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Abstract i

Abstract

In this thesis, we characterized a new class of almost contact metric (ACR—)
manifolds and establish the equivalent conditions that characterize its identity in
sense of Kirichenko’s tensors. We demonstrate that the Kenmotsu manifold proves
that the mentioned class, that is, the new class, can be decomposed into a direct
sum of the Kenmotsu manifold and other classes. We prove that the manifold of
dimension 3 coincides with the Kenmotsu manifold and provide an example of the
new manifold of dimension 5, which is not the Kenmotsu manifold. Moreover, we
establish that the Cartan’s structure equations, components of Riemannian curva-
ture tensor, and the Ricci tensor of the class should be kept under consideration.
Further, the conditions required for the mentioned class to be an Einstein manifold
have been determined. We called the aforementioned characterized class the class
of the Kenmotsu type.

Furthermore, in this thesis, we provide an example of the class of Kenmotsu type
as a warped product of the Hermitian manifold by the real line. The conditions re-
quired for the mentioned class to be of constant pointwise ®—holomorphic sectional
curvature tensor are obtained on the associated G—structure space. We classify new
classes of AC' R—manifolds according to their curvature tensors and ascertain their
relationships with our class. Moreover, we investigate the conditions that make our
class satisfy the generalized Sasakian space forms, new classes, and Einstein mani-
folds.

The present thesis studies the generalized ®—recurrent manifold of the Kenmotsu
type. The aim of this study is to determine the components of the covariant deriva-
tive of the Riemannian curvature tensor. Moreover, the conditions make a manifold
of Kenmotsu type a locally symmetric or generalized ®—recurrent have been estab-
lished. We concluded that the locally symmetric manifold of the Kenmotsu type
is generalized ®—recurrent under suitable conditions and vice versa. Furthermore,
the study shows the relationship between Einstein manifolds and locally symmetric

manifolds of the Kenmotsu type.
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For the same class, we determine the components of the generalized curvature
tensor and establish that the mentioned class is n—Einstein manifold in the flatness
of the generalized curvature tensor; the converse holds under suitable conditions.
Moreover, we introduced the notion of generalized ®—holomorphic sectional curva-
ture tensor. Thus, we find the necessary and sufficient condition that makes the
aforementioned notion constant for the class of Kenmotsu type. In addition, the no-
tion of the ®-generalized semi-symmetric is introduced and its relationship with the
class of Kenmotsu type and the n—Einstein manifold is established. Furthermore,
we generalize the notion of the manifold of constant curvature where the structure
is almost contact and we identify its relationship with the mentioned ideas. Finally,
we show that the class of Kenmotsu type exists as a hypersurface of the Hermitian
manifold and derive a relation between the components of the Riemannian curvature
tensors of the almost Hermitian manifold and its hypersurfaces.

This thesis also discusses the geometry of the AC'R—manifolds of class C'5. In
particular, it determines the structure equations, the components of curvature and
Ricci tensors on the associated G—structure space. It also studies some curvature
identities of this class. Moreover, this thesis investigates the (k, u)-nullity distri-
bution of the class C15 and establishes the sufficient and necessary conditions for
the mentioned class to have (k, p)-nullity distribution and satisfy the n—Einstein
criterion. Finally, an example of a 3-dimensional manifold of class C5 has been

constructed.
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Characters Description

M" The smooth manifold of dimension n

g The Riemannian metric

Gij The components of g

g" The components of g~!
(M, g) The Riemannian manifold of dimension n
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R™ The Euclidean space
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C>(M) The set of all smooth functions f: M — R
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The AC R—manifold of dimension 2n + 1

®H S —curvature

®—Holomorphic sectional curvature

GO HS—curvature

Generalized ® HS—curvature

&G S—symmetric
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Symbols and Abbreviations
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Characters Description
GS—space forms Generalized Sasakian space forms
M(f1, fa, f3) The GS—space forms
Q(X,Y) g(X,®Y); VXY e X(M)

lcQQS —manifold

Locally conformally quasi-Sasakian manifold

[(X,Y] XY -YX
V* The dual space of V'
r—form The tensor of type (r,0)
. The direct sum operation
® The tensor product operation
(V) The set of all tensors of type (r,s) on V
T.(V) The set of all r—forms on V
x.(V) The set of all symmetric r—forms on V/
A(V) The set of all alternating r—forms on V'
A(V) The Grassmann algebra
Symbol (M) Symbol (X (M))
(Symbol), (M) Symbol(T,(M))
pAY The exterior product of ¢ and ¥
d;j or 5;'» The Kronecker delta
dad 8¢ 6% + 60 5
B x; F The warped product of Riemannian manifolds
B and F with smooth map f: B — B
XC(M) C® X(M)
\Y The Riemannian connection
Vx(®)Y Vx®(Y)—d(VyY)
0 The 1-form of V
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a a+n
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The dual of A-frame with £ =0,1,...,2n




Symbols and Abbreviations

Characters

Description
R The Riemannian curvature tensor
kil The components of R of type (3, 1)
Rijwi The components of R of type (4, 0)
VR The covariant derivative of R
B® . B, ¢ The components of first structure tensor B
B% B, The components of second structure tensor C'
B® B, The components of third structure tensor D
B%, B} The components of fourth structure tensor £
% Cu The components of fifth structure tensor F
ce, C, The components of sixth structure tensor GG
AH-manifold Almost Hermitian manifold
W3 Wy The Hermitian class of AH-manifolds
J The complex structure of AH-manifold
Oap The components of the second fundamental

(quadratic) form o

The symmetric operator of its interior

The symmetric operator of its interior except |.|

The alternating operator of its interior

The alternating operator of its interior except |.|

T The complex conjugate of T%(= T%)
Q The Ricci operator

B The generalized curvature tensor
P The projective curvature tensor
C

The concircular curvature tensor
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Introduction

The establishment of modern differential geometry is attributed to Chern [32],
who introduced the algebraic structures of the almost contact manifolds in 1953.
In 1958, Boothby and Wang [28] discussed the regular and homogeneous contac-
t manifolds and deduced their relationships with tangent sphere bundles. On the
other hand, in 1959, Gray [55] gave some examples of AC' R—manifolds. In the
1960s, Sasaki [101] published lecture notes on the AC' R—manifolds and character-
ized the special class was later called Sasakian manifolds. Blair [16] studied the
quasi-Sasakian structure; Blair and Ludden [22] considered the hypersurfaces on al-
most contact manifolds, whereas the concept of almost cosymplectic manifolds was
first introduced by Goldberg and Yano [52].

In 1971, the nearly cosymplectic structure was established by Blair [17], while
Blair and Yano [25] generalized the results that appeared in [17]. In 1972, Ken-
motsu [63] defined a class of AC' R—manifolds, which was not Sasakian. Later, this
manifold bore the name of Kenmotsu manifolds. In 1973, Chen [30] concentrated
on the geometry of submanifolds. In 1974, Blair and Showers [23] applied some of
Gray’s conclusions [53] on nearly Kéahler manifolds to nearly cosymplectic manifolds.
In 1976, Blair [18] discussed contact manifolds where the normal contact manifold-
s were Sasakian manifolds, whereas Blair et al. [24] highlighted nearly Sasakian
structures. In 1980, Vaisman [112] investigated the conformal transformation of
AC R—manifolds. In 1981, Olszak [90] gave examples of almost cosymplectic man-
ifolds and studied their existence with non-zero constant curvature, while Janssens
and Vanhecke [61] decomposed the AC R—manifolds that satisfied some curvature
tensors into irreducible components.

In 1983, Kirichenko [66] and [67] investigated the geometry of nearly Sasakian

1



Introduction 2

spaces and almost cosymplectic manifolds that satisfy the axiom of planes with
®—holomorphic. In 1984, the axiom of ®—holomorphic planes on the contact met-
ric geometry was studied by Kirichenko [68]. In 1985, Oubina [92] determined new
classes of AC R—manifolds. In 1986, Kirichenko [69] demonstrated an interesting
method to determine contact geometry from generalized Hermitian geometry. Local-
ly conformal almost cosymplectic manifolds were discovered in 1989 by Olszak [91].
In 1990, AC' R—manifolds were classified according to their structure group into
a direct sum of twelve irreducible classes by Chinea and Gonzalez [34]. In 1992,
Tshikuna-Matamba [109] defined new classes of AC'R—manifolds, which generalized
the Kenmotsu class, such as nearly Kenmotsu manifolds, quasi-Kenmotsu mani-
folds, and so on. In 1994, Rustanov [98] discussed the geometry of quasi-Sasakian
manifolds. In 1995, Chinea and et al. [35] studied almost contact submersions where
the locally conformal total space is a cosymplectic manifold. In 1997, the author
Volkova [115] studied normal manifolds of the Killing type, which satisfy the special
curvature identities.

In 2000, Boeckx [26] classified the contact manifolds that satisfy (k, p)-nullity
conditions. In 2001, Kirichenko [70] constructed a Kenmotsu manifold using a con-
formal transformation of cosymplectic manifold, while in [105], Stepanova and Ba-
naru extracted AC'R—manifolds from quasi-Kéhlerian manifolds as hypersurface. In
2002, the geometry of Kenmotsu manifold and some of its interesting generalization-
s were discussed by Umnova [111], whereas Volkova [116] investigated the normal
manifolds of the Killing type, which satisfy the axiom of ®-holomorphic planes. On
the other hand, Blair [19] studied the geometry of special Riemannian manifolds
that are contact and symplectic manifolds, while in [108], Terlizzi and Pastore in-
vestigated the K—manifolds with the quasi-Sasakian manifold as a special case of
it, defined an f—structure on a hypersurface of the K—manifold, and provided an
example of the —manifold. In 2003, Kirichenko [71] introduced a separate study
of the differential geometric structures on the Riemannian manifolds by using the
method of associated G—structure space (briefly, AG—structure space).

In 2004, Alegre et al. [5] generalized the idea of Sasakian-space-forms, whereas

Falcitelli et al. [47] focused on Riemannian submersions and associated them with
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theoretical physics and the Einstein theory by providing examples. In 2005, Jun et
al. [62] studied certain curvature conditions such as semi-symmetric and Weyl semi-
symmetric of the Kenmotsu manifold. Moreover, they studied the transformation
that saves the invariant of the Ricci tensor. However, in [44], Endo investigated
nearly cosymplectic manifolds that had constant ®—sectional curvature. In 2006,
Kirichenko and Dondukova [74] discussed the geodesic transformation of Kenmotsu
manifolds and proved there is only a trivial transformation, while Falcitelli and Pa-
store [48] discussed the curvature properties of the Kenmotsu f.pk—manifolds.

In 2007, Kirichenko and Polkina [77] showed that on the quasi-Sasakian struc-
tures there are no non-trivial contact-geodesic metric transformations. They also
proved that the normal regular locally conformally quasi-Sasakian (normal regular
lcQQS—) structures allow nontrivial contact-geodesic metric transformations. More-
over, the second author studied the analogs of Gray identities (see [54]) on ACR—
and [cQQS—structures in [96], while Kirichenko and Baklashova [73] derived Ikuta’s
theorem on AC'R—manifolds. In particular, they proved that the locally conformally
cosymplectic manifold had closed contact form if and only if it is a normal regular
lcQQS —manifold. The normal regular [cQ)S —manifold is a Kenmotsu manifold if and
only if its contact Lee form and the contact form are the same. At the same time,
Pitig [95] studied the geometry of Kenmotsu manifolds in detail. On the other hand,
Dileo and Pastore [41] deduced the necessary and sufficient conditions for almost
Kenmotsu manifolds to be locally symmetric. Falcitelli and Pastore [49] introduced
and studied the notion of almost Kenmotsu f.pk—manifold.

In 2008, Kirichenko and Uskorev [80] described Kirichenko’s tensors of ACR—
manifold under conformal transformations, while Falcitelli [45] studied the &— sec-
tional curvature of manifolds with locally conformal cosymplectic structures. Addi-
tionally, Alegre and Carriazo [6] studied the trans-Sasakian manifolds that satisfy the
conditions of generalized Sasakian-space-forms (G.S—space forms), and some general
outcomes for dimension > 5 and special cases for 3-dimensional were determined.
In 2009, Dileo and Pastore [42] described the Riemannian geometry and Riemann
submanifolds of almost Kenmotsu manifolds that satisfy some geometric condition-

s. They also characterized the C R-integrable almost Kenmotsu, classified almost
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Kenmotsu manifolds based on certain nullity conditions, completely described the 3-
dimensional case, and gave examples in [43]. Furthermore, Alegre and Carriazo [7]
investigated the geometry of submanifolds in GS—space forms, while Kirichenko
and Pol’kina [78] detected necessary and sufficient conditions for the quasi-Sasakian
manifold to happen in a Fialkow space.

In 2010, Chinea [33] studied the harmonicity of special maps between ACR—
manifolds. In 2011, Kirichenko and Kusova [76] classified weakly cosymplectic man-
ifolds that satisfy contact analog curvature identities. At the same time, Dileo [40]
analyzed the geometry of almost a—Kenmotsu manifolds. She also focused on local
symmetries and certain vanishing conditions for the Riemannian curvature. Par-
allelly, Ignatochkina [58], Ignatochkina and Morozov [60] and Nikiforova and Igna-
tochkina [89] studied the AC'R—manifolds induced from almost Hermitian (AH-)
manifolds by conformal transformations. On the other hand, Kharitonova [64] as-
certained necessary and sufficient conditions for an AC' R—manifold to be an almost
C'(A)—manifold.

In 2012, Kirichenko and Kharitonova [75] determined the full group of structure
equations, components of the Riemannian curvature tensor, components of the Ricci
tensor, and components of the Weyl tensor on the AG—structure space for locally
conformal manifolds with almost cosymplectic structures. Additionally, Falcitel-
li [46] studied the class of AC R—manifolds considered twisted product manifolds
and derived theorems describing the aforementioned class with G.S—space forms.

In 2013, Rehman [97] discussed the harmonic maps and morphisms between
Kenmotsu manifolds and an AH-manifold. Moreover, she studied the spectral the-
ory of these maps. Perrone [93] determined necessary and sufficient conditions for
the Reeb vector field of 3-dimensional almost cosymplectic manifold to be minimal.
Markellos and Tsichlias [85] constructed a new group of contact metric structures
on S*. In 2014, Banaru [9] discussed the necessary and sufficient conditions for the
AC R—manifold to be the hypersurface with type number 0 or 1 of the 6-dimensional
Kéhler submanifold of Cayley algebra. Kim et al. [65] characterized quasi-contact
metric manifolds while De and Ghosh [36] studied F—Bochner curvature tensors

that satisfy certain conditions of the N (k)—contact metric manifold of dimension n.



Introduction S

In 2015, Banaru and Kirichenko [13] derived the structure equations of ACR—
manifold on a hypersurface of AH-manifold. They determined sufficient and neces-
sary conditions for the Kenmotsu manifold on a hypersurface of the W3—manifold
(see Gray and Hervella [56]) to be minimal. Ghosh [50] examined contact met-
ric manifolds with quasi-Einstein metrics, and he proved that every quasi-Einstein
Sasakian manifold is an Einstein manifold. In 2016, Kirichenko and Pol’kina [79]
were studied the concircular geometry of [cQ)S—manifold according to its contact
Lie form. Banaru [11] showed that 2-hypersurfaces in a Kéhlerian manifold ad-
mit AC R—structures of a non-cosymplectic type. Wang [117] showed that a CR-
integrable almost Kenmotsu manifold of a dimension of > 3 with certain conditions
has constant sectional curvature of —1 if and only if it is conformally flat.

