorem 4.1.10 The manifold of Kenmotsu type (M2n+1, ξ, η,Φ, g) has constant

generalized curvature κ if and only if, M is an η−Einstein manifold with α =

1
a1

(a0 + 2na1 − 2a2s + κ), Aabcd = 0, β = −(2n + α), Aadbc = Bah
c B

d
bh + a1

a0
β δac δ

d
b

and Bab
[cd] = a1

a0
β δa[cδ

b
d], provided that a0, a1 6= 0.

Proof : The assertion of this theorem can be happen, if we are combining the results

of Theorems 4.1.1 and 4.1.7. 2

Now, we try to find the geometric properties of ACR−manifold if the general-

ized curvature tensor, the concircular curvature tensor and the projective curvature

tensor are related.

Suppose that (M2n+1, ξ, η,Φ, g) is an ACR−manifold satisfies the following condi-

tion:

B̃(X, Y, Z,W ) =
a0

3
{P (X, Y, Z,W )− P (Y,X,Z,W ) + C̃(X, Y, Z,W )}. (4.1.3)

Regarding equations (1.4.1), (1.4.2) and (4.1.1), equation (4.1.3) can be written on

the AG−structure space as follows:

0 = (a1 +
a0

6n
){gik rjl − gil rjk + rik gjl − ril gjk}

+ (2a2 +
a0

6n(2n+ 1)
)s{gik gjl − gil gjk}. (4.1.4)

The contracting of the equation (4.1.4), that is multiplies it by gik, we can deduce

that

rjl = −(α + 2nβ)s

(2n− 1)α
gjl, (4.1.5)

where α = a1 + a0
6n

and β = 2a2 + a0
6n(2n+1)

. Moreover, the contracting of the equation

(4.1.5) gives a0 +4na1 +4n(2n+1)a2 = 0. Then we can state the following theorem:
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Theorem 4.1.11 Any ACR−manifold (M2n+1, ξ, η,Φ, g) which satisfies the iden-

tity (4.1.3) is an Einstein manifold with a0 + 4na1 + 4n(2n + 1)a2 = 0, provided

that α 6= 0. Moreover, if M is the manifold of Kenmotsu type then s = 2n(2n−1)α
α+2nβ

,

provided that α + 2nβ 6= 0.

Proof : The first part of this theorem is obvious from the above discussion. Now, if

M is the manifold of Kenmotsu type then from Theorem 2.3.2, we have r00 = −2n.

Then the result is achieved from Definition 1.3.6 and equation (4.1.5). 2

4.2 The Manifold of Kenmotsu Type as Hyper-

surface for the Hermitian Manifold

This section shall study the manifold of Kenmotsu type as a hypersurface of Hemi-

tian manifold.

Remark 4.2.1 [95] Suppose that (M2n−1, ξ, η,Φ, g) is an ACR−manifold, then

there exists an almost complex structure J on M×R defined by J(X, f d
dt

) = (ΦX−

fξ, η(X) d
dt

), where X ∈ X(M), t ∈ R and f is a smooth function on R. The

Riemannian metric h on M × R is defined by

h((X, f1
d

dt
), (Y, f2

d

dt
)) = g(X, Y ) + f1 f2; ∀ X, Y ∈ X(M); f1, f2 ∈ C∞(R).

The structure on M × R is Hermitian if and only if the structure on M is normal.

Remark 4.2.2 Since the manifold of Kenmotsu type is normal because it belongs

to the class C3⊕C4⊕C5, where C5 is taken here to be Kenmotsu manifold mentioned

in Theorem 1.4.3 (see [34] for more details about the classes C3 and C4). Then the

structure on the product of the manifold of Kenmotsu type and the real line is

Hermitian structure (i.e. W3 ⊕W4) according to Remark 4.2.1.

Now, we discuss the opposite problem, that is, if (N2n, J, h) is Hermitian man-

ifold, then can we find a hypersurface of N which is the manifold of Kenmotsu

type? For this reason, we suppose that α, β, γ = 1, 2, ..., n − 1 and σij = σji;
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i, j = 1, 2, ..., 2n − 1 are the components of the second quadratic form. From Ba-

naru [10], we see that the Hermitian manifold N satisfies Cabc = Cabc = 0, where

a, b, c = 1, 2, ..., n, then Theorem 1.5.1 reduces to the following form:

Theorem 4.2.1 The ACR−manifold on a hypersurface of Hermitian manifold has

the following first family of Cartan’s structure equations:

dωα = ωαβ ∧ ωβ + Cαβ
γ ωγ ∧ ωβ + (

√
2Cαn

β +
√
−1σαβ )ωβ ∧ ω

+ (
√
−1σαβ − 1√

2
Cαβ
n )ωβ ∧ ω;

dωα = −ωβα ∧ ωβ + Cγ
αβ ωγ ∧ ω

β + (
√

2Cβ
αn −

√
−1σβα)ωβ ∧ ω

− (
√
−1σαβ +

1√
2
Cn
αβ)ωβ ∧ ω;

dω = (
√

2Cnα
β −

√
2Cα

nβ − 2
√
−1σαβ )ωβ ∧ ωα + (Cn

nβ +
√
−1σnβ)ω ∧ ωβ

+ (Cnβ
n −

√
−1σβn)ω ∧ ωβ,

where ωαβ play the same role of θαβ .

Regarding Theorem 2.2.2, we note that the manifold (M2n−1, ξ, η,Φ, g) of Ken-

motsu type satisfies the following theorem on a certain basis of X(M):

Theorem 4.2.2 The manifold of Kenmotsu type has the following first group of

Cartan’s structure equations:

dωα = ωαβ ∧ ωβ +Bαβ
γ ω

γ ∧ ωβ − ωα ∧ ω;

dωα = −ωβα ∧ ωβ +B γ
αβ ωγ ∧ ωβ − ωα ∧ ω;

dω = 0,

where ωαβ = −θαβ .

Now, if the manifold of Kenmotsu type (M2n−1, ξ, η,Φ, g) is a hypersurface of the

Hermitian manifold (N2n, J, h), then the Cartan’s structure equations mentioned in

Theorems 4.2.1 and 4.2.2 must be equal. Then we get

Cαβ
γ = Bαβ

γ;
√

2Cαn
β +

√
−1σαβ = −δαβ ;

√
−1σαβ − 1√

2
Cαβ
n = 0;

Cγ
αβ = B γ

αβ ;
√

2Cβ
αn −

√
−1σβα = −δβα;

√
−1σαβ +

1√
2
Cn
αβ = 0; (4.2.6)

√
2Cnα

β −
√

2Cα
nβ − 2

√
−1σαβ = 0; Cn

nβ +
√
−1σnβ = 0; Cnβ

n −
√
−1σβn = 0.
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Since σ[αβ] = 0 and Cγ
[αβ] = Cγ

αβ, then equation (4.2.6) gives the following relations:

σαβ = 0; σnβ = 0; σαβ =
√
−1(
√

2Cαn
β + δαβ ). (4.2.7)

Thus from the above discussion, we can establish the theorem below.

Theorem 4.2.3 If the Hermitian manifold has the manifold of Kenmotsu type as

a hypersurface, then the second quadratic form σ has components agree with the

equation (4.2.7).

On the other hand, we can establish a relation between the components of

Riemannian curvature tensors of the AH-manifold and its hypersurfaces. For this

purpose, we suppose that Ri
jkl are the components of Riemannian curvature tensor

of AH-manifold (N2n, J, h) and R̃i
jkl are the components of Riemannian curvature

tensor of its hypersurface (M2n−1, ξ, η,Φ, g). Then from the second group of Cartan’s

structure equations, we have

dωij = ωik ∧ ωkj +
1

2
Ri
jkl ω

k ∧ ωl;

dθij = θik ∧ θkj +
1

2
R̃i
jkl θ

k ∧ θl,

where ωij and θij are Riemannian connection forms of N and M respectively. Where-

as, ωk and θk are the dual A-frames on AG−structure spaces of N and M respec-

tively. Moreover, from [13], we have

θi = Ci
j ω

j; ωi = C̃i
j θ

j; θij = Ci
k ω

k
r C̃

r
j ; ωij = C̃i

k θ
k
r C

r
j ,

where C = (Ci
j) and C−1 = (C̃i

j) were defined in [13]. Then the substitution of the

above relations in the second group of Cartan’s structure equations, we conclude

the following theorem:

Theorem 4.2.4 If Ri
jkl and R̃q

rst are the components of Riemannian curvature ten-

sor of AH-manifold (N2n, J, g) and its hypersurface (M2n−1,Φ, ξ, η, g) respectively,

then they are related as follows:

Ri
jkl = C̃i

q R̃
q
rst C

r
j C

s
k C

t
l .