In 2017, Banaru [12] proved that hypersurfaces with type number 0 or 1 are
identical in the Hermitian submanifold of dimension 6 in Cayley algebra. Nicola
et al. [87] proved that each nearly Sasakian manifold with a dimension of > 5 is
Sasakian as well as classified the nearly cosymplectic manifolds with a dimension
of > 5. Loiudice [83] evaluated a class of contact manifolds of dimension 4n + 1
and deduced that this class should have a dimension of 5 if it has constant sec-
tional curvature. Alegre et al. [8] introduced a class of trans—S—manifolds that
included special classes that were studied previously and they presented examples
that supported their study. Petrov [94] studied the total space of the T —principal
fiber bundle with almost Hermitian structures and flat connection over some class-
es of AC R—manifolds. Nikiforova [88] assessed some generalizations of conformal
transformations for AC'R—manifolds and discussed the invariance of six structure
tensors (Kirichenko’s tensors) under these transformations. In [59], Ignatochkina
studied the transformation of the AH-manifold induced by a linear extension of
AC R—manifolds having a conformal transformation. In 2018, Stepanova et al. [106]
established certain theorems on the geometry of quasi-Sasakian manifolds as hy-
persurfaces of the Kédhlerian manifold. Rustanov et al. [99] regarded the contact
formulae of Gray identities for AC' R—manifolds of the class NCiy.

Siddiqui et al. [104] proved certain inequalities for bi-slant submanifolds of nearly

trans-Sasakian manifolds and they found that the conditions of equality held. Addi-



Introduction 6

tionally, they provided some related examples. Uddin et al. [110] studied semi-slant
submanifolds and warped product semi-slant submanifolds of Kenmotsu manifolds.
They obtained some characterizations and generalized the sharp inequality of the
special form for such submanifolds and supported their work by providing signifi-
cant examples. Hui et al. [57] explained using an example of the existence of special
warped products and studied some inequalities of that warped product submani-
folds.

On the other hand, Abood and Mohammed [4] studied the geometric proper-
ties of projective curvature tensor on AG—structure space of manifolds with n-
early cosymplectic structures. Additionally, on the AG—structure space, Abood
and Al-Hussaini [1] studied the geometry of conharmonic curvature tensors with
®—holomorphic sectional on manifolds having structures whose locally conformal
transformation is an almost cosymplectic structure. In 2019, Blair [20] discussed
his conjecture that a related metric to a given contact form for a contact manifold
of dimension > 5 must have some positive curvature. Abood and Al-Hussaini [2]
determined the sufficient and necessary conditions for the manifold whose locally
conformal transformation is almost cosymplectic manifold to be of constant cur-
vature. Cabrera [29] proved the non-existence of 132 Chinea and Gonzélez-Dévila
classes for connected AC'R—manifolds with a dimension of > 3. Zengin and Bek-
tag [119] determined various properties of Wy—curvature tensor on almost pseudo
Ricci symmetric manifolds and explained using an example of the existence of these
manifolds with certain conditions. Shanmukha and Venkatesha [103] studied the pro-
jective curvature tensor of generalized (k; p1)—space forms. Mandal and Makhal [84]
studied x—gradient Ricci solitons and x—Ricci solitons on 3-dimensional normal
AC R—manifolds. Deszcz et al. [39] investigated hypersurfaces on space forms that
satisfy certain conditions.

In 2020, Mohammed and Abood [86] constructed the generalized projective cur-
vature tensor and studied its flatness on nearly cosymplectic manifolds. Additionally,
they proved that the nearly cosymplectic manifold is a generalized Einstein mani-
fold under suitable conditions, and conversely, Abood and Al-Hussaini [3] studied

the flatness of the conharmonic curvature tensor on the locally conformal manifold



Introduction 7

for almost cosymplectic structure. They determined whether these manifolds are
normal or n—Einstein manifolds.

The present thesis consists of five chapters. Chapter One includes the funda-
mental concepts related to our work, particularly, the construction of the smooth
manifold, the AC R—manifold, the curvature tensors on the AC R—manifold, and
the hypersurfaces on the AH-manifold.

In Chapter Two, we characterize the manifold of Kenmotsu type on the AG—
structure space and we construct an example for the aforementioned manifold. More-
over, for the manifold of Kenmotsu type, we determine the Cartan’s structure equa-
tions, the components of Riemannian curvature tensor, and the components of Ricci
tensor, along with their applications on the AG—structure space.

Chapter Three is devoted to studying some curvature identities on the manifold
of Kenmotsu type as an analog to Gray identities on the AH-manifold. Moreover,
we determine the conditions that make the manifold of Kenmotsu type G.S—space
forms, and we discuss the covariant derivative of Riemannian curvature tensor for
the manifold of Kenmotsu type. Thus, we investigate whether the manifold of Ken-
motsu type is locally symmetric or generalized ®—recurrent.

Chapter Four discusses the generalized curvature tensor of the manifold of Ken-
motsu type from several aspects, such as its components on the AG—structure space
and its relationships with the other tensors. Moreover, we establish the manifold of
Kenmotsu type as being a hypersurface of Hermitian manifold.

Chapter Five determines Cartan’s structure equations of the AC' R— manifolds
of the class (15 with examples on these manifolds of dimension 3. Moreover, we set
down the components of Riemannian curvature tensor and Ricci tensor. Finally, the

(k, p)-nullity conditions and Einstein situation of class C are investigated.
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Chapter 1

Basic Definitions and Theorems

This chapter focuses on the preliminaries closely related to the subject of our study

in this thesis.

1.1 Smooth Manifolds

In this section, we recall the definitions related to the construction of smooth man-

ifold.

Definition 1.1.1 [82] A topological space M is called a topological n—manifold or

a topological manifold of dimension n if M possesses the following properties:
(1) M is a Hausdorff space;
(ii) M is second-countable;

(iii) Ewvery point of M has a neighborhood which is homeomorphic to an open subset

of R™.

Definition 1.1.2 [82] The pair (U, ) is called a chart on a topological n—manifold
M if U C M is open and ¢ : U — p(U) C R"™ is a homeomorphism.

Definition 1.1.3 [82] IfU and V are open subsets of Euclidean spaces R"™ and R™,
respectively, a function F' : U — V s said to be smooth if each of its component

functions has continuous partial derivatives of all orders.

8



Chapter One 9

Definition 1.1.4 [82] Suppose that U C R"™ and V' C R™ are open subsets. A
map F : U — V is called a diffeomorphism if F' bijective, smooth and possesses the

smooth inverse map.

Definition 1.1.5 [82] Two charts (U, ¢), (V, 1) on a topological n—manifold M are
called smoothly compatible if either U NV = ¢ or the map Yoo 't :(UNV) —
V(U NV) is a diffeomorphism.

Definition 1.1.6 [82] A family of charts {(Ua,va) : « € A} on a topological
n—manifold M is called an atlas if |J,cp Us = M. Moreover, a smooth atlas is an

atlas A such that every two charts of it are smoothly compatible.

Definition 1.1.7 [82] A smooth atlas A on a topological n—manifold M is called
a maximal or a complete if it is not properly contained in any other smooth atlas.

The mazimal smooth atlas A is called a smooth structure on M.

Definition 1.1.8 [82] The pair (M, A) is called a smooth n—manifold or a smooth
manifold of dimension n and denoted by M™ if M is a topological n—manifold and

A is a smooth structure on M.

Remark 1.1.1 The readers can return to the citation [82] for examples about the

smooth manifolds.

1.2 Tensor Analysis

This section introduces a brief part of the tensor analysis that makes the reader

surrounds by the subject.

Definition 1.2.1 [82] Suppose that M is a smooth n-manifold, k is a nonnegative
integer, and f : M — RF is any function. We say that f is a smooth function if
for every p € M, there ezists a smooth chart (U, ) for M whose domain contains

L is smooth on the open subset U=

p and such that the composite function f o ¢~
o(U) C R™ Moreover, the set of all smooth functions f : M — R is denoted by

C(M).
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Definition 1.2.2 [14] A wvector field on a smooth manifold M is an operator X :
C®(M) — C°(M) satisfies the following conditions:

(i) X(af +bg) = aX(f) +bX(9);
(i) X(fg) =X (f)g+ fX(9),
forall a,b € R and f,g € C*(M).

We denote X (M) to set of all vector fields on the smooth manifold M.

Definition 1.2.3 [27] A tangent vector on a smooth manifold M at the pointp € M

is a mapping X, : C°(M) — R satisfies the following conditions:
(1) Xp(af +bg) = aX,(f) +bX,(9);

(ii) X,(fg9) = X,(fgp) + f(p)Xp(g),

for all a,b € R and f,g € C°(M). Moreover, the set of all tangent vectors on M

at p is called a tangent space on M at p and denote by T,(M).

Remark 1.2.1 [27] We can also define the vector field X € X (M) as a map that
assigns for every point p € M a tangent vector X, € T,(M), such that X (f)(p) =
X,(f) for all f e C®(M).

Definition 1.2.4 [27] For every vector fields X, Y € X(M), we can define a new
vector field on X (M) by [X,Y] = XY — Y X. The vector field [X,Y] is called a
product of X andY or a Lie bracket of them. In addition, the tangent vector [X,Y],

15 given by:
(X, Y]p(f) = Xpo(Y(f) =Y (X(f));  feC®(M); peM.

Definition 1.2.5 [81] Suppose that V' is a real vector space of finite dimension. A

tensor of type (r,s) on'V is a map F : V x .. xV xV* x .. xV* — R which is

-~ -~
T coples S coples

linear in each argument, where V* is the dual space of V. Moreover, a tensor of

type (r,0) on V is called r—form.
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Definition 1.2.6 [81] Suppose that V' is a real vector space of finite dimension. A

multilinear map F =V x ... x V. xV* x ... x V* — V is a tensor of type (r,s + 1)

-~ -~
T coples S copres

onV.

Definition 1.2.7 [81] Suppose that F' and G are tensors on V of types (p,q) and
(r,s) respectively. A tensor product F @ G is a tensor of type (p +1r,q+s) on 'V
defined by:

FRG(X1, o Xpir, 01, ..., 0979)

=F(X1, .., Xp, 010G (Xpins ooy Xpir, 07T 0919,
where X1, ..., Xy €V and 0, ...,09%5 € V*.

Remark 1.2.2 [72] We denote 7,°(V') the set of all tensors of type (r,s) on V' and
T-(V) to the set of all r—forms on V.

Definition 1.2.8 [81] The trace or contraction operator tr : T H' (V) — T3(V)
is defined by:

tT(F)<X17 "')XT7917 "'798) - F(X17 "'7X"" .701’ '”’087 )7
= ZF(Xl,...,ergkvglw“aesvnk)?
k=1

where F € TSN (V), tr(F) € T(V), X; € V, 69 € V* for all i and j, such that
{&1,...,&} is a basis of V with n*(&) = dF. Moreover, for any basis of the spaces
T2(V) and T2HH(V), we can define the components of tr(F) in this basis by

i1l 0100k

where all indices take the values of {1,...,n}.

Definition 1.2.9 [27] A form T € T.(V) is called a symmetric if for all1 <i,j <,
we have

T(Xl, -'-7Xi7 ,X

j, e

7X7") = T(Xl, ...,Xj,
Whereas, if for all 1 <i,7 <r, we have
T(Xl, ...,XZ', ...,Xj, --er) = —T(Xl, ...,Xj, ...,XZ‘, ...,XT>,

then T is called a skew or antisymmetric or alternating.
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Remark 1.2.3 [72] We denote %,(V) to the set of all symmetric r—forms on V'
and A,.(V) to the set of all alternating r—forms on V. Moreover, the Grassmann

algebra given by A(V) = @,, A (V).

Definition 1.2.10 [27] The transformations on T.(V), Sym : T.(V) — T.(V)
and Alt = T.(V) — T.(V) are called respectively symmetrizing mapping and alter-
nating mapping which are defined by the following formulas:

1
Sym(F)(Xi, .., X,) = — > F(Xoq), o Xow);

’ O’EST

1
AR(F)(X1, o Xp) = > sgn(0)F(Xoq), - Xo@),

O'EST

where S, is the group of all permutations of v letters and sgn(o) is +1 if o even and

—1 if 0 odd.

Definition 1.2.11 [27] Suppose that ¢ € A (V) and ¢ € A(V). The exterior
product o N € N,y (V) is defined by:

ony =" gno ).
r:s.

Remark 1.2.4 In this thesis, we take V = X (M) or T,(M). So, the above symbols
given by Symbol(X (M)) = Symbol(M) and Symbol(T,(M)) = (Symbol),(M).

Lemma 1.2.1 [82] Suppose that M is a smooth manifold, then there exists a
unique operator d : A(M) — A(M), satisfies the following properties:

1. d is linear over R.

2. d(Ag(M)) C Agr(M).

3. d(wi Awy) = dwy Awy + (—1)F wi A dws, where w; € Ap(M); wy € Aj(M).
4. dod=0.

5. For f € C*(M) and X € X(M), then df(X) = X(f).

Lemma 1.2.2 [27] Suppose that w € A1(M) and X,Y € X(M). Then the follow-

ing equality holds:

dw(X,Y) = Xw(Y) = Yw(X) —w([X,Y]).
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1.3 Almost Contact Metric Manifolds

In this section, we recall the basic ideas about AC'R—Manifolds and their charac-

terization in AG—structure space.

Definition 1.3.1 [27] A bilinear form g : X(M) x X(M) — R is said to be a

Riemannian metric on M if g is symmetric and positive definite.

Definition 1.3.2 [27] A smooth manifold M with the Riemannian metric g on M
is called a Riemannian manifold and denote it by the pair (M, g) or (M™,g) if M

of dimension n.

Example 1.3.1 [27] An ezample on the Riemannian manifold is (M = R", g) such
that g(e;, e;) = 0;; and e; = %, i,7=1,2,....,n. In addition, for any X € X (M)

we have X =37 «a; e; and oy € R.

Definition 1.3.3 [15] Suppose that (B, gg) and (F, gr) are Riemannian manifolds
and f : B — B is a positive smooth function. The Riemannian manifold (B X
F,q) is called a warped product manifold and denoted by B x¢ F, if g(X,Y) =
gB(m(X), m(Y)) + f2(7(p)gr (Vu(X), ¥ (Y)) for all X,Y belong to the tangent
space T,,(M), where M = B x F, and m : M — B, ¢ : M — F are projections.

Moreover, m, and 1, are the differential maps of ™ and 1) respectively.

Definition 1.3.4 [72] A Riemannian manifold (M***1 g) is said to be an ACR—
manifold if it is furnished by a structure of triple (§,n, ®), where £ is a characteristic

vector field, n is a 1-form and ® is a tensor of type (1, 1) over X(M), such that
) =0; nE) =1 nod=0; &*=-id+nE

9(®X, QY) = g(X,Y) —n(X)n(Y); VXY € X(M).
We denote (M1 £.n, ®, g) to the AC R—manifold.
Remark 1.3.1 [72] If (M?"! £ n, @, g) is an AC R—manifold, then in X (M) there

are two complementary projections [ = —®2 and m = n ® & such that X (M) =
L& M, where L = Im(l) = Im(P) = ker(n) and M = Im(m) = ker(®). Then
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dim(£) = 2n and dim(M) = 1. On the other hand, we have an almost Hermitian
structure on £ with almost complex structure J = ®|..

Now, we take the complexification X¢(M) = C® X (M) of X (M). That is every

elment of X (M) written as follows:

Therefore, X¢(M) = D & D & M, where D and D are given respectively by the

image of the following complementary projections on £°:
1 1
U:§(Zd— \Y —1@6), o = §(Zd+ \/—]_CDC),

where ®¢(>°, %X;) = >, z®(X;). Also, there are another two projections from
XY(M) into D and D respectively defined by

I = —%{(qf)? +V=19Y; I= %{—(@C)2 + V=19,

Kirichenko [72] defined a new frame (p;eo = &, €1, ..., €n, €5, ..., €a) called A-frame
from the standard frame (p;ep =&, €y, ..., €y, €4, ..., €5) which satisfies g(e;, e;) = 0;5,
where p € M, {eg = £, €1,...,en,¢i,...,ea} is a basis of X(M), ¢, = V2 0o(e,),
ca=V270(eqy),a=1,2,..n,a=a+nandi,j=01,..2n.