Chapter 5

The Geometry of ACR−Manifolds

of Class C12

This chapter is devoted to investigating the structure equations of the class C12 and

the curvature components of the aforementioned class on the AG−structure space.

5.1 The Structure Equations of the Class C12

In this section, we determine the Cartan’s structure equations for ACR−manifolds

of class C12 on the AG−structure space using the same techniques of chapter 2.

Regarding Chinea and Gonzalez [34], we note that (M2n+1, ξ, η,Φ, g) belongs to

the class C12 if it satisfies the following identity:

∇X(Ω)(Y, Z) = η(X){η(Z)∇ξ(η)ΦY − η(Y )∇ξ(η)ΦZ},

for all X, Y, Z ∈ X(M), where Ω(X, Y ) = g(X,ΦY ).

Regarding the citation [35], we have

∇X(Ω)(Y, Z) = −g(∇X(Φ)Y, Z);

∇X(η)Y = −g(∇X(Φ)ξ,ΦY ),

for all X, Y, Z ∈ X(M). Then C12 identity can be rewritten in the following form:

∇X(Φ)Y = −η(X){η(Y )Φ(∇ξξ) + g(∇ξξ,ΦY )ξ}. (5.1.1)

64
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If we replace X in the equation (5.1.1) by ΦX or Φ2X, we get

∇ΦX(Φ)Y = ∇Φ2X(Φ)Y = 0. (5.1.2)

Moreover, if we put Y = ξ in the equation (5.1.1), yield

∇Xξ = η(X)∇ξξ. (5.1.3)

Theorem 5.1.1 The ACR−manifold (M2n+1, ξ, η,Φ, g) belongs to the class C12 if

and only if the Kirichenko’s tensors which are mentioned in chapter 1, attain that

B = C = D = E = F = 0; G = ∇ξξ.

Proof : Regarding the equation (5.1.2), we have B = C = E = F = 0. While

according to the citation [100], we have

Φ ◦ ∇X(Φ)ξ = ∇Xξ; ∀ X ∈ X(M).

So, we get G = ∇ξξ. Since the equation (5.1.1) has the following form on the

AG−structure space:

Φi
j,k Y

j Xk εi = −ηk Xk{ηj Y j Φi
l G

l εi + Ωlj G
l Y j ξ};

Φi
j,k Y

j Xk εi = −ηk Xk{ηj Y j Φi
l G

l εi + Ωlj G
l Y j δi0 εi};

Φi
j,k = −ηk{ηj Φi

l G
l + Ωlj G

l δi0}.

Then the last equation gives Φa
0,b̂

, Φa
b̂,0

and their conjugate are zero. These imply

that Bab = Bab = 0, then D = 0. 2

Regarding Theorem 5.1.1, we conclude that the components of Kirichenko’s ten-

sors on the class C12 are zero except the components of the tensor G. So, ac-

cording to Theorems 1.4.5 and 5.1.1, we have that ACR−manifold of class C12

on AG−structure space achieve the following first collection of Cartan’s structure

equations:

dωa = −θab ∧ ωb;

dωa = θba ∧ ωb; (5.1.4)

dω = Cb ω ∧ ωb + Cb ω ∧ ωb.
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Since θ is the 1-form of the Levi-Civita (Rieman) connection for the ACR−manifold

of class C12, then regarding Corollary 1.3.1 and the fact that all components of the

tensors B,C,D,E, F are zero, we conclude that θ satisfies the following:

θa0 = Ca ω; θa
b̂

= 0. (5.1.5)

Now, if we are acting the operator d on the first part of equation (5.1.4), then we

obtain

4Θa
b ∧ ωb = 0, (5.1.6)

where 4Θa
b = dθab + θac ∧ θcb. Since 4Θa

b is 2-form, then we can write

4Θa
b = Aadhbcf θ

c
d ∧ θ

f
h + Aadbch θ

c
d ∧ ωh + Aadhbc θcd ∧ ωh + Aadbc0 θ

c
d ∧ ω + Aabcd ω

c ∧ ωd

+ Aadbc ω
c ∧ ωd + Aabc0 ω

c ∧ ω + Aacdb ωc ∧ ωd + Aac0b ωc ∧ ω.

Substitute the above equation in equation (5.1.6), we have

Aadhbcf = Aad[b|c|h] = Aadhbc = Aadbc0 = Aa[bcd] = Aad[bc] = Aa[bc]0 = Aacdb = Aac0b = 0.

Now, repeating the same argument to the second part of equation (5.1.4), we get

Aadhbcf = Aadbch = A
[a|d|h]
bc = Aadbc0 = Aabcd = A

[ad]
bc = Aabc0 = A

[acd]
b = A

[ac]0
b = 0.

So, we have

dθab = −θac ∧ θcb + Aadbc ω
c ∧ ωd,

where A
[ad]
bc = Aad[bc] = 0. Moreover, the exterior differentiation of the third part of

equation (5.1.4) leading to

dCb∧ω∧ωb +Cb dω∧ωb−Cb ω∧dωb +dCb∧ω∧ωb +Cb dω∧ωb−Cb ω∧dωb = 0.

The above equation implies that

(dCb − Cd θdb ) ∧ ω ∧ ωb + C[b Ca] ω ∧ ωa ∧ ωb + (dCb + Cd θbd) ∧ ω ∧ ωb

+ C [b Ca] ω ∧ ωa ∧ ωb = 0.

Since C[b Ca] = 1
2
(Cb Ca − Ca Cb) = 0 and similarly C [b Ca] = 0, then the above

equation reduces to

(dCb − Cd θdb ) ∧ ω ∧ ωb + (dCb + Cd θbd) ∧ ω ∧ ωb = 0. (5.1.7)
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Since the forms (dCb − Cd θ
d
b ) and (dCb + Cd θbd) are 1-forms, then they can be

written in the following formulae:

dCb − Cd θdb = Cd
bh θ

h
d + Cbd ω

d + Cd
b ωd + Cb0 ω,

dCb + Cd θbd = Cbh
d θdh + Cbd ωd + Cb

d ω
d + Cb0 ω,

then the substitution of the above formulae in equation (5.1.7) gives Cd
bh = Cbh

d =

C[bd] = C [bd] = 0. So, we can state the following theorem:

Theorem 5.1.2 The second family of Cartan’s structure equations of the class C12

on the AG−structure space are given by the following formulae:

1. dθab = −θac ∧ θcb + Aadbc ω
c ∧ ωd;

2. dCb = Cd θ
d
b + Cbd ω

d + Cd
b ωd + Cb0 ω;

3. dCb = −Cd θbd + Cbd ωd + Cb
d ω

d + Cb0 ω,

where A
[ad]
bc = Aad[bc] = C[bd] = C [bd] = 0.

The above theorem agrees with Theorem 1.4.6, and we have Cbd = ∇εdCb,

Cd
b = ∇εd̂

Cb, Cb0 = ∇ξCb and so on.

Corollary 5.1.1 The ACR−manifold of class C12 is cosymplectic manifold if and

only if G = 0.

Proof : The allegation of this corollary is verified from equation (5.1.1). 2

5.2 The Curvature Tensors on the Class C12

In this section, we determine the components of the Riemannian curvature tensor

and Ricci tensor for the ACR−manifold of class C12. Moreover, we investigate the

(κ, µ)-nullity distribution of the class C12.

We begin this section with an example on ACR−manifold of class C12 of dimen-

sion 3.
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Example 5.2.1 Suppose that (M3, ξ, η,Φ, g) isACR−manifold of dimension three,

such that

M = {(x, y, z) ∈ R3 : y 6= 0}

and suppose that {e0, e1, e2} is a Φ-basis of the Lie algebra of smooth vector fields

X(M), such that

[e0, e1] = −e0, [e0, e2] = [e1, e2] = 0,

and

e0 = ξ, Φ(e1) = e2, Φ(e2) = −e1,

where

e0 = ey
∂

∂x
, e1 =

∂

∂y
, e2 =

∂

∂z
.