Definition 1.3.5 [72] The set of all A-frames on AC R—manifold M?*" ™ is called

an AG—structure space of M1,

Definition 1.3.6 [72] For an AC R—manifold (M?*" ™' . n,®, g), the Riemannian

metric g and the tensor ® given by the following formulas on the AG—structure

space:
1 0 0 0 0 0
g5)=0 o 1, |; (@®)=]0 v=1I, O :
0 I, O 0 O —-iI,

where I, is n X n identity matriz.

Definition 1.3.7 [27] Suppose that M is a smooth manifold. A mapping V :
X(M) x X(M) — X(M) defined by V : (X,Y) — VxY is called a connection

on M and it has the following properties:
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(1) VixygvZ = fVXxZ +gVyZ;
(2) Vx(fY +9Z) = fVxY +gVxZ + X(f)Y + X(9)Z,
forall f,g € C®°(M) and X,Y,7Z € X(M).

Lemma 1.3.1 [27] Suppose that X,Y € X (M) and V is a connection on M. If
X =0,or Y =0then VxY =0.

Definition 1.3.8 [27] Suppose that (M, g) is a Riemannian manifold. A Riemann

connection on M is a connection which has the following properties:
(i) VxY —VyX =[X,Y];

(i) X(g9(Y,2)) =9(VxY,Z) +g(Y,VxZ),

forall X,Y,7Z € X(M).

Theorem 1.3.1 [27] (The Fundamental Theorem of Riemannian Geometry) If
(M, g) is a Riemannian manifold then there exists on M a unique connection which

1s Riemannian connection.

Theorem 1.3.2 [72] Suppose that (M*"T1 & n,®,g) is an AC R—manifold, V is
the Riemannian connection on M and 0 is the 1-form of V on AG—structure space

with components «9; Then on AG—structure space, we have:
dgij — Gik 9? — Gkj Qf = 0;
AP’ — O OF + DF 6], = D%, W,
where i,7,k = 0,1, ...,2n and w* are the dual of an A-frame (1-forms), with W° = w.

Regarding the above theorem, we have the following corollary:

Corollary 1.3.1 [74] Suppose that (M*1 ¢ n, @, g) is an ACR—manifold. The

components of the 1-form 6 on AG—structure space are given by

br = e R g = -V LN B = 0
00 = VoIol w60 = —VoI00, W @ = 0

0s = —\/—_1CI>87,C wk: g8 = \/—_1<I>37k wk; @87k = 0.
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Moreover, 6 + 95 =0; ) =0; ¥, = — @

e where a,b = 1,2,....,n, a = a + n,
0=0, and i = 1.

1.4 Curvature Tensors

In this section, we recall the most important curvature tensors which are studied in

this thesis.

Definition 1.4.1 [27] Suppose that (M,g) is a Riemannian manifold. A tensor
R:X(M)x X(M)x X(M)— X(M) of type (3, 1) is said to be a Riemannian
curvature tensor of type (3, 1) if

R(X,Y)Z = ([Vx,Vy] = Vixy))Z,

for all XY, Z € X(M), where V is the Riemannian connection on M. Moreover,
the formula R(X,Y,Z,W) = g(R(Z,W)Y, X) is a Riemannian curvature tensor of

type (4, 0).

Lemma 1.4.1 [81] Suppose that (M?" 1 ¢ n @, g) is an AC R—manifold and R its
Riemannian curvature tensor of type (4, 0) with components R;j;; on AG—structure

space. Then R satisfies the following:
(1) Rijii = —Rjim;

(2) Rijri = —Rijik;

(3) Rijri = Ruij:

(4) Rijm + Riji + Riwj = 0,

where 2,7, k, 1 =0,1, ..., 2n.

Theorem 1.4.1 [27] (Cartan’s structure equations) Suppose that (M",g) is the
Riemannian manifold and 0 is 1-form of the Riemannian connection, while R is the

Riemannian curvature tensor of type (3, 1) and {w?, ...,w"} is the dual frame to the

basis frame {En, ..., E,} of X(M). Then we have
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(1) dw' = =05 NW?; (first group)

(2) db; = =0, N O} + SRy W AW, (second group)
where 0; and R;kl are the components of 6 and R respectively, whereas, ,7,k,l =

1,....n.

Definition 1.4.2 [5] An AC R—manifold (M*"*1,&,n,®, g) is called a GS—space
forms if there exist three functions f1, fa, f3 on M such that

R(X,Y)Z = fi{g(Y,2)X — g(X, Z)Y}
+ £{g(X, B2)Y — g(V,D2)DX + 29(X, DY )DL}

+ f3{n(Xn(2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)E — g(Y, Z)n(X)ED;

for all XY, Z € X(M), where R is the Riemannian curvature tensor of M. Such
manifold is denoted by M(f1, f2, f3)-

Definition 1.4.3 [81] A Ricci tensor of AC R—manifold is a tensor r of type (2,
0) which is the contracting of the Riemannian curvature tensor R of type (3, 1) as
follows:

Tij = —Rfjk = _gkleijly

1

where 1;; and g*t are the components of r and g~' on AG—structure space respec-

tively. Whereas, Rfjk and Ry;; are the components of R of type (3, 1) and (4, 0)

respectively. Moreover, r;; = rj; that is v symmetric tensor.

Definition 1.4.4 [63] (M*"™ &, n,®,g) is called an n— Einstein manifold if its

Ricci tensor r satisfies the equation

r=ag+pfnen,

where o and B are suitable smooth functions. Moreover, if 3 =0, then M 1is called

an Finstein manifold.

Definition 1.4.5 [72] The Ricci operator Q of (M & n, @, g) is a tensor of
type (1, 1), such that r(X,Y) = g(QX,Y) for all X,Y € X(M), where r is the
Ricci tensor of type (2, 0).



Chapter One 18

Definition 1.4.6 [72] (M?*"*1 &, n, ®,g) is said to have ®—invariant Ricci tensor
ifPo@ =0Qod.

Lemma 1.4.2 [72] An ACR—manifold (M*"*1 ¢ n, @, g) has ®—invariant Ricci
tensor if and only if, on AG—structure space, we have Q3 = Q% = 0, or equivalently,

Tao = Tap = 0, where a,b=1,2,...,n and a = a + n.

Definition 1.4.7 [102] The projective and concircular curvature tensors of type
(4, 0) on AC R—manifold (M* 1 & n,®,g) are defined by the following formulas

respectively:
1
~ s

C(X,Y,Z,W)=R(X,Y,Z,W) — In(@n+1)

for all X, Y, Z,W € X(M), where s = g“r;;, v and R are the scalar curvature, the

{g(X7 Z)g(Y7 W) - g(Xv W)g(Y> Z)}a

Ricci tensor and the Riemannian curvature tensor, respectively.

We can rewrite the above tensors on AG—structure space as follows:

1
Pijir = Rijrt = 5 -A{9ik 71 = gt Tju}3 (1.4.1)
=~ S
Gkl Gkl 2n(2n T 1){9 kE 951 — Gil g]k} ( )

where 7,7, k, 0 = 0,1, ..., 2n.

Definition 1.4.8 [38] The conharmonic curvature tensor H of type (3, 1) on

ACR— manifold (M* & n, @, g) is defined by the following formula:
1
n—1

H(X,Y)Z = R(X.Y)Z = o—A{r(Y. 2)X —r(X,2)Y

for all X|Y,Z € X(M), where r is the Ricci tensor and r(X,Y) = g(QX,Y).

Definition 1.4.9 [102] The generalized curvature tensor B of type (4, 0) on ACR—
manifold (M* &, n, ®, g) is defined by the following formula:

B(X,Y,Z,W) = agR(X,Y, Z,W) + a{g(X, Z)r(Y,W) — g(X,W)r(Y, Z)
+r(X, 2)g(Y, W) —r(X,W)g(Y,Z)}
+ 2a28{9(X, Z)g(Y, W) — g(X,W)g(Y, Z)},
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forall X, Y, Z, W € X (M), where s is the scalar curvature and ag, a1, as are scalars.

Definition 1.4.10 [75] An AC R—manifold (M*"*' &, ®,g) is called a locally
symmetric, if Vx(R)(Y,Z)W = 0, for all X,Y,Z, W € X(M), where R is the

Riemann curvature tensor of M.

Definition 1.4.11 [114] An ACR—manifold (M1, &,n, ®, g) is called a general-
1zed ®—recurrent, if there are nonzero 1-forms p and \ such that the following hold

forall XY, Z W € X(M):
O*(Vx(R)(Y, Z)W) = p(X)R(Y, Z)W + XX ){g(Z, W)Y — g(Y,W)Z},

where R is the Riemannian curvature tensor of M.

On the other hand, Kirichenko [71] introduced six tensors called the first structure
tensor B, ..., and sixth structure tensor G on AC' R—manifold (M?"*! & n, @, g)
which are described as follow:

B(X,Y) = —é{@ 0 Va2y (D) (P°X) + @ 0 Vay (P)(PX) + ©? 0 Vay (P)(P*X)
— ®% 0 Vaey (O)(PX)};
CX,)Y) = —é{—(l) © V@Y(CD)(‘I)QX) + ® o Vay (2)(2X) + ®%o V¢Y<(I))((I)2X)
+ @% 0 Vaay () (X)) };
ZXX):i@@oVwAQK—QWOV@Aﬁf—@on@@ﬂE
+ 97 0 Ve(@)(®X)}:
B(X) = {0 Vo (B)6 + 8 0 Vox (2)e):
F(X) = {0 Vo ()€ — 8 0 Vax(B)e);

G = ®o V(D).
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The above structure tensors have components on AG—structure space of M respec-

tively are described below.

B, — _%\/__1(1)5,0; B, ¢ = 3V-19};
B = 1y=1 q)ﬁ%é] : Bape = —3 \/—_1(1)?1),4 ;
B = VEN@G - b ) B = VL@, )
B, = /=10%; B! = V-1
cab \/__1@%,13] : Cop = - \/—_M’([)a,b] :
cr = _\/__1(1)270; Cc, = \/—_1‘13270;
and all other components of these tensors being zero, where a,b,c = 1,...,n, a = a+n

and [.,.] denotes the alternating operator of their indexes.

Remark 1.4.1 [72] If T is a tensor with components T then T% = T} and its

complex conjugate is T° = T,

Definition 1.4.12 [21] A (k, p)-nullity distribution of (M & n, ®,g) with the

Riemannian curvature tensor R and (k,p) € R? is

N(k,p1) :p— Np(k,u) ={Z € T,(M) : R(X,Y)Z =x[g(Y,Z)X

—9(X, 2)Y |+ pulg(Y, Z)hX — g(X, Z)hY},

for all X, Y € T,(M), where h = $£¢(®) and £ is the Lie derivative. Moreover,

MX) = S{V@)X ~ Vaxt +2(VxE)}; ¥ X € X(M).

Definition 1.4.13 [75] A ®—holomorphic sectional (PHS—) curvature of ACR—
manifold (M*"*1 & n, ®, g) in the direction of X (X # 0; X € ker(n)) is defined by

g(R(X,2X)X, ®X)

H(X) = J(X X2 :

where R 1s the Riemannian curvature tensor of M. Moreover, M is called of a
pointwise constant ®HS—curvature if H(X) = v, where v € C®(M) and 7 does
not depend on X.

Theorem 1.4.2 [75] An AC R—manifold (M*"*1 &, ®, g) has pointwise constant

®HS—curvature if and only if, on AG— structure space, the Riemannian curvature
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tensor R of M satisfies
ad Y Za Y/ ca a
REbc)) = 551721 = 5(5175? +0254),
where (-+) denotes the symmetric operator of the including indezes.

Definition 1.4.14 [63] An ACR—manifold (M*" ' &, n, ®, g) is called a Kenmotsu
manifold if

V(@)Y = —g(X,PY){ —n(Y)2X; VXY € X(M),
where V is the Riemannian connection on M.

Theorem 1.4.3 [72] Suppose that (M***1 & n, ®, g) is Kenmotsu manifold. Then

the following are equivalent:
(1) V(@)Y = —¢g(X,2Y)¢ —n(Y)PX; V XY € X(M);
(2) B=C=D=F=G=0, E=id;
(3) On AG—structure space, we have the following:
B® — B — b —,
B, © = Bape = By = 0;

C" = Ch=C"=C, = 0.

Theorem 1.4.4 [95] The AC R—manifold (M*"*1 &,n, ®, g) is normal if and only
if,
HV(@)Y) — Vax(®)Y — (Vx(Y)E=0: ¥ X.¥ € X(M).

Remark 1.4.2 [34] The normal AC R—manifold (M?*"*1 & n, ®, g) has the follow-
ing class:

C3pCydCsd CedCr @ Ch,

where
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Classes Defining conditions
Cs Vx()(Y,Z) — Vox()(PY,2) =0; d2=0
Cy Vx(Q)(Y,Z2) = —ﬁ[g(CIDX, OY)oQZ) — g(PX, DZ)6Q(Y)
—QUX,Y)IQPZ) + QX, 2)0QPY)]; 002(€) =0
Cs Vx(QY, Z) = 5. [UX, Z)n(Y) — X, Y)n(Z)]on
Co Vx(Q)Y,Z) = 5:[9(X, Z)n(Y) — g(X,Y)n(Z)]6Q(€)
Cr Vx()(Y,Z) =n(Z)Vy(n)®X +n(Y)Vax(n)Z; 60=0
Cs Vx(Q), Z) = =n(Z)Vy () ®X + n(Y)Vex(n)Z; 1 =0

forall XY, 7Z € X (M), such that Q(X,Y) = g(X,®Y), and én, 6§ are the coderiva-
tives of n and ) respectively.

Theorem 1.4.5 [74] Suppose that (M**1 & 0, ®,g) is an AC R—manifold and
{W0 = w,wl, ...,w™} is the dual of A-frame on M. Then the first group of Cartan’s

structure equations on AG—structure space is given by

(1) dw® = -0 ANw® + B® , w Awy + B® wy Aw. + BY w Awb + B® wAwy ;

(2) dwy =0 Nwy+ By © we Aw? + Bape WP AwC+ B2 wAwy+ Bay wAw

(3) dw = Cpe WP AW+ C" wy Aw, + C® W Awyp +Cyp w AW’ + C° w A wy,

where C° = B®, — B.°.

Theorem 1.4.6 [72] (The Fundamental Theorem of Tensor Analysis) Suppose that
(M?* L ¢ n, @, g) is an ACR—manifold. If T is a tensor of type (r,s) on M and V

is the Riemannian connection on M with components TV "7* and 91 respectively on

01y

AG—structure space, then the following equality holds:

T]l -Js

i1.dp_1k

Js __ J1---Js k
O = TiQ...ir,k Wy

TJl -Js ek _

kis...ip

+Tkj2 Js 9]1+ —f—TJl ~Js—1k

1.l 1.0y

VTJl -Js — dT]l -Js

01l 01y

k
0;

where VT is a tensor of type (r + 1,s) on M with components Tz]llf:k Note that

all indezes run from 0 to 2n.
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1.5 Hypersurface on Almost Hermitian Manifolds

In this section, we recall an almost contact structure on a hypersurface of AH-

manifold and derive its basic relations.

Definition 1.5.1 [72] A Riemannian manifold (N*", L) is said to be an almost
Hermitian (AH-) manifold if it is furnished by a tensor J of type (1, 1) over X(N),
such that J* = —id; h(JX,JY)=h(X,Y); V X,Y € X(N). Tensor J is called

an almost complex structure.

Now, if M?"~! is a hypersurface of (N?",J,h) then we can define an almost

contact structure on M as follows [13]:
§=J(no); n(X)=n(X); @X)=Joll3(X); g(X,Y)=h(X,Y);
where X, Y € X (M), (ng), is a unit tangent vector which form a basis of

THM)={X €T,(N) | h(X,Y)=0; VY €T, (M)},

p

for all p € M, Ily = id — 713, i3 = 7oy + 73, g = ) @ &, 77 = ( ® g and
C(X) = hing, X); X € X(N).

Theorem 1.5.1 [13] An ACR—manifold (M?"~' &, n, ®, g) which is a hypersurface
of an AH-manifold (N*", J, h) has the following first family of the Cartan structure

equations:

dw® =05 Aw’ + C2F W' Awg + C wg Awy + (\/502‘” +V=1o§)w’ Aw
- 1 ~
+ (V=10 — 2Cm™P — 0;3/3 —C*P™Mwg A w;
V2 V2
dwe = =05 Nwg + C)y wy Aw’ —|—Ca57 W AW+ (V208 — /=102 ws Aw
1 ~
——=Clapn )W’ A w;

(\/_Jaﬂ + \/_Onaﬁ + — \/— aﬁ \/—

dw = V2Cpa5 W AW’ + V20" wy Aws + (V205 — V208
—2vV—10%)w’ Aw, + (Cropn + Crs +V—1o,5)w Aw’
+(C™" 4 O — /10D )w A w,
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where
~abe V=1 7a . ~ _ V=1 74 .
C - TJ[)é ) C(abc - _TJb,c )
Cabc = 5a[bc] ) Cabc = 5a[bc] )
ab V=1 7a . c _ V-1 74
Oc - _TJ[)C ) Cab - T‘]b,é )

and o @ X(M) x X(M) — X(M) is the second fundamental (quadratic) form
which is symmetric (0o = 0pa) such that ViY = VxY + o(X,Y) with V and
V are the Riemannian connections of N and M respectively (see [31]). Further,

a,B,v=1,2,....n—1, while a,b,c=1,2,....n and w = W" = w,.
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Chapter 2

The Geometry on the Manifold of

Kenmotsu Type

In this chapter, we generalize the Kenmotsu manifold to a new manifold called a
manifold of Kenmotsu type. Moreover, the characterization identity, the Cartan’s
structure equations, and another discussion of the manifold of Kenmotsu type are
written in more detail. In particular, we introduce a theoretical Physical application

for the mentioned manifold.

2.1 The Manifold of Kenmotsu Type

In this section, we introduce a new class of AC R—manifolds with the class of Ken-
motsu manifolds as a subclass. We called it a manifold of Kenmotsu type. Moreover,

we discuss its characterization on AG—structure space.

Definition 2.1.1 An AC R—manifold (M & n, ®,g) is said to be a manifold of

Kenmotsu type if its Riemannian connection V satisfies the following identity:
Vx(®)Y — Vex(P)PY = —n(Y)PX; VXY € X(M).

Now, the manifold of Kenmotsu type can be characterized on the AG—structure
space by the following identity:
(9% — D), @), PHNX* YT gy = —n; ) X" V7 g (2.1.1)
25
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where 4,7, k,[,t = 0,a,a; a =1,....,n; a = a + n. Then we can rewrite the identity
(2.1.1) as follows:
Py — @, P P+ 1y @) = 0. (2.1.2)

Theorem 2.1.1 On the AG—structure space, the manifold (M*"*1 & n,®,q) of

Kenmotsu type verifies the following conditions:
Pl =9,,=0; &, =—V-10,
and their complex conjugate, where 1,5 =0,1,....,2n and a,b =1, ..., n.

Proof: Regarding the identity (2.1.2) and the Definition 1.3.6, we have @}, = 0
if we put £ = 0 in (2.1.2). Moreover, if we put j = 0 and k£ = a in (2.1.2), we
obtain ®} , = —/—16;, while if j = a and k = b, we get that @}, = 0. Notice that

nj = Goj- 0
Now, from the above theorem and the components of Kirichenko’s tensors in

chapter 1, we can deduce the following corollary:

Corollary 2.1.1 If (M*"T1 & n,®, g) is the manifold of Kenmotsu type, then the

conditions below are equivalents.
(1) V(@)Y — Vox(®)2Y = —n(Y)PX; V XY € X(M).
(2) C=D=F=G=0; E=1id.
(3) On the AG—structure space appears that

BabC:_Bbac; BabC:_Bba c;

Babc — Bab — Cab = (% = 0,

Babc = Bab = Cab = Ca = 07

Bab — Bba — 5?

Theorem 2.1.2 There is no 3-dimensional manifold of Kenmotsu type.

Proof: Suppose that M is a manifold of Kenmotsu type with dimension 2n+1 = 3.
Then n =1 and a = b = ¢ = 1. Moreover, the components of the first structure

tensor B are B? . = B | and B, ¢ = By, *. But from the Corollary 2.1.1; item (4),
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we have B! | = —B'' | and B;; ! = —By; ! and this implies that B® .= B, ¢ = 0.
Then according to the Theorem 1.4.3; item (4), we conclude that M is Kenmotsu
manifold. O

Next, we construct an interesting example for a manifold of Kenmotsu type

which is not Kenmotsu.

Example 2.1.1 Suppose that (M?>, &0, ®,g) is an AC R—manifold of dimension
5, such that

M = {(z,y,2,u,v) € R® : m2v # 0};
and {eg = £, ey, €9, €3,€4} is a basis of X (M), given by

0 0 0 0
50 A= exp(—v)%; ey = exp(—(v+z+ z))a—y, es = exp(—v)—;

€y =

0
es =exp(—(v+z+ z))a—u

Then we have the following Lie brackets:

[61,60] = €1, [64,61] = exp(—v)e4; [63760] = €3, [64,60] = €43
[61, 63] = 0; [62, 60] = €3; [62763] = eXP(—U)€2; [62, 64] = 0;

[eg, €1] = exp(—v)eq; [ey, €3] = exp(—v)ey.
Moreover, if we have the following:
D(eg) =0; Pleg) =e3; Pleg) =eq; Plez) = —e1; Pleg) = —ey;
n(eo) =1; nler) =nle2) = nles) = nles) = 0;

1, i=7;
0, i#7;

g(ei7€j> =

where 7, j = 0,1,2,3,4. Then from the Koszul’s formula that given in [37] as follows:

29(VxY,Z)=X(g(Y,Z)) +Y(9(X, 2)) = Z(g(X,Y)) — g(X, [V, Z]) — (Y, [X, Z])
+9(Z,[X,Y]); VX,Y,ZcX(M).



Chapter Two 28

We deduce the following values for the Riemannian connection V of the metric g:

Veeo = 03 Veer = 0 Veer = 0
Veeo = €135 Veer = —ep; Ve e = 0
Ve,e0 = e Veer = exp(—v)es; Ve,eo = —exp(—v)(eg + e3) — ep;
Vege() = €3; vegel = 0 v6362 = 0
Veeo = €45 Veer = exp(—v)es; Veer = 0
Vees = 05 Vees = 05
Vees = 05 Vees = 0
Ve,e3 = exp(—v)es; Ve,eq = 0
Vees = —ep; Vees = 0
Vees = exp(—v)es; Vees = —exp(—v)(er +e3) — eo.

To clarify the above result, we apply Koszul’s formula only for V.es; and then

similarly for the rest.

g\¢o, [62, 63] =

gler, [62, 63]

0;
0;
2g(exp(—v)e, €2);
g(es, [e2, €3] 0;
0.

( ) ( ) —9( )+ 9( )
( ) ( ) —9( )+ 9( )
29(Ve,e3,€2) = —g(ez, [es, e2]) — gles, [ea, e2]) + glez, [e2, €5])
( ) ( ) —9( )+ 9( )
( ) ( ) —9( )+ g(ea; [e2, €3]) =

Then V.,e3 = exp(—v)es and regarding the above discussion, we deduce that M is
the manifold of Kenmotsu type, but M is not Kenmotsu manifold because if X = ey

and Y = eq, then
Vx(®)Y =Vxd(Y)—-P(VyY)
— exp(—v)(es + 1) £ 0 = —g(X, DY )E — n(Y)®X.

2.2 The Structure Equations of the Manifold of
Kenmotsu Type

In this section, we establish Cartan’s structure equations for the manifold of Ken-

motsu type.
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Theorem 2.2.1 If (M*" ! & n, ®,g) is the manifold of Kenmotsu type with Rie-
mannian connection V, then the components of the connection form 6 on the AG—

structure space are given by:

07 = —B® _we 08 = G_g; 03 = 0;

ng—w“; «92:9_2; 9;4—95:0

[ J— c. a — B )
where BY . = B, ¢ w® = w,; We = w".

Proof: According to the Corollary 1.3.1, the components of Kirichenko’s tensors

and the Theorem 2.1.1, we have

a V_l a k
013 :TQ)E,ICW X

V_l a 0 V_l a c V_l a é
:TCI)&OM +T i)’cw _'_T@i),éw’

\% —1 a c
= —07 w
2 b,c

— _Bab W

C Y

and similarly for the remaining components. O

Theorem 2.2.2 The manifold of Kenmotsu type has the following Cartan’s struc-

ture equations (first group):

(1) dw=0;

(2) dw® = —0¢ AN’ + B* | w Awp — w* Aw;
(3) dw, = 0" Nwy + By, € we Awb — wy Aw.

Proof: Regarding the Theorem 1.4.5 and the Corollary 2.1.1; item (4), yield the

results. O

Theorem 2.2.3 The second family of Cartan’s structure equations for the manifold

of Kenmotsu type is given by:
(1) dOg = —02 NG5 + A% we A wy + ALy wb Aw + AT w. A wg;

(2) dBabC — Babd egl . Bolbc 0; _ Badc 03+Bab ol wd_|_ BabalC Wy — BabC w;



Chapter Two 30

(3) dB,, = —B,, ¢ 05+ Ba © ‘93 + By ¢ Qg + B, “ wq + B i wt — By ©w,
where A[bcd] = A,[lbc‘l] =0 and
Al — By — By B d =05 ALy + Bued) — Bae "By, = 05
A([Ib(;] + B [cb] + B (b B|h|c] 0; Agcd _ Ba[czﬂ + Ba[ChB|h|ag —0.

Proof: By applying the exterior differentiation operator d on the Theorem 2.2.2;

item (2) and using the Lemma 1.2.1, we get
0=—dff N’ + 07 A (=02 Aw + B ; w A w. — wb Aw)
+dB® AW Awy + B® (05 A w + B, WM Awg — W Aw) Awy
— B WA (O Awg + By " wn Aw? — wy Aw)
— (=0 AW+ B® W Awy — W Aw) Aw
Then after changing the indexes of some terms, we obtain the following:

0= —(d6¢ + 6% AO) Aw® — B, BT (b A w, A wy
+(dB® .+ B™ 03+ B*, N0, — B, 01 Awt Awy (2.2.3)

[

—B® _WwAwAw+ Bah[b B|h|c? WP A we A wy.
Since dby + 02 A 0f is a 2-form then it can be written according to the family of basis
for 2-forms on AG—structure space:
{05 N 0],05 AW, 05 A wh, 05 A w,w® Aw?, Wb A wg, wE A w, We A Wa, we A w}
as follows:
Aot + 6% N 05 = Aggf 05 A O] + A2 05 AW+ AL 05 A wy,
+Aj o w /\w+A§Cd we Awg + AL we Aw,

where {Apd, Agd  Apdh ) Ay AR, Apd A, Aped, g0} are suitable family of smooth
functions and all indexes are run from 1 to n.
In the same manner, dB® _+ B%® _ 0%+ B 0% — B , §? can be written according

to the 1-forms family of basis on AG—structure space {0%, w? wq,w} as follows:

dBabc+Bdbceg+Badc QZ_Babd 0 Bab 0h+Bab o W +Babd Wy +Bab0 w,
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where also {B®" , B . B®d B0 are suitable family of smooth functions. Then
the equation (2.2.3) becomes
— A0S A0 A Wb — AR 05 A WP A WP — AR 05 A wy Aw® — A 05 A w AW
— Afpeq @° Awh Awb — A[bc WA wg Awb — Ao WEA WA W — A o A wg AW
A“CO We Nw A w +B“b Hd/\w A wp + B (ed] W AW A wy
+ B AW Awy — Ba[ch B'h‘?} W Awe Awg — B®™ [ w Aw A wy
+ B b B|h|cjl wb A w® Awg 4+ B®D oy Aw Awy = 0.
Then from the above discussion, we get
Aggfl = Ab\c\h Abc(] = chd] =0;
Afyg = B* gy — B, By = 0;
Aged — gl 4 pele, pIM — (2.2.4)
Ag0 _ pacd _ pae .
Agdh | gahd _ . t 00 =0,
where [.|.|.] denotes the alternating operator of its indexes except |.|, while [..] just
the alternating operator of its indexes.
Now, applying the same argument above on the Theorem 2.2.2; item (3), we have
0=df% Awy—60° N (0 Awq + By ™ win Aw? — wy Aw)
+dBy CAwe Aw’ + By € (04 ANwa+ By " wn Aw — we Aw) Awb
— By Cwe A (=05 Awh + B, W' A wg — Wb Aw)
— (02 Awy+ By € we AW’ — we Aw) Aw.
Rearrangement the above equation and interchanging some indexes, we get
0= (d6b — 02 N5 Awy, — B, e Blh‘b] Wy A we A w®
+(dB,, ©— By, 09— B, 08 + B, % 05) Aw, A (2.2.5)
+ By, ¢ we AW Aw + Ba[bh BWC? wg A w A Wb,
Since 60 = —07 and B,, © = B _, then from the equation (2.2.4), we get
dob — 04 N0 = AP 0 A wp, + AR 04N W AV G A wg ARG we A W

+ A e Aw+ Ab WAL+ AL W AW,
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and
dBy, © — By, © 01 — B,y © 6 + By, ¢ 65 = By 0 + By, “ wa + By W+ By w.

If we substitute the above equations in the equation (2.2.5), then we establish the

following;:

0= AP 9L A oy A w4+ AY 07 AWt A wy + ALY G A wg Aw,

+AE’§] we Awd Awy + AL o Aw A w, + AY L W AWt A wy

[ed] Wqg N\ we A w?

+ A% W AW AWy + By 0 Aw. AW’ + B,
+ By W ANwe Aw’ + Buyo® w Awe Aw® + By € we Aw® A w

+ Ba[bh Blh‘cﬁl Wy A w® A wb — Bah [e B‘h‘lg Wy AN We A wd.
So, the above equation produce the following relations:

blc|h c c c
Ac[u‘i "= A([Ib 4= 0; Agdh - Bahdb =0;

be cb b hlc
At[zd}_FBad[ ]+Bah[ Bl‘;:(x

b
AacO

+B,"+ B, ' =0, Al =q.

Regarding Corollary 2.1.1; item (4), we have B, = B _ and B~ = By
Therefore, all the components of their exterior differentiation have the same prop-
erty. Then from this fact, the equations (2.2.4) and (2.2.6), we deduce the required

results. O

2.3 Curvature Tensors Components on Manifold
of Kenmotsu Type

This section establishes the components of Riemannian Curvature tensor and Ricci

tensor on the AG—structure space for the manifold of Kenmotsu type.

Theorem 2.3.1 On the AG—structure space, the components of Riemannian cur-

vature tensor R for the manifold of Kenmotsu type are given by
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(1) R = —0¢;

(2) Ry =245

(3) RZCJ = Agg - Bahc By, ¢ O¢ 55:’
(4) Ry, =2(B ., —0f, 0p)

(5) R: = pabd _ pab  phd

and the other components are identical to zero or given by the properties of R in

Lemma 1.4.1, or the complex conjugate to the above components.