Moreover, we define the Riemannian metric g and the 1-form η as follows:

g(ei, ej) = δij, i, j = 0, 1, 2, η(X) = g(X, ξ), X ∈ X(M),

where δij is the Krönecker delta. Then from the following Koszul’s formula:

2g(∇XY, Z) = X(g(Y, Z)) + Y (g(X,Z))− Z(g(X, Y ))− g(X, [Y, Z])

− g(Y, [X,Z]) + g(Z, [X, Y ]); ∀ X, Y, Z ∈ X(M),

we note that

∇e0e0 = e1, ∇e0e1 = −e0, ∇e0e2 = 0,

∇e1e0 = 0, ∇e1e1 = 0, ∇e1e2 = 0,

∇e2e0 = 0, ∇e2e1 = 0, ∇e2e2 = 0.

Then (M3,Φ, ξ, η, g) satisfies equation (5.1.1) and then it is 3-dimensional ACR−

manifold of class C12.

Now, we can determine the components Ri
jkl of Riemannian curvature tensor

on ACR−manifold (M2n+1, ξ, η,Φ, g) of class C12 over the AG−structure space by

using the following equations from Theorem 1.4.1; item (2):

dθij = −θik ∧ θkj +
1

2
Ri
jkl ω

k ∧ ωl,

where i, j, k, l = 0, 1, ..., 2n. Since M2n+1 satisfies equation (5.1.5) and Theorem

5.1.2, then we can conclude the following theorem:
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Theorem 5.2.1 On AG-structure space, the components of Riemannian curvature

tensor R of the class C12 are given as the following:

1. Ra
0b0 = Ca

b − Ca Cb;

2. Ra
0b̂0

= Cab − Ca Cb;

3. Ra
bcd̂

= Aadbc ,

and the other components are zero or given by the properties of R or the conjugate

to the above components (i.e. Ri
jkl = Rî

ĵk̂l̂
).

Proof : If we take into account Theorem 1.4.1; item (2) and setting i = a, j = 0,

then we arrive to the following:

dθa0 + θa0 ∧ θ0
0 + θab ∧ θb0 + θa

b̂
∧ θb̂0 = Ra

0b0 ω
b ∧ ω +Ra

0b̂0
ωb ∧ ω +

1

2
Ra

0bd ω
b ∧ ωd

+Ra
0bd̂

ωb ∧ ωd +
1

2
Ra

0b̂d̂
ωb ∧ ωd.

According to equation (5.1.5) and Lemma 1.2.1; item 3, we get

dCa ∧ ω + Ca dω + Cb θab ∧ ω = Ra
0b0 ω

b ∧ ω +Ra
0b̂0

ωb ∧ ω +
1

2
Ra

0bd ω
b ∧ ωd

+Ra
0bd̂

ωb ∧ ωd +
1

2
Ra

0b̂d̂
ωb ∧ ωd.

Then the items 1 and 2 of the present theorem are done by the substitution of

equation (5.1.4) and Theorem 5.1.2 in the above equality. Therefore, to carry out

item 3, we put i = a, j = b in Theorem 1.4.1; item (2) and follows the same

technique given above. 2

Lemma 5.2.1 In the ACR−manifold (M2n+1, ξ, η,Φ, g) of class C12, the following

identity:

2dη(X, Y ) = η(X)g(G, Y )− η(Y )g(G,X),

holds for all X, Y ∈ X(M).

Proof : Using equation (5.1.3), Theorem 5.1.1 and the fact that

η(∇Xξ) = η(X)η(∇ξξ) = η(X)η(G) = η(X)η ◦ Φ(∇ξ(Φ)ξ) = 0.



Chapter Five 70

Also, from the citation [35], it follows that:

2dη(X, Y ) = ∇X(Ω)(ξ,ΦY )−∇Y (Ω)(ξ,ΦX);

= −g(∇X(Φ)ξ,ΦY ) + g(∇Y (Φ)ξ,ΦX);

= g(Φ(∇Xξ),ΦY )− g(Φ(∇Y ξ),ΦX);

= g(∇Xξ, Y )− g(∇Y ξ,X);

= η(X)g(G, Y )− η(Y )g(G,X).

2

Theorem 5.2.2 The ACR−manifold (M2n+1, ξ, η,Φ, g) of class C12 attains the fol-

lowing curvature identity:

R(X, Y )ξ = 3dη(X, Y )G−X(η(Y ))G+ Y (η(X))G+ η(Y )∇XG− η(X)∇YG,

for all vector fields X, Y ∈ X(M).