Proof: Regarding the Cartan’s structure equations (second group) in the Theorem

1.4.1; item (2), we conclude the following:
i i Lo
% % % c % ¢ % c 7 1 % c
P c 1 P
Moreover, we take ¢,7,k,l = 0,1,...,2n and a,b,c,d = 1,2,...,n. So, there are
several cases regarding the values of 7, 7 = 0,a, a. These cases are designing as the
following;:

Case (1). If we put i = j = 0 in the equation (2.3.7), then the Theorem 2.2.1

produces the following:
Rgco = RgéO = Rgcd = Rgccz = R(())écz = 0.
Case (2). If we set i = a and j = 0 in the equation (2.3.7), then the Theorem 2.2.1

gives us the following:
1
dw® +0° ANw® — B ; w' Aw, = Re g WA w+ Ry we Aw + §R86d w® A w
1
+ Rgcd WA wg + QRgad We N Wy

Regarding the Theorem 2.2.2; item (2), then the above equation reduces to the

following:
1
—00 W Aw = Ry w Aw+ Rjp we A w + §Rgcd w® A w?

a c 1 a
+ROCCZ w” N\ wg + éROédA We N\ Wwy.
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So, we have

a a. a _ pa _ pa _ pa __
ROCO - _60? RO&O - ROcd - ROCJ - Ro&d =0.

Case (3). If we assign ¢ = a and j = b in the equation (2.3.7) and using the
Theorem 2.2.1, then we conclude that

dof —w Awy + 0 N0+ B, By " w Awp = Ry wC AW+ Ry we Aw
1 . 1
+§R§Cd wAW + R wc/\wd+§RZ&3 We A Wy.

Interchanging the indexes of the fourth term on the left side for the above equation

by the permutation (chd), then it can be written as follows:
dog — 6% 0 WA wg +0° N0 — B By, ¢ W Awg = Ry WA w+ Riby we Aw
1 . 1
+ §R§cd wAW + By 5w Awa+ §RZéd” We A Wy.
Then taking into account the Theorem 2.2.3; item (1), we have
(A9 — B By, — 6% 58 Y Awg + ALy w AW+ A W AN wg = Ry wE A w
1 1
+ Ry we Aw + ERch W AW+ RZCJ W A wg + 53&3 We A Wy
Thus we conclude that
: _ : _ fad h d d.
ch = géO = 07 gcd - QAgcd’ RZCJ - Agc - B® c Bbh - 53 61)7
Ra o 2Aacd
bed — b -

Case (4). If we determine i = a, and j = b in the equation (2.3.7) and applying
the Theorem 2.2.1, we get

d(—B® yw?) =6 65 wAw! = B j0S Aw + B, W N = R W Aw
1 1
+ R, we Aw + éRgcd w A w? + R} 5w Awg + ERg&Z We N Wg.
Regarding the Lemma 1.2.1; item (3), then the above equation becomes

—dB® jAw' = B dw — 8. 0 w Aw — B, 02 Aw + B* ; w A6

1 1
_ pa c a a c d a c a
= Ry W AW Ry we Aw + S W AW G g W Nwa + SRR we A wa-
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Then according to the Theorem 2.2.2; item (2) and the Theorem 2.2.3; item (2), we
have
dw® = =05 Awh 4+ B, W' Awg — w Aw;
dBabd _ BabC eccl_Bcb p eg _Bacd 62+Babdc wc+Babcd W, — Babd w.
So, the substitution of them in the above equation and interchanging the indices of

certain terms as needed to get that

(Bab ed] — 5{16 (52])(4.}0 /\wd + (Babdc o Babh Bhdc)wc Awy = Rgco WA w
1

1
zRgcd wé A w? + R} ;W' Awa+ SR we A wa.

+ R, we Aw + 5
So, we get

a __ pa _ pa  __ (. Dpa  __ ab a ¢b\. pa __ pabd ab hd
Ry = Riyy = R,y =0; R =2(B" oq = 0 0q); R g =B —B") BY..

bcO bc0

This complete the proof. O

Corollary 2.3.1 The Riemannian curvature tensor R of the manifold of Kenmotsu

type (M* & n, @, g) satisfies the following:
(1) R(X,Y)§=n(X)Y —n(Y)X;

(2) R(X, QY =g(X,Y)E —n(Y)X,
for all X, Y € X(M).
Proof: On the A-frame (p;§, €1, ..., €n, €5, ..., €a) of AG—structure space and regard-
ing the Theorem 2.3.1, we have
R(X,Y)E = Ry, X7Y*e;;
= Rig, X°V%, + R . X°YP, + Riyy XY, + R\, X'V,
= ) XOV%%; + 6 XOVPe; — &) XPY %, — 8! XY %;;

= n(X)Y —n(Y)X.

R(X, QY = Rj'ko XY Ve;;
= Riy X"Y%; + R}, XoY%; + Rz XY’ + R, | XVe;;
= =0, XY %; — 6] X,Y %; + &) 05 XY + 6 60 XVye;

=9(X,Y)E—n(Y)X.
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O

Theorem 2.3.2 The components of the Ricci tensor r on the AG—structure space

of the manifold of Kenmotsu type (M*"* & n, ®,g) are given by

(1) Too = —27’L,’
(2) Tao = 0,’
(3) Tab = _QAgbc + ‘BcabC - Bca " Bhb C)-

(4) rap = —2(ndg + B ) + A% — B, B, °,

and the remaining components are given by the symmetric property or the complex
conjugate to the above components. Take into consideration, all indexes have a range

from 1 ton, excepta=n+1,....2n.

Proof: Suppose that r is the Ricci tensor of type (2, 0), then
2n
r(X,Y) =) g(R(e,Y)X,e); VXY € X(M),
i=0

where {eg =&, ey, ..., €9, } is orthonormal basis of X (M).

Regarding Corollary 2.3.1; item (2), we have
2n
r(X,€) =Y g(R(e:, ) X, e1);
=0

= . [g(ez,X)g(f,fiz) _77<X)g<€1761)]7
— Z[g(ei,X)n(ei) — n(X)dul;
=n(X) — (2n+ 1)n(X);

= —2n n(X).

The above result follows from the fact that

1, ifi=0;
g(& e) =nle;) =

0, otherwise.
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Therefore, 1,0 = —2n n; with ¢« = 0,1,...,2n and since 1; = ¢o;, then from the
Definition 1.3.6, we determine the values of roq and r,o with a =1,2,...,n.
After that, we compute the other components of the Ricci tensor on the AG—

structure space due to the following:

_ k.
rij = — R

=—-RY — RS — RC

150 ijc ije?

where 7,7,k =0,1,....2n, c=1,...,n and ¢ = ¢+ n. If a and b have the same range

of ¢, then according to the Theorem 2.3.1, we have

o 0 c c .

Tab = _RabO - Rabc - flabes
_ c c h c
- _2Aabc + Bcab - Bca Bhb :
_ 0 c c .

rab = — R0 — Rape — Ripes

— 0} = 2B g — 0, 09) + A%y — B, By © — 07 0

c)

= —2(ndy + B ) + Azf — B, By, ©.

So, we conclude the requirement results. O
The next theorem gives a theoretical Physical application for the manifold of

Kenmotsu type.

Theorem 2.3.3 The manifold of Kenmotsu type (M*"*1 & n, ®, g) is an Einstein

manifold if and only if, the following conditions hold:

o= —2n; ¢.=0;, B.,,=B," By, B™ g = 0; w — B, B, °

abc cab T
Proof: Suppose that M is an Einstein manifold, then from the Definition 1.4.4, we
have on AG—structure space the following;:
Tij = & Gij,

where 7,5 = 0,1, ..., 2n. Especially, rqo = @ ggo then regarding Theorem 2.3.2 and
the Definition 1.3.6, we have @ = —2n. Moreover, we must have 7, = 0 and

rap = —2n 0p. This equivalent to the following equations:

_2AC + Bcabc - Bca h Bhb €= 0, _ZBCCL [bc} + Agbc - Bahb Bch ¢ = 0

abc
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From the fact that B, ¢ = —B,, ¢ and B* .= —B" _ we get

—2A¢

abc

_Bacbc_l—BachBth:O; 2Bac[bd+Ag§+Bahb thczo'

Since Ri,., = 243, = —Rp,. = —2A§,., then by taking the alternating operator of

the indexes b and ¢ of the above equations, we obtain

c c c h c\ _n. ac ac ac ah c\ __
34— (Ages Bajer) = Bape” Binp) = 05 3B g+ (Ajiy) — B* pg — B ¢ Bppy) = 0.

ach

Now, from Theorem 2.2.3, we deduce that A¢ , = B by = 0 and this gives the
required conditions. Conversely, if the conditions hold then Theorem 2.3.2 gives

that M is Einstein manifold. O

Corollary 2.3.2 The manifold of Kenmotsu type (M***1 &, n, ®,g) is an Einstein
manifold if and only if it has ®—invariant Ricci tensor and satisfies the following
equations:

a=-2n; B“,,=0; A%=B",B,"
Proof: The result follows from Theorem 2.3.3 and Lemma 1.4.2. O

Theorem 2.3.4 The manifold of Kenmotsu type (M1 & n, ®,g) is n— Finstein
manifold if and only if the following conditions hold:

a+B=-2n A5, =0, B,°=DB.," By

abc cab —
ca /8 a ac a C /B a
B [be] = gfsb; Ay =B hb B, “— §5b'

Proof: Suppose that M is an n—Einstein manifold, then regarding Definition 1.4.4,
we have rogg = a + . So, Theorem 2.3.2 gives a + f = —2n. Moreover, we must
have 74, = 0 and 73, = & gap = (—2n — [)J5. Similar to the manner in the proof of
Theorem 2.3.3, we get this theorem’s conditions. The converse also true by simple

calculations. O

Corollary 2.3.3 The manifold of Kenmotsu type (M***1 & n, @, g) is n— Finstein
manifold if and only if, M has ®—invariant Ricci tensor and satisfies the following

equations:

s
3

a+B==2n; B“u,=30; Aj= B, B, ¢ — §5Z‘f
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Proof: The assertion of this corollary follows from the Theorem 2.3.4 and the

Lemma 1.4.2. O

Remark 2.3.1 From the above discussion, it is clearly that o and § are scalars.



Chapter Three

The Curvature
Identities and
Curvature Derivation
for the Manifold of
Kenmotsu Type




Chapter 3

The Curvature Identities and
Curvature Derivation for the

Manifold of Kenmotsu Type

This chapter deals with two types of study, the first study devotes to the manifold
of Kenmotsu type which satisfies the GS—space forms and (or) some curvature
identities that similar to the Gary identities in the AH-manifolds [54]. Whereas, the
second study concentrated on the covariant derivative of the Riemannian curvature

tensor of the manifold of Kenmotsu type.

3.1 The Curvature Identities for the Manifold of
Kenmotsu Type

We begin this section with an example on the manifold of Kenmotsu type and then

discuss some curvature identities including ® HS—curvature.
Example 3.1.1 Suppose that (N?", J, h) is an AH-manifold of class W5 @ W, (see
Gray and Hervella [56]), then NN satisfies the following identity:

Dx(J)Y —D;x(J)JY =0; VXY € X(N), (3.1.1)

where D is the Riemannian connection of N with respect to the metric h. We

take M = R x; N, where f(t) = e’ defined on R. If N has local coordinates
40
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(21, T2, ..., Tay), then M has local coordinates (¢, x1, z3, ..., T2, ). Now, suppose that
¢ = 2 is the Reeb vector field of M. Let X € X(M), then X = X, + n(X)¢,
where X, € X(N) and n(Xy) = 0. Then we define the endomorphism ¢ on M
by ®(X) = J(Xo). Suppose that g is the Riemannian metric of M and V is the

Riemannian connection on M. Then from Goldberg [51] we obtain
Vx, Yo = Dx, Yo — H(X0,Y0)&; V Xo, Yy € X(N) (3.1.2)

where H (X, Yy) = 9(Vx,&,Yo). If we put Y = ¢ in the identity of the manifold of

Kenmotsu type, we get
Vb = X - n(X)E = —03(X),

Since 1(Xy) = 0, then H (X, Yo) = g(Xo, Yo) and the equation (3.1.2) becomes
Vx, Yo = Dx, Yo — g(Xo, Yo)f-

Moreover, for any X,Y € X (M) we have

V(@)Y =Vx@(Y) - &(VxY);
= Vo) (Y) = ©(Vxgrnx)e(Yo + n(Y)E));
= Vx,@(Y) + n(X)Ve@(Y) — &{Vx, Yo + n(X) VYo
+ (VxoMY)E +n(Y) V& + n(X)(Ve(m)Y)E + n(X)n(Y) Ve
= Vx,2(Y) + n(X)Ve2(Y) — ©(Vx,Yo) — n(X)(VeYy)
—n(Y)2(Vx,8)-

Since ¢(X) € X(N), then [®(X),¢] = 0 and according to the equality [X,Y] =
VxY — Vy X, we get

Ved(Y) = Vamé = ®(Y);  VeYo = Vié = Yo,
Then from the previous discussion and the fact ®(Xy) = ®(X), we deduce that

Vx (@)Y = Dx, (J)¥o — g(X, 2(Y))§ — n(Y)2(X). (3.1.3)
Now, regarding the equation (3.1.3), we conclude that

Vax)(®)P(Y) = Dy(xo)(J)J (Vo) — g(X, 2(Y))S. (3.1.4)
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So, subtracting equation (3.1.4) from equation (3.1.3), and using equation (3.1.1),
imply to attain the identity of the manifold of Kenmotsu type.

Theorem 3.1.1 The manifold of Kenmotsu type (M*"*1 & 0, ®, g) has pointwise
constant ® HS— curvature if and only if the following equality holds on the AG—
structure space:

7+1

A lad] _ Bhb a Bdh 5

be

Proof: Suppose that M is the manifold of Kenmotsu type and has pointwise
constant ® HS—curvature. According to Theorem 2.3.1, we have the Riemanni-
an curvature tensor for the manifold of Kenmotsu type owned the following on the

AG —structure space:
Ry = Ry = Agd — poh — 6% 5.

Regarding Theorem 1.4.2 and the above equation, the following equation holds on
the AG—structure space:

(ad) _ plaln] d | v+ 1z
A(bc - (e Bb)h + 2 5607

where |h| means the index h does not act by the symmetric operator (..). Then
using the fact By, = —B,, ¢ and the symmetric property of the indexes a and d,

we get

(ad) _ (d|h|
A -B B|h|b)

Since Agd = Al + AGY

Ibe] o) T AE;CC}I) + AEZS)). Then regarding the Theorem 2.2.3, the

alternating (symmetric) property and the Corollary 2.1.1; item (4), we get

lad] [ad] la pdh |
A[bc] bc - Bh[b B c]?
ALl =—B,," B™,;

(ad) (a pd)h
A[bc] - _Bh[b B q-

From the above discussion, we have the required assertion. O
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Theorem 3.1.2 If the manifold of Kenmotsu type is Finstein manifold and has

pointwise constant ®HS— curvature v, then v = —1.

Proof: Suppose that M is the manifold of Kenmotsu type and satisfies Einstein’s

criterion. Then Theorem 2.3.3 gives the following:
B 4y =0; A% =B", B, °. (3.1.5)

Since M has pointwise constant ® HS—curvature ~, then from Theorem 3.1.1, and
the fact 0 = n, we get
(v+1)(n+1)

A% =B, lac] B,.® B, + 5 0y - (3.1.6)
Now, combine equations (3.1.5) and (3.1.6), we obtain
1 1
Bahb BChc_BChchhb: (’Y—i_ )<n+ )51?

2

Since n > 1, then by contracting the above equation with respect to the indexes a

and ¢, we conclude the result. O

Corollary 3.1.1 If the manifold of Kenmotsu type is Einstein manifold and has
pointwise constant ® HS— curvature, then it is locally isometric to the warped product

RXan.

Proof: The result follows from the above theorem and Tanno [107]. O
According to Vanhecke [113], we can define new classes of AC R—manifolds as

the following;:

Definition 3.1.1 An ACR—manifold (M*"* & n, ®,g) is called of class

G if R(®X, Y, 07, dW) = R(X,Y,Z,W); VXY, Z W € ker(n),

G if R(X,Y,0Z, W) = R(X,Y,Z, W), ¥V X,Y,Z W € ker(n);

Gs if R(®X,Y,Z,®W) = R(X,Y,Z, W), ¥V X,Y,Z W € ker(n);

Gy if R(®2X, ®2%Y, 927, ®*W) = R(X,Y,Z,W); VYV X,Y,Z W € X(M).
Moreover, AC R—manifold of class Gy and G4 can be called classes of ®—invariant

and ®>—invariant Riemann curvature tensor respectively.