Proof : Using the equality dη(X, Y ) = X(η(Y )) − Y (η(X)) − η([X, Y ]), equation

(5.1.3) and Lemma 5.2.1, we obtain

R(X, Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ;

= ∇X(η(Y )G)−∇Y (η(X)G)− η([X, Y ])G;

= (∇X(η)Y )G+ η(Y )∇XG− (∇Y (η)X)G− η(X)∇YG− η([X, Y ])G;

= 2dη(X, Y )G+ η(Y )∇XG− η(X)∇YG− η([X, Y ])G;

= 3dη(X, Y )G+ η(Y )∇XG− η(X)∇YG−X(η(Y ))G+ Y (η(X))G.

2

Corollary 5.2.1 On the ACR−manifold (M2n+1, ξ, η,Φ, g) of class C12, the follow-

ing curvature identities hold:

1. R(X, Y )ξ = 0, if X, Y ∈ ker(η);

2. R(ΦX,ΦY )ξ = R(Φ2X,Φ2Y )ξ = R(ΦX,Φ2Y )ξ = 0; ∀ X, Y ∈ X(M).

Proof : The outcomes are obvious from Lemma 5.2.1 and Theorem 5.2.2. 2

Now, we are in position to calculate the components of Ricci tensor r of ACR−

manifold of class C12 on AG−structure space.
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Theorem 5.2.3 On AG−structure space, the components of Ricci tensor of ACR−

manifold of class C12 are given below.

1. r00 = 2(Ca
a − Ca Ca);

2. ra0 = 0;

3. rab = Cab − Ca Cb;

4. râb = Ca
b − Ca Cb + Aaccb ,

and the remaining components are conjugate to the above components or given by

the symmetric property.

Proof : Regarding Definition 1.4.3 and Theorem 5.2.1, we have the following:

r00 = −Rk
00k;

= −R0
000 −Ra

00a −Râ
00â;

= 0 +Ra
0a0 +Ra

0a0;

= 2Ra
0a0;

= 2(Ca
a − Ca Ca).

So, we can follow the same above technique to proof the others items. 2

Theorem 5.2.4 On AG−structure space, an ACR−manifold (M2n+1, ξ, η,Φ, g) of

class C12 is an η−Einstein manifold if and only if, M2n+1 satisfies the following

conditions:

α + β = 2(Ca
a − Ca Ca), Cab = Ca Cb, α δab = Ca

b − Ca Cb + Aaccb .

Proof : According to Definition 1.4.4, we have that M2n+1 is an η−Einstein manifold

if and only if its Ricci tensor r satisfies the following for all vector fields X, Y over

M :

r(X, Y ) = α g(X, Y ) + β η(X) η(Y ),

where α, β ∈ C∞(M). On the AG−structure space, the above equation equivalent

to the following:

rij = α gij + β ηi ηj.
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Making use of Definition 1.3.6, it follows that:

r00 = α + β, ra0 = rab = 0, râb = α δab .

Regarding Theorem 5.2.3 and the last equations, we get the requirement. 2

Corollary 5.2.2 If (M2n+1, ξ, η,Φ, g) is an η−Einstein manifold of class C12 with

Ca
b = Ca Cb, then α + β = 0 and α = n−1Aacca.

Proof : Using Theorem 5.2.4 and contracting the following conditions:

Ca
b = Ca Cb, α δab = Ca

b − Ca Cb + Aaccb .

Subsequently, we get the desired. 2

Now, we discuss the nullity conditions for ACR−manifold of class C12. From

Definition 1.4.12, we have

R(Z,W )Y = κ{g(W,Y )Z − g(Z, Y )W}+ µ{g(W,Y )hZ − g(Z, Y )hW}.

Since R(X, Y, Z,W ) = g(R(Z,W )Y,X), then we get

R(X, Y, Z,W ) = κ{g(X,Z)g(Y,W )− g(X,W )g(Y, Z)}

+ µ{g(Y,W )g(X, hZ)− g(Y, Z)g(X, hW )}.