Theorem 3.1.3 On the AG—structure space, the AC R—manifold (M*" ™1, &, n,®, g)

1s of class
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1. Gy if and only if, Rgpeq = 0;
2. Gy if and only if, R5., = 0;
3. Gs if and only if, R, = 0;
4. Gy if and only if, Raowo = Raovo = Raobe = Raose = R, = 0.

Proof: Since R(X,Y,Z,W) = Ry X' Y7 ZF W' where i,j,k,1 = 0,1, ...,2n and
for short, we set 4, 7, k,l = 0,a,a, where a = 1,2, ...,n and @ = a +n. Then we have

M of class GGy if and only if,
R(®X,®Y,0Z, W) = R(X,Y,Z, W), ¥V X,Y,Z W € ker(n).
Then the above equation equivalent to
Rrsr (X)) (RY)* (PZ)' (PW)" = Ry X' Y7 ZF W',

where 4, 5, k, [, 7, s,t, u have the same range and do not vanish because X,Y, Z, W €

ker(n). Then the last equation simplifies to
Rygy ®F ©5 @}, O X' Y7 ZF W' = Ry XP YT ZF W

Then R, s, O (ID;T <I>}tC O} = Rl and regarding the values of the indexes and @ in
Definition 1.3.6, we attain the result. Similarly, if M of class G5 or Gj.

Now, if M of class G4, then we have
R(®*X, ®%Y,d*Z, &*W) = R(X,Y, Z, W).
The above equation can be written in the following form:
0=n(X)n(Z2)R(EY,&W) +n(X)n(W)R(E,Y, Z,§) +n(Y )n(Z2)R(X, &, 6, W)

- n(Z)R(Xa }/757 W) - n(W)R(X7 Y7 Za g)

If we replace X, Y, Z, W, & by the indexes 1, j, k, [, 0 respectively in the last equation,
we get
0 = nimeRojor + nimiRojro + 1Mk Rioor + njmiRioko — 1iRojki

— 0 Riokt — nkRijor — mRijko-
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So, if we take the values of i, j, k,[ as above and use the properties of Riemannian

curvature tensor, then we obtain the result. O

Corollary 3.1.2 The manifold of Kenmotsu type (M*"* & n, ®,q) can not be of

class Gy.

Proof: Suppose that M is the manifold of Kenmotsu type, then from Theorem
2.3.1, we have

Raono = Ry = —0p, # 0.

Therefore from Theorem 3.1.3, we arrive to the substance of this corollary. O

Corollary 3.1.3 The manifold of Kenmotsu type (M?*"*1 & n,®, g) belong to the

class of
1. Gy if and only if, AL, = 0; or equivalently B,.,* = By, "B,
2. Gy if and only if, B® (od] = 5{10 521;
8. Gs if and only if, Ag? = B B, ¢+ 62 6¢.
Proof: The results follow from Theorems 2.3.1 and 3.1.3. O

Corollary 3.1.4 If (M & n,®,g) is the manifold of Kenmotsu type and of class
G, then M is a manifold of class Gs.

Proof: The assertion of the present corollary follows from the conditions of Theorem

2.2.3 and Corollary 3.1.3. O

Corollary 3.1.5 If (M*"*1 & n, ®,q) is an ACR—manifold of class G, then M

posses vanishing ® HS— curvature tensor H.

Proof: Suppose that M of class G3, then for all X € ker(n), we get

_R(®X, X, X,®X)  R(X,X,X,X)
HO="xxr  ~ exxe O




Chapter Three 46

3.2 The Generalized Sasakian Space Forms for
the Manifold of Kenmotsu Type

In this section, we characterize the definition of GS—space forms on AG—structure
space and we derive the conditions for the manifold of Kenmotsu type to be GS—

space forms.

Remark 3.2.1 According to the Definition 1.4.2, the components of Riemannian
curvature tensor of the GS—space forms M(fi, fo, f3) on the AG—structure space

are given by
Riji = fi{gie 950 — 9a g} + Fo{Qu Qej — Quy Qi + 2945 Qg }
+ f3{1; Mk it — M5 M Gak M M Gik — T Mk Gt (3.2.7)

where Q(X,Y) = g(X,®Y) for all X,Y € X(M). Moreover, the components of €
on the AG—structure space for any AC'R—manifold are given by

QOO = an = an = Qab = QEE = O, Qab =V —152, Qij = —Qﬂ (328)

Theorem 3.2.1 The manifold of Kenmotsu type (M*" "1 & n, ®,g) is a GS—space

forms if and only if, M attains the following on the AG—structure space:
L fs=hH+1 Ap,=0;
2. Agd = B, By, * + (fa + f3)08 Of +2f2 0 0
9 pad ) = (fs — f2)5[ac 55}; pabd — pab  phd

Proof: Regarding Theorem 2.3.1, Definition 1.3.6 and equations (3.2.7) and (3.2.8),

we get the requirements. For instance, if (i, j, k,1) = (a,0,b,0), then

Raopo = fl{gdb goo — Gao gOb} + fQ{QdO Qpo — Qoo Qap + 2040 Qbo}
+ f3{770 M 9ao — Mo Mo Gab + Ma Mo Gob — Na T 900};
—0y = f1 05 — f3 0.

So, we have f3 = f; + 1. Similarly for the others. O
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Theorem 3.2.2 The GS—space forms M(f1, fa, f3) has pointwise constant ®HS—
curvature v if and only iof, v+ f1 +3fo = 0.

Proof: M(fi, f, f3) has pointwise constant ® HS—curvature ~ if and only if,
R(®X, X, X,®X) =v(g(X, X))% V X € ker(n).
But the Riemann curvature tensor of M(f1, f2, f3) satisfies the following:
R(®X, X, X, 0X) = —(f1 +3f2)(9(X,X))*; VX € ker(n).
Then the subtracting of the above equations confirm the result. O

Theorem 3.2.3 The GS—space forms M(f1, fa, f3) is of class
1. Gy constantly;
2. Go if and only if, n =1 or fi = fo;
3. Gy if and only if, f1 = fo =0;
4. Gy if and only if, f1 = f3.
Proof: Taking the equation (3.2.7) into account, we conclude that

Rapeqa = 0;
Rﬁ@ad = (fi — f2){5g52 - 5355;};
Rya=(fi + f2)8485 4+ 2 f> 6382

a

Raovo = Raope = Raope = Raogc =0;  Raoo = (fl - f3)5z?-

Compare the above equations with Theorem 3.1.3, we deduce the results. O
On the AG—structure space, we can determine the components of the Ricci
tensor of M (f1, fa, f3) from the equation (3.2.7) as follows:
Tjk = _gilRijkl

= (2nf1 +3fa — f3)gix — Bf2 + (2n — 1) f3)n; k3

where ¢" are the components of g='. Then we deduce the following theorem:
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Theorem 3.2.4 The GS—space forms M(f1, fo, f3) is an n— Einstein manifold with
a=2nf+3fo— fzand B =—3fs+ (2n —1)f3).

Theorem 3.2.5 If the manifold of Kenmotsu type is GS—space forms M(f1, fa, f3)
and it has pointwise constant ® HS— curvature vy, then

n n— 2 _—2n—i—3

A e e N (R

_1.
7_37

Proof: Combine the value of A% from Theorem 3.1.1 with its value in Theorem
3.2.1, we get

v+1

B,, "' - B,,* B" + ngg = B By, "+ (fa + f3)00 & + 2> 6 OF.

If we applying the symmetric operator on the indexes a and d of the above equation,
then we deduce that

+ 1~a ~CL ~a
S0 = (Fot )5+ 202 B

So, we have VTH = 3fy + f3. Regarding Theorems 3.2.1 and 3.2.2, directly, we get
the value of ~.

Since M(fi, fa, f3) is n—Einstein manifold with 5 = —(3f2 + (2n — 1) f3), then the
manifold of Kenmotsu type is an n—Einstein manifold with § = —(3fo+ (2n—1) f3).
But from Theorem 2.3.4, we have B b = gél‘j. So, regarding Theorem 3.2.1, we

attain the values of {f1, fa, f3}. O

3.3 The Covariant Derivative Curvature for the
Manifold of Kenmotsu Type

In this section, we investigate the geometric properties of the covariant derivative for
the Riemannian curvature tensor which denotes VR, on the manifold of Kenmotsu

type by determining its components on the AG—structure space.
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Theorem 3.3.1 On the AG—structure space, the manifold of Kenmotsu type sat-

isfies the following equations:

AAf g = Ay, O+ Al won — 245, w; (3.3.9)
AAR = Apgy "+ A wy, — 243 w; (3.3.10)
ABab = Bab wdh wh 4 B(zthd Wy, — 2Bab d w: (3311)

where h =1,...,n, and

AAL = dA,+ Apy O — Agy 0 — Ay 00 — Ay, 6l
AAZ = dAg+ AL 6+ AT 0 — A3 0 — A o)

C C

AB® ,=dB” 4+ B" ., 65+ B™ 6, — B® ,, 6} — B* , 0%,

Proof: If we differentiate the Cartan’s second structure equations in Theorem 2.2.3
exteriorly, then on the AG—structure space, there are suitable smooth functions
such that the target equations are attained. O

Now, we can establish the components of VR on (M?*"*! & n, @, g) from the
following identity [75]:

dRijii — Rijry 0; — Risra 0% — Riju 0, — Rijre 0] = Rijriy " (3.3.12)

where R(X,Y,Z,W) = g(R(Z,W)Y, X), Rijn = Ri\;, t = 0,1, ..., 2n and

J
Rijkir = 9(Ve, (R)(ek, €1)€j, €1)-

Theorem 3.3.2 On the AG—structure space, the components of VR for the man-
ifold of Kenmotsu type (M*"T1 & n, ®,g) are given by

1. Raopo,0 = Raovo,n = R4, = 05
2. Raovo,0 = Raovo,n = R4, = 05

. oAk .
3. RaObc,O = RaObc,h - O; RaObc,iL - 2Aabc7

4. Raoveo = 0;  Raover = =240 Ragpey = —2B*" [be]”

J. RaOi)c,O = 07 RaOBc,h = _2Ab

cah?’

. . — _ Ahb hd b.
RaObc,h — Aac + B c Bad ’
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0. Rabcd,O - Rabcd,h = 0; Rabcd,fz = 4{Bf[ah Aljyc]cd + Bf[ch Ag]ab};
7. Rapeap = —4A5.5  Ravean = 245415
8. Rabcd,ﬁ = Q{Aggd + B be " AZ[J; B + Bf[ch Bafd] Bbf ’ I

[cd] | f1d]

9. Rabcci,o = _2{14?2[ - Bafc Bbf ¢ i
10. Rabcd,h = 2A§cf deh - QAgfb Bfah - Bafc Bbfhd - Bbf ¢ B ch T Aggh;
11. Ry = Agdh — B, 4 B/t — Bof | By, 4 2Adl B b — o)1 B
12. Rijego = —4B [ed]? Ripean = 2B edjh T 4Bf[bh A;L‘}cdf'
18. Rypogj = 2B g + 4By, ALY
Proof: The results follow from equation (3.3.12) by taking

<i7j7 k? l) :<a7 07 b7 O)? (&7 O’ b? 0)7 (a7 O? b? c)? <d7 07 b7 C)? <a7 07 87 C), (a7 b’ c? d)?
(a,b,¢,d), (a,b,c,d), (a,b,c,d);
t =0, h, h,

and regarding Theorems 2.2.1 and 2.3.1. For instance, if (¢, j, k,1) = (a,0,b,0), then

the equation (3.3.12) given by
dRqo00 — Riovo 92 — Rawo 96 — Raoo 92 — Raont ‘96 = RaObO,t w'.

The above equation can be simplified by using the Theorems 2.2.1 and 2.3.1, as the

following:

t ) h _ ph.

Raopot W = —Rj0 0, — Rogig Oy
_ <h pgh h ph.
— 5b ea + 5(1 6b7

=00+ 07 =0.
S0, we have R,op0 wh + RaObo,iL wp, + Raorop w = 0, and then

RaObO,h = RaObO,fz = RaObO,O =0.
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We use the same technique for the other cases and for some cases we must use the
equations (3.3.9), (3.3.10), or (3.3.11). For example, if (i, 7, k,1) = (a,b,c,d), then
the equation (3.3.12) given by

dRaped — Rived 05 — Ratea 0 — Rapta 0-. — Raver 05 = Rapear w'.
According to the Theorem 2.3.1, we get

Riapeap W' = 2d Ay — Riypeg 05 — Ranea 0y — Rijq 0 — Rabna 00
— Rdbﬁd 6? — Rapen 02 - R&bcil QZ?
=2A0A5q — Rijea 6{} — Rapia 9? = Rapei 93?

= 2045, — Rafcd 91{ + Rabdf 9({ - Rdbcf ‘95;

where f = 1,2,...,n. If we return to the Theorem 2.2.1, we have 0{ = —By, b,
So regarding the Theorem 2.3.1, the equation (3.3.9) and the previous results, we

obtain the following:

a

Rabcd,o = —4Abcm
a .

Rivean = 2A4.q1;

Ripeass = 2 Aty + B o By " + Al Byt + By BY

f

]

The proof of the remaining items becomes obvious, therefore, we omit it. O

Theorem 3.3.3 The manifold of Kenmotsu type (M1 & n,®, g) is locally sym-

metric if and only if the following conditions hold:
Apea = 0; B [ed) = 0; AZ? = Bahc By, ¢,

Proof: Suppose that M?"™! is locally symmetric, then Vi (R)(Z, W)Y = 0, (see
the Definition 1.4.10) and thus we have

Therefore, the components R;ji;; are identically zero for all 4, 7,k,1,t = 0,1, ..., 2n.
Regarding the Theorem 3.3.2, we have Af,, = 0; B |, = 0; and Aj! = B*", B, *.
Conversely, if A%, = 0; B® g = 0; Agd = Bah B, @ then AAL, = 0;
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AB® g = 0; and according to the Lemma 1.2.1; item (3), as well as the Theo-

rem 2.2.3; items (2) and (3), yield the following equation:
AAp =B, B,y + By, * BY Yo" +{B,; ¢ B*" + BY | B, "}y — 248 w.

So, regarding the equations (3.3.9), (3.3.10), and (3.3.11) and the Theorem 3.3.2,

we get Rijr = 0. Therefore, M?™*! is locally symmetric. O

Theorem 3.3.4 The locally symmetric manifold (M** & n,®,g) of Kenmotsu
type is an Einstein manifold with o = —2n if and only if M satisfies the following
condition:

B,,°=B.," B, °.

cab ca

Proof: Suppose that M?"™! is an Einstein manifold with v = —2n, then from the

Definitions 1.4.4 and 1.3.6, we have
Too = —2n; Te0 =Tap = 0;  Tap = —2n0;.

Since M?"*! is a locally symmetric manifold of Kenmotsu type, then regarding
Theorems 2.3.2, 3.3.3 and the above relations achieve the condition.
Conversely, if the condition is valid, then the conditions of the Theorem 3.3.3 with

Theorem 2.3.2, lead to the result. O

Corollary 3.3.1 The locally symmetric manifold (M*" ™' & n,®, g) of Kenmotsu
type is an Einstein manifold with o = —2n if and only if, M*"*! has ®—invariant

Ricci tensor.

Proof: The assertion of this corollary follows from Definition 1.4.4, Lemma 1.4.2
and Theorem 3.3.4. O
Now, suppose that (M?" 1 ¢ n &, g) is a generalized ®—recurrent manifold, then

regarding Definition 1.4.11, we get
B(Vu(R)(Z,W)Y) = p(U)R(Z, W)Y + XU, W)Z — g(¥, Z)W},
foral UW)Y,Z € X(M). So, for all X € X(M), we have

9(®*(Vu(R)(Z,W)Y), X) = g(Vu(R)(Z, W)Y, 9*(X));
= —9(Vu(R)(Z, W)Y, X) +1n(X)g(Vu(R)(Z, W)Y, §).
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Then the generalized ®—recurrent AC R—manifold has curvature components which

are given by

—Rijire + 1 Rojere = pe Rijii + MNA ik 91 — 9 g5} - (3.3.13)

So, if M?"*1 is the manifold of Kenmotsu type, then regarding Theorem 2.3.1 and
Definition 1.3.6, equation (3.3.13) looks like the following:

1. R0t = 0;

2. Raovo = pi O — ¢ Op;

3. RaObc,t = 0;
4. Raoper = 0;
5. R = 0;
6. Rapedr = 0;

7. Rapear = —2pt ALy
8. Rabcci,t = Pt(_Agg + Bahc By, ¢+ O¢ 55) — A\ O 5513

Now, if we use Theorem 3.3.2, then item 2 above gives p; = A;, and this implies that
the 1-forms p and A must be equal. Moreover, if we combine the above items again

with Theorem 3.3.2, then we deduce the following theorem:

Theorem 3.3.5 The manifold of Kenmotsu type (M1 & n, ®, g) is a generalized

d—recurrent if and only if, M satisfies the following conditions:
p=2X  Apg=0; B eq) = 05 Alcfg = Bahc By, .

Corollary 3.3.2 The manifold of Kenmotsu type (M*"* & n, ®, g) is locally sym-

metric if and only if, M*" ™! is a generalized ®—recurrent with p = \.

Proof: The result follows from Theorems 3.3.3 and 3.3.5. O
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Theorem 3.3.6 The manifold of Kenmotsu type (M**1 &, n, ®, g) satisfies the fol-

lowing relations:
1. g(Ve(R)(Z, W)Y, X) = =29(R(Z, W)Y + g(Y,W)Z — g(Y, Z)W, X);
2. 9(Vu(R)(Z,W)E, X) = —g(R(Z, W)U + g(UW)Z — g(U, Z)W, X);
3. g(Vu(R)(Z,6)Y,X) = —g(R(Z,U)Y + g(Y,U)Z — g(Y, Z)U, X).

Proof: Since the components of g(V¢(R)(Z, W)Y, X), g(Vu(R)(Z, W)E, X) and
g(Vu(R)(Z,€)Y,X) are Rijii0, Riok,r and R;jko. respectively. Then the claim of the
present theorem achieving from the Theorems 2.3.1, 3.3.2 and the Definition 1.3.6.
O
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Chapter 4

The Generalized Curvature Tensor
on the Manifold of Kenmotsu
Type and the Hypersurfaces of the

Hermitian Manifold

This chapter divides into two parts, the first one focusses on the generalized curva-
ture tensor for the manifold of Kenmotsu type. Whereas, the second part discusses

the manifold of Kenmotsu type as a hypersurface of the Hermitian manifold.

4.1 The Geometry of the Generalized Curvature
Tensor on the Manifold of Kenmotsu Type

In this section, we investigate the geometric properties, especially the flatness prop-

erty of the generalized curvature tensor on the manifold of Kenmotsu type.

Remark 4.1.1 On the AG—structure space, the generalized curvature tensor B

which mentioned in Definition 1.4.9, has the following components form:

Eijkl = agRiji +a1{gik 7j1— Gu Tjk ik 91— Gjk} +2a25{gir 9j1 — ga g} (4.1.1)

54
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Theorem 4.1.1 On AG—structure space, the components of the generalized curva-

ture tensor B for the manifold of Kenmotsu type are given by
1. éaobo = Q1 Tab,
2. anz;o = —(ap + 2na; — 2a2s)0y + ay rap;
3. Bapea = 2a0 Ay + ar{6% Tha — 05 Tec};

}. By = ao(Ap — B, By, %) + ai{6% QF + 6 Q) + (2ass — ag)d? 3y

5. By, = 2ao B ea) T 41 5[[3 QZ]] + 2(2a3s — ag) 5[[3 53%;

and the remaining components are identical to zero or given by the same properties

of R or the conjugate to the above components.

Proof: Since r(X,Y) = g(X,QY), then r;; = gika. Consquently, regarding the
Definition 1.3.6, we have

Tap = gaka = gaoQ(b) + gac®y + gang = Q-

Since B defined on the manifold of Kenmotsu type, then the substitutions of the
values of R;jp = Rj-,cl and g¢;; from Theorem 2.3.1 and Definition 1.3.6, respectively

in the equation (4.1.1), we get the desired. O

Theorem 4.1.2 The manifold of Kenmotsu type (M*"*1 & n,®, g) has flat gen-
eralized curvature tensor if and only if, M s an n—FEinstein manifold with o =
1 a _ ad _ Rah d a a Sd

2 (a0 + 2nay — 2a2s), Ajy =0, B = —(2n+a), Ajd = B, By, “ + 18 0205 and
B (ed] = Z—éﬁ 5&52}, provided that ag,ay # 0.

Proof: Suppose that M?"*! has a flat generalized curvature tensor with ag # 0 and
ay # 0, then E@'jkl = 0 and according to the Theorem 4.1.1, we have
1 a a
rap = 0; 1o = —(ag + 2na; — 2a9s)dy; g = 0.
ay

Then taking into account Definition 1.4.4 and the above value of rg,, we get o =

1

a—l(ao—l—Qnal —2asys). Since M is the manifold of Kenmotsu type, then from Theorem

2.3.2, we have rqg = —2n = o + [ and this gives #. Again, Theorem 4.1.1; item
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4 gives Al = B, By, * + %3 62 6. Moreover, Theorem 4.1.1; item 5 gives
B ea) = 3-8 07, 53}. The converse is also true. O
Now, we introduce the notion of generalized ®—holomorphic sectional (GO HS—)

curvature tensor which is embodied in the following definition:

Definition 4.1.1 A G®HS— curvature tensor S of any (M*"*1 & n, @, g) manifold
1s defined by

B(®X, X, X,®X)
(9(X,X))*

Moreover, M is called of pointwise constant G®HS— curvature if S(X) = v and ~

S(X) =

V X € ker(n); X #0.

does not depend on X.

Clearly that, G® HS—curvature tensor is & H.S—curvature tensor if and only if,
ap = 1, and a; = as = 0. Therefore, we can drive the necessary and sufficien-
t condition for AC'R—manifold to have pointwise constant G®HS—curvature on

AG—structure space.

Theorem 4.1.3 (M?"™! & n, ®, g) has pointwise constant G® HS— curvature if and
only if, on AG—structure space, the generalized curvature tensor B of M satisfies
the equality below.

S(ad) _ Y Fad

B(bc) = 25bc.
Proof: Since the tensor B has the same properties of Riemannian curvature tensor

R, then we can follow the same proof in [71] or equivalently in [111]. O

Theorem 4.1.4 The manifold of Kenmotsu type (M**1 & n,®,g) has pointwise
constant GO H S— curvature if and only if, on AG—structure space, M satisfies the
following equality:

2a, 4 Y —2a38 +ap,

(a

a ad, a
Abél:Bbc [ ]_Bhb Bdhc_ ao 2@0

Proof: Suppose that M is the manifold of Kenmotsu type and has pointwise con-

stant G® HS—curvature. Regarding the Theorem 4.1.3 and Theorem 4.1.1; item 4,

we get
) 2ay v — 2a95 + ag

QCLO

Alad) _ plaln

d (a d) Nad
wey =B 4 B O0p @y + Ope -

Qo
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The above equation can be rewritten as follows:

ALY — _B

(a pd)h 201 (aa) |, Y —
(be) W B 0@y +

c) - (1_0
Since A% — Alad] + Alad + Alad) + A then taking into account the Theorem
be [bc] (be) [bc] (be) ? g

2.2.3 with the technique of the Theorem 3.1.1 and the above result, we attain the
requirement. O

Recently, Yildiz and De [118] introduced the notions of ®-projectively semisym-
metric and -Weyl semisymmetric. Regarding these ideas, we can introduce the

following definition:

Definition 4.1.2 An ACR—manifold (M**1, &, n,®,g) is called a ®-generalized
semi (PGS—) symmetric if E(Z, W)-® =0, for all Z,W € X (M), or equivalently

B(X,®Y,Z, W)+ B(®X,Y,Z,W)=0;, VX,Y,Z W e X(M).

Lemma 4.1.1 On AG-—structure space, the AC R—manifold (M?*"*1 ¢ n @, g) is
&G S—symmetric if and only if,

Baowo = Baoso = Baove = Baove = B, = Baved = Bjeq = 0-

Proof: According to the Definition 4.1.2, we have M is ®GS—symmetric if and

only if,
B(X,®Y,Z, W)+ B(®X,Y,Z,W)=0;, VX.,Y,Z,W € X(M).
On the AG—structure space, the above identity equivalent to the following:
Bjga ®4+ By @ =0; q,t=0,1,..,2n.
If we take
(i,4,k,1) = (a,0,b,0), (a,0,b,0), (a,0,b,¢), (a,0,b,¢), (a,0,b,c), (a,b,c,d), (a,b, c,d),

and using the Definition 1.3.6, we obtain the result. O

It is not hard to conclude the following:

Corollary 4.1.1 The AC R—manifold (M*"* & n, ®,q) of flat generalized curva-

ture tensor is usually PGS —symmetric.
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Corollary 4.1.2 The manifold of Kenmotsu type (M*" "1 & n, @, g) has flat gen-
eralized curvature tensor if and only if, M is ®GS—symmetric with A}, = 0 and
Ayt = B
ag, ay # 0.

By, ¢ + “p 6204, where p = —%(ao + 4na; — 2ass), provided that

C

Proof: Suppose that M is the manifold of Kenmotsu type and it has flat generalized
curvature tensor, then from Corollary 4.1.1, we see that M is $G.S—symmetric and
regarding Theorem 4.1.1, we get the other conditions.

Conversely, If M is &G S—symmetric with the above conditions then according to
Lemma 4.1.1 and Theorem 4.1.1, we have M has flat generalized curvature tensor.

g

Theorem 4.1.5 The manifold of Kenmotsu type (M*"*1 &, n,®, g) posses PGS—
symmetric if and only if, M is an n— Einstein manifold with o = i(a0+2na1—2a23),

B=—(2n+a) and B® fed] = Z—;ﬁ (5{’6(531, provided that ag, a; # 0.

Proof: Suppose that M is ®G.S—symmetric manifold of Kenmotsu type, then from

Lemma 4.1.1 and Theorem 4.1.1, we have

1 1
rapy =0; 14 = a—l(ao + 2na; — 2a25)dy; B fed] = —a—o(ao +4na; — 2a2$)5ﬁ:(53].

Regarding Definition 1.4.4 and Theorem 2.3.2, we attain the values of o and S.

The converse is verified directly from Theorem 4.1.1 and Lemma 4.1.1. O

Corollary 4.1.3 The manifold of Kenmotsu type (M?*" 1 & n, @, g) posses PGS—
symmetric and G®HS—curvature if and only if, M is n— FEinstein manifold with
o= a—ll(ao + 2na; — 2as8), B = —(2n+ ), B® ed] = Z—;@(SFC(SZ], and
a ’y Na a al a
Apl = 2_%51)3 — By, * B"  + a—oﬁfsb(sg,
provided that ag,ay # 0.

Proof: Suppose that M is the manifold of Kenmotsu type, then the necessary and
sufficient conditions for the present corollary are satisfied from the Theorems 4.1.4

and 4.1.5. O
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Now, we introduce a generalization of the notion of AC'R—manifold of constan-
t curvature used by Abood and Al-Hussaini [2]. We shall show this idea in the

following definition:

Definition 4.1.3 An ACR—manifold (M** 1 &, ®,g) is said to have constant
generalized curvature k if the following identity holds:

B(X,Y, Z W) =r{g(X,2)g(Y, W) —g(X,W)g(Y,Z)}; VXY, ZWeX(M).

On the AG—structure space, Definition 4.1.3 equivalent to the identity below.

Bijii = k{9t 951 — 9 9jk}- (4.1.2)
Directly, regarding Definitions 4.1.3, 1.4.8 and 1.4.9, we have the following result:

Theorem 4.1.6 Suppose that (M**1 &, n, @, g) is an AC R—manifold of constant

generalized curvature k = 2ass. Then M has flat conharmonic curvature tensor if

1

and only if, ag =1 and a1 = —5-—.

Theorem 4.1.7 An AC R—manifold (M*"+1 & n, ®, g) has constant generalized cur-

vature K if and only if, on the AG—structure space, B has the following components:
1. Bagwo = K 0
2. Edbccz =K 5355;
3. Bjeg = 25 0004

and the remaining components are identical to zero or establishing from the above

components by the same properties of R or by taking the conjugate operation.

Proof: The result follows from equation (4.1.2) by taking
(i, k,1) = (@,0,0,0), (@, b,¢, d), (@,b, c, d);
and regarding Definition 1.3.6. O

Theorem 4.1.8 The AC R—manifold (M & n, ®,g) is ®GS—symmetric if and

only if, M has constant generalized curvature k = 0.
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Proof: The claim of this theorem is achieving from Lemma 4.1.1 and Theorem

4.1.7. O

Theorem 4.1.9 If an ACR—manifold (M***1 &, n,®,g) has constant generalized

curvature K, then M has pointwise constant G®HS— curvature equal to v = k.

Proof: The allegation of the present theorem occurs from the Theorems 4.1.3 and

4.1.7. O

Theorem 4.1.10 The manifold of Kenmotsu type (M***1 & n, ®,g) has constant

generalized curvature k if and only if, M is an n— FEinstein manifold with o =

a(ao +2nay — 2as + k), Apy =0, = —(2n + ), Al = B, By, ¢ + op 526
and B fd] = Z—éﬂ 5ﬁ:53]> provided that ag, a; # 0.

Proof: The assertion of this theorem can be happen, if we are combining the results

of Theorems 4.1.1 and 4.1.7. O
Now, we try to find the geometric properties of AC'R—manifold if the general-

ized curvature tensor, the concircular curvature tensor and the projective curvature

tensor are related.

Suppose that (M2t & n, @, g) is an AC R—manifold satisfies the following condi-

tion:

B(X,Y,Z,W) = %{P(X, Y, Z, W)= P(Y,X,Z,W)+C(X,Y,Z,W)}. (4.1.3)

Regarding equations (1.4.1), (1.4.2) and (4.1.1), equation (4.1.3) can be written on

the AG—structure space as follows:

a
0= (a1 + 6—2){%& T — Gi Tjk + Tik 9i — Til Gk}

+ (2a2 + 0 )s{9ik 9j1 — 9a Gjk}- (4.1.4)

Qg
6n(2n +

The contracting of the equation (4.1.4), that is multiplies it by ¢*, we can deduce

that
(v +2np)s
le = _mgﬂ’ (4].5)
where o = a; + g2 and 3 = 2a, + %. Moreover, the contracting of the equation

(4.1.5) gives ag+4na; +4n(2n+1)as = 0. Then we can state the following theorem:
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Theorem 4.1.11 Any AC R—manifold (M* & n, ®, g) which satisfies the iden-
tity (4.1.3) is an Einstein manifold with ay + 4na; + 4n(2n + 1)ay = 0, provided
that o # 0. Moreover, if M is the manifold of Kenmotsu type then s = %,
provided that o + 2nS # 0.

Proof: The first part of this theorem is obvious from the above discussion. Now, if
M is the manifold of Kenmotsu type then from Theorem 2.3.2, we have rqg = —2n.