On AG−structure space, the above identity equivalent to the following:

Rijkl = κ(gik gjl − gil gjk) + µ(gjl gis h
s
k − gjk gis hsl ), (5.2.8)

where i, j, k, l, s = 0, 1, ..., 2n. Then we have the following:

Lemma 5.2.2 If (M2n+1, ξ, η,Φ, g) belongs to the class C12, then on AG− structure

space, the tensor h = 1
2
Lξ(Φ) has the following components forms:

h0
a = −

√
−1

2
Ca; ha0 = −

√
−1Ca,

and the other components are identical to zero or the conjugate to the above com-

ponents.



Chapter Five 73

Proof : Regarding Definition 1.4.12, we have

h(X) =
1

2
{∇ξ(Φ)X −∇ΦXξ + Φ(∇Xξ)}; ∀ X ∈ X(M).

So, regarding equation (5.1.3) and Theorem 5.1.1, we can rewrite the above equation

as follow:

h(X) =
1

2
{∇ξ(Φ)X + η(X)Φ(G)}; ∀ X ∈ X(M).

On AG−structure space, the above equation has the following form:

hij =
1

2
{Φi

j,0 − ηj Φi
k G

k}; i, j, k = 0, a, â.

Since the tensor G has the components Ca and Ca, then Gk = 0 at k = 0. So,

regarding the components of G, Definition 1.3.6 and setting (i, j) = (0, a), (a, 0) in

the above equation, we attain the requirements. 2

Theorem 5.2.5 The ACR−manifold (M2n+1, ξ, η,Φ, g) of class C12 has (κ, µ)-

nullity distribution if and only if, the following conditions hold:

1. Ca
b = Ca Cb + κ δab ;

2. Cab = Ca Cb;

3. Aadbc = κ δac δ
d
b .

Proof : Since Ri
jkl = Rîjkl, then according to equation (5.2.8) and Definition 1.3.6,

we get

Râ0b0 = κ(gâb g00 − gâ0 g0b) + µ(g00 gâs h
s
b − g0b gâs h

s
0);

= κ δab + µ hab .

So, regarding Theorem 5.2.1 and Lemma 5.2.2, we attain item 1. Therefore, we can

follow the same argument to prove the remaining items. 2

Corollary 5.2.3 If (M2n+1, ξ, η,Φ, g) is an ACR−manifold of class C12 with (κ, µ)-

nullity distribution, then κ = 0 or n = 1.
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Proof : From Theorem 5.1.2, we have A
[ad]
bc = Aad[bc] = 0, then making use of Theorem

5.2.5; item 3, we get

0 = κ δ[a
c δ

d]
b ;

0 = κ{δac δdb − δdc δab }. (5.2.9)

Then the contracting of equation (5.2.9) with respect to the indexes (a, c), we get

(n− 1)κ = 0 and this implies that κ = 0 or n = 1.

Then we attain the claim of the corollary. 2

Theorem 5.2.6 If (M2n+1, ξ, η,Φ, g) is an ACR−manifold of class C12 with n >

1 and it satisfies (κ, µ)-nullity condition, then M has flat Riemannian curvature

tensor. That is

R(X, Y )Z = 0; ∀ X, Y, Z ∈ X(M).

Proof : Suppose that X, Y, Z ∈ X(M), then R(X, Y )Z = Ri
ı` X

ı Y  Z` εi, where

i, ı, , ` = 0, 1, ..., 2n. Regarding Theorems 5.2.1, 5.2.5 and Corollary 5.2.3, we con-

clude that Ri
ı` = 0, and this leads to the result. 2

Theorem 5.2.7 Suppose that M is ACR−manifold (M3, ξ, η,Φ, g) of class C12.

Then M satisfies (κ, µ)-nullity condition if and only if M is an Einstein manifold

with α = 2κ.

Proof : According to Theorems 5.2.3 and 5.2.5, we get the desired result. 2
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 ص:لخستالم

واستنتجنا الشروط  ةتقريبي ةمتري ةلمتصمنطويات هذه الاطروحة ميَّزنا فئة جديدة من  في

يحقق الفئة  المكافئة للمتطابقة المميزة بدلالة تناسر كريجنكا. أثبتنا بان منطوي كينموتسو

المذكورة او بعبارة أخرى الفئة الجديدة يمكن ان تتحلل الى جمع مباشر من منطوي 

يتطابق مع منطوي كينموتسو ووفرنا  3برهنا بان المنطوي ذو بعد كينموتسو وفئات أخرى. 

بالإضافة الى ذلك،  منطوي كينموتسو.بحيث لا يكون  5بعد ال  للمنطوي الجديد ذيمثالاا 

استنتجنا معادلات كارتان التركيبية ومركبات تنسر انحناء ريمان وتنسر ريشي للفئة قيد 

الدراسة. أضف الى ذلك، تم تحديد الشروط المطلوبة لجعل الفئة المذكورة تكون منطوي 

 اينشتاين. لقد اسمينا الفئة سالفة الذكر التي تم تمييزها بالفئة من نوع كينموتسو. 

للفئة من نوع كينموتسو كضرب  علاوةا على ذلك، في هذه الاطروحة استنتجنا مثالاا           

المترابطة، تم  𝐺 –الهرميشي في المستقيم الحقيقي. على فضاء البنية مشوه للمنطوي 

 Φ–الحصول على الشروط المطلوبة للفئة المذكورة ليكون لها تنسر انحناء مقطعي 

ا. صن   هولومورفي ثابت نقطي ا لتناسر فنا ا فئات جديدة من منطويات اتصال متري تقريبي تبعا

انحنائها ووجدنا علاقاتهم مع فئتنا. بالإضافة الى ذلك، استنتجنا الشروط التي تجعل فئتنا 

 تحقق تعميم نماذج فضاء ساساكي والفئات الجديدة ومنطوي اينشتاين. 

لمنطويات من نوع كينموتسو. الهدف  Φ –درست الاطروحة الحالية تعميم متكرر           

بالإضافة الى من هذه الدراسة هو تحديد مركبات مشتقة التغاير لتنسر الانحناء الريماني. 

ا او تعميم اا الشروط التي تجعل منطوي من نوع كينموتسو متناظر تم استنتاج ذلك، ا محليا  ا

ا . Φ – اا متكرر ا استنتجت الاطروحة بان المنطوي من نوع كينموتسو المتناظر محليا ايضا

الى ذلك، الدراسة  أضف. تحت شرط مناسب والعكس صحيح Φ –يكون تعميم متكرر 

ا.   استنتجت العلاقة بين منطويات اينشتاين والمنطوي من نوع كينموتسو المتناظر محليا

الانحناء العام واستنتجنا بان الفئة المذكورة تكون  لنفس الفئة حددنا مركبات تنسر          

–منطوي  𝜂 ا تحت شر وط اينشتاين تحت تسطح تنسر الانحناء العام؛ العكس يبقى صحيحا

هولومورفي  Φ–قدمنا مفهوم تعميم تنسر الانحناء المقطعي  مناسبة. بالإضافة الى ذلك،



ا ومن ثم وجدنا الشرط الضروري والكافي الذي يجعل المفهو ا ثابت م المذكور سابقا للفئة من  ا

ا تم تقديم مفهوم  نوع كينموتسو. المعمم شبه المتناظر وتم استنتاج علاقته مع الفئة  Φ–ايضا

–من نوع كينموتسو ومنطوي  𝜂  .الى ذلك، عممنا مفهوم المنطوي ذي أضفاينشتاين 

اخيراا بينا  المذكورة. بالأفكارالانحناء الثابت حيث البنية هي اتصال تقريبي وحققنا علاقته 

بان الفئة من نوع كينموتسو موجودة كسطح فوقي للمنطوي الهرميشي وتم اشتقاق العلاقة 

 بين المركبات لتناسر الانحناء الريمانية للمنطوي الهرميشي التقريبي والسطوح الفوقية له. 

ا هندسة منطوي الاتصال المتر           . 𝐶12ي التقريبي من الفئة هذه الاطروحة ناقشت ايضا

والريشي على فضاء  الانحناء يسرت التركيبية ومركبات تنوبشكل خاص، تم تحديد المعادلا

ا الاطروحة تدرس بعض متطابقات الانحناء لهذه الفئة. بالإضافة  𝐺 –البنية  المترابطة. ايضا

,𝜅) هذه الاطروحة ناقشت توزيع العدمالى ذلك،  𝜇) واستنتجت الشروط  𝐶12للفئة  −

,𝜅)الضرورية والكافية للفئة المذكورة لكي تمتلك توزيع العدم  𝜇) ولكي تحقق معيار  −

– 𝜂  اينشتاين. اخيراا تم بناء مثال للمنطوي من الفئة𝐶12 3بعد ال ذي  .     
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