Then the result is achieved from Definition 1.3.6 and equation (4.1.5). O

4.2 The Manifold of Kenmotsu Type as Hyper-
surface for the Hermitian Manifold

This section shall study the manifold of Kenmotsu type as a hypersurface of Hemi-

tian manifold.

Remark 4.2.1 [95] Suppose that (M1 & n, ®,g) is an AC R—manifold, then
there exists an almost complex structure J on M x R defined by J(X, f4) = (X —
ff,n(X)%), where X € X(M), t € R and f is a smooth function on R. The

Riemannian metric h on M x R is defined by
d d -
WX ), (V) = g(X V) + fu o Y XY €X(M); fi, fo € C¥(R)
The structure on M x R is Hermitian if and only if the structure on M is normal.

Remark 4.2.2 Since the manifold of Kenmotsu type is normal because it belongs
to the class C5BCy @ Cs, where Cf is taken here to be Kenmotsu manifold mentioned
in Theorem 1.4.3 (see [34] for more details about the classes C3 and Cy). Then the
structure on the product of the manifold of Kenmotsu type and the real line is

Hermitian structure (i.e. W5 @& W,) according to Remark 4.2.1.

Now, we discuss the opposite problem, that is, if (N?" J, h) is Hermitian man-
ifold, then can we find a hypersurface of N which is the manifold of Kenmotsu

type? For this reason, we suppose that o, 3,7y = 1,2,...,n — 1 and o0;; = o0j;
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1,7 = 1,2,...,2n — 1 are the components of the second quadratic form. From Ba-
naru [10], we see that the Hermitian manifold N satisfies O = Cupe = 0, where

a,b,c=1,2,...,n, then Theorem 1.5.1 reduces to the following form:

Theorem 4.2.1 The AC R—manifold on a hypersurface of Hermitian manifold has

the following first family of Cartan’s structure equations:
dw®™ = wg A w? + C’aﬁ wl Awg + (\/56’5” + \/—102‘)@05 Aw
+ (v —10* — —Cgﬁ)wﬁ N w;
\/_
alwoé:—wg/\w/gjLC’7 wy AP+ (V208 — /105w Aw
( \% 00&5 + \/—Caﬂ
dw = (\/5050‘ -2 @ — 2V=105)w’ Awa + (Clg + V—1oyp)w AW’
+(C™ — /10w A wg,

Jw’ A w;

where wg play the same role of 0.

Regarding Theorem 2.2.2, we note that the manifold (M?*"~! ¢ n, @, g) of Ken-

motsu type satisfies the following theorem on a certain basis of X (M):

Theorem 4.2.2 The manifold of Kenmotsu type has the following first group of
Cartan’s structure equations:
dw® :wg/\wﬂ—i—Bo‘B7 W Awg — w* Aw;
dw, = —wg/\w5+3a67 wy/\wﬁ — Wa A\ W;
dw = 0,
where wi = —0F.
Now, if the manifold of Kenmotsu type (M?"~1 & n, ®, g) is a hypersurface of the

Hermitian manifold (N?", J, h), then the Cartan’s structure equations mentioned in

Theorems 4.2.1 and 4.2.2 must be equal. Then we get
Co? =B V205" + V10§ = —65; V10" — Loy,

\/_ n
Cly = By VBCh, — VT = =55 o+ —Cly =

VRCE = VACH = 2/=10§ =0, Oyt V=Tows =0 O3 = V=To =0,

—=0;  (4.2.6)
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Since (a5 = 0 and C 5 = g, then equation (4.2.6) gives the following relations:
oag =0; 0np=0; o5 = \/—1(\/§C’§" +43). (4.2.7)
Thus from the above discussion, we can establish the theorem below.

Theorem 4.2.3 If the Hermitian manifold has the manifold of Kenmotsu type as
a hypersurface, then the second quadratic form o has components agree with the

equation (4.2.7).

On the other hand, we can establish a relation between the components of
Riemannian curvature tensors of the AH-manifold and its hypersurfaces. For this
purpose, we suppose that Ré’kz are the components of Riemannian curvature tensor
of AH-manifold (N**,J, h) and ﬁ;kl are the components of Riemannian curvature
tensor of its hypersurface (M?"~1 ¢ n, @, g). Then from the second group of Cartan’s

structure equations, we have
duwt i ko Loi ok L.
. ) 1~.
do’; = 0, \ 9;? + 572;-“ 08 NG,
where w;'- and 93- are Riemannian connection forms of N and M respectively. Where-

as, w* and 0% are the dual A-frames on AG—structure spaces of N and M respec-

tively. Moreover, from [13], we have
i v g i _ viopg. i _ i, koo i _ cviopk o
0 =Clul; W =Cloly 0 =Clwk Ol wi= Gk,

where C' = (C}) and C~' = (5’;) were defined in [13]. Then the substitution of the
above relations in the second group of Cartan’s structure equations, we conclude

the following theorem:

Theorem 4.2.4 ]fR;kl and ﬁﬁst are the components of Riemannian curvature ten-
sor of AH-manifold (N*",J,g) and its hypersurface (M**~1 ®, & n, g) respectively,

then they are related as follows:

R = Ci RY, C7 Ci CL.

J rst
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Chapter 5

The (Geometry of AC'R—Manifolds
of Class (9

This chapter is devoted to investigating the structure equations of the class C'j5 and

the curvature components of the aforementioned class on the AG—structure space.

5.1 The Structure Equations of the Class ('

In this section, we determine the Cartan’s structure equations for AC'R—manifolds
of class C5 on the AG—structure space using the same techniques of chapter 2.
Regarding Chinea and Gonzalez [34], we note that (M?"1 & n, ®, g) belongs to

the class (5 if it satisfies the following identity:
Vx(Q)Y, 2) = n(X){n(2)Ve(m)®Y —n(Y)Ve(n)22},

for all X,Y,Z € X(M), where Q(X,Y) = g(X, ®Y).
Regarding the citation [35], we have

VX<Q) (Y7 Z) = _g(vX ((I)>Y7 Z);
Vx(mY = —g(Vx(P)E, PY),

for all X|Y,Z € X(M). Then C}5 identity can be rewritten in the following form:

Vx(®)Y = —n(X){n(Y)2(Ve) + g(Ves, DY)} (5.1.1)

64
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If we replace X in the equation (5.1.1) by ®X or ®?X, we get
Vox(P)Y = Vezx(P)Y = 0. (5.1.2)
Moreover, if we put Y = ¢ in the equation (5.1.1), yield
Vb = n(X)Ve (5.1.3)

Theorem 5.1.1 The ACR—manifold (M1 &, n, ®, g) belongs to the class Cyo if

and only if the Kirichenko’s tensors which are mentioned in chapter 1, attain that
B=C=D=FE=F=0; G=V.

Proof: Regarding the equation (5.1.2), we have B = C = E = F = 0. While

according to the citation [100], we have
PoVx (D) =VxE VX eX(M).

So, we get G = V£ Since the equation (5.1.1) has the following form on the

AG —structure space:

O Y7 XF gy = Xy Y7 @) G e+ Quy G YT €Y
O Y X gy = e XMy Y7 @) G ey + Qy G YV 6 i)

%, = —mifn; O] G' +Qy; G' 5},

Then the last equation gives Q)SE,

that B* = B,, = 0, then D = 0. 0

o 0 and their conjugate are zero. These imply

Regarding Theorem 5.1.1, we conclude that the components of Kirichenko’s ten-
sors on the class (5 are zero except the components of the tensor G. So, ac-
cording to Theorems 1.4.5 and 5.1.1, we have that AC R—manifold of class C,
on AG—structure space achieve the following first collection of Cartan’s structure

equations:

dw® = —0 N Wb,
dw, = 0° A wy; (5.1.4)

dw=ChwAw’+ C® wA wp.
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Since 6 is the 1-form of the Levi-Civita (Rieman) connection for the AC R— manifold
of class (s, then regarding Corollary 1.3.1 and the fact that all components of the

tensors B,C, D, E, I are zero, we conclude that # satisfies the following:

fe = C%w; 62 =0. (5.1.5)

Now, if we are acting the operator d on the first part of equation (5.1.4), then we
obtain

AOY AW’ =0, (5.1.6)
where AOF = dby + 02 N 0;. Since AOj is 2-form, then we can write
AOF = AP 05 A O] + Apd 05 AW+ AR 05 Awy, + A 05 A w + Afly w0 A w?
+ AP 0 A wg + ALy WA W+ AR W A wg + AP we A w.
Substitute the above equation in equation (5.1.6), we have
Aggf = A [bleln] — Aggh = AZélo = bcd] A[bc] = A[bc](] = A§Cd = AZ“’O = 0.
Now, repeating the same argument to the second part of equation (5.1.4), we get
a a ald|h a a ad a acd ac]0
Abg}l:Abgh:Aécl | ]:AbgozAbcd:Al[m] :Abc(J:Al[) ]:Al[) P =0

So, we have

doy = —0% A 05 + AT W A wy,

where Az[id] Aed —

b = 0. Moreover, the exterior differentiation of the third part of

equation (5.1.4) leading to
dCy Aw AW 4+ Cy dw Aw® — Cp w A dw® +dCP Aw Awy 4+ C? dw Awy, — C® w A dw, = 0.
The above equation implies that

(dCy — Cy Qg)Aw/\wb+C'[b Cy WAW AW’ + (dC* +C? 05 Aw A w,

+CP Y WA w, Awy = 0.

Since Cp, Cq = %(Cb C, — C, Cy) = 0 and similarly C* C% = 0, then the above

equation reduces to

(dCy — Cq O Aw AW’ + (dC® +C* 05) Aw Aw, = 0. (5.1.7)
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Since the forms (dCj — Cy 6¢) and (dC® + C? 0Y) are 1-forms, then they can be

written in the following formulae:

dCb — Cd 9? = Olglh 93—|—de wd—FCgl wd+C’bo W,

dC +C* 0% = CY 0 + C* wy + CY Wt + O w,

then the substitution of the above formulae in equation (5.1.7) gives C4 = C4 =

Cpg =C b4 = 0. So, we can state the following theorem:

Theorem 5.1.2 The second family of Cartan’s structure equations of the class Co

on the AG—structure space are given by the following formulae:
1. dOf = —02 A 05 + AZ? we A wy;
2. dCy = Cy 0 + Cpg w? + C wy+ Cho w;
3. dC* = —C? 0%+ C* wy + Ch wi 4+ C™ w,

where A[b'zd} = A‘[Ib(i] = Cppq = cld =,

The above theorem agrees with Theorem 1.4.6, and we have Cyy = V. ,Cj,

Cl = VEdC’b, Cyo = VC, and so on.

Corollary 5.1.1 The AC R—manifold of class Cio is cosymplectic manifold if and
only if G = 0.

Proof: The allegation of this corollary is verified from equation (5.1.1). O

5.2 The Curvature Tensors on the Class (s

In this section, we determine the components of the Riemannian curvature tensor
and Ricci tensor for the AC R—manifold of class C15. Moreover, we investigate the
(k, u)-nullity distribution of the class Cis.

We begin this section with an example on AC'R—manifold of class C}5 of dimen-

sion 3.
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Example 5.2.1 Suppose that (M3, £,n, @, g) is AC R—manifold of dimension three,
such that

M ={(z,y,2) €R*: y # 0}

and suppose that {eg, e, ex} is a P-basis of the Lie algebra of smooth vector fields

X (M), such that

[60761] = —¢€yp, [60762] - [81762] - Oa
and
eo = &, (I)<€1) = €2, CD(€2) = —é€y,
where
ey = ey3 e] = 3 €y = 2
07" 9 1_8y’ 2T 02

Moreover, we define the Riemannian metric g and the 1-form 7 as follows:
9(67;,6]'):(57;]', iaj:071727 n(X):g(XaS)a XEX(M)7
where 0;; is the Kronecker delta. Then from the following Koszul’s formula:

QQ(VXYa Z) = X(9<Y7 Z)) + Y(Q(‘X’ Z)) - Z(g(X7 Y)) - g(‘X’ [Ya Z])
_g<Yv [XvZ]>+g(Z7 [XvY])v VX7KZEX(M)7

we note that
Veoeo = €1, veoel = —¢€y, V6062 = Oa

Vel €y — O, Vel €1 = O, V61€2 = O,
v€2€0 = 0, V62€1 = O, V6262 = 0.
Then (M3, ®,£,n,g) satisfies equation (5.1.1) and then it is 3-dimensional AC R—

manifold of class C}s.

Now, we can determine the components R;kl of Riemannian curvature tensor
on AC R—manifold (M?"*1 & n, @, g) of class Co over the AG—structure space by
using the following equations from Theorem 1.4.1; item (2):

1

7 % k

i koA
R w" AN,

where 4,5, k,l = 0,1,....2n. Since M?*"*! satisfies equation (5.1.5) and Theorem

5.1.2, then we can conclude the following theorem:
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Theorem 5.2.1 On AG-structure space, the components of Riemannian curvature

tensor R of the class Co are given as the following:
1. R} =Cp —C* Cy;

a __ (Yab _ a b.
2. Ry = C c* C;
a _ Aad
3. R = AP,
and the other components are zero or given by the properties of R or the conjugate

to the above components (i.e. Rl = R;kl)

Proof: If we take into account Theorem 1.4.1; item (2) and setting i = a, j = 0,

then we arrive to the following:

d

; 1
b + 05 N 09 + 05 A6p + 07 N0y = Ry w® Aw+ R waw+§Rgbdwaw

1
a b a
+ ROch w’ Awg + §ROBJ wp N Wy.
According to equation (5.1.5) and Lemma 1.2.1; item 3, we get

1
dC* Aw + C* dw + C* 0 Aw = Ry w” Aw + RY wp A w + 5 Ry wb A w?
1
+R8bcz wawd+§R8l;cz u}b/\u}d.

Then the items 1 and 2 of the present theorem are done by the substitution of
equation (5.1.4) and Theorem 5.1.2 in the above equality. Therefore, to carry out
item 3, we put ¢ = a, j = b in Theorem 1.4.1; item (2) and follows the same

technique given above. O

Lemma 5.2.1 In the AC R—manifold (M?*"*1 £ n, ®, g) of class C}s, the following
identity:
2dn(X,Y) = n(X)g(G,Y) =n(Y)g(G, X),

holds for all X,Y € X(M).

Proof: Using equation (5.1.3), Theorem 5.1.1 and the fact that

n(Vx&) = n(X)n(Ves) = n(X)n(G) = n(X)n o &(Ve(P)§) = 0.
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Also, from the citation [35], it follows that:

2dn(X,Y) = Vx(Q)(&, Y) = Vy (Q)(€, X);

—9(Vx(®)E, PY) + g(Vy ()€, X);
9(2(VxE), BY) — g(®(Vy¢), X);
9(Vx&Y) — g(Vy€, X);
n(X)g(G.Y) —n(Y)g(G, X).

O

Theorem 5.2.2 The ACR—manifold (M*""1,&,n,®, g) of class Cyy attains the fol-
lowing curvature identity:
R(X,Y)§ =3dn(X,Y)G = X(n(Y))G + Y (n(X))G +n(Y)VxG —n(X)VyG,
for all vector fields X,Y € X(M).
Proof: Using the equality dn(X,Y) = X(5(Y)) — Y (n(X)) — n([X,Y]), equation
(5.1.3) and Lemma 5.2.1, we obtain
R(X,Y){ = VxVy{ = VyVx{ — VixyiE;
= Vx(n(Y)G) = Vy(n(X)G) — n([X,Y])G;
= (Vx(mY)G +n(Y)VxG = (Vy(n)X)G = n(X)VyG —n([X,Y])G;
= 2dn(X,Y)G +n(Y)VxG — n(X)VyG = n([X,Y])G;
=3dn(X,Y)G+n(Y)VxG —n(X)VyG — X(n(Y))G+ Y (n(X))G.

O

Corollary 5.2.1 On the ACR—manifold (M*"",&,n,®, g) of class Cia, the follow-
ing curvature identities hold:

1. R(X,Y)(E=0,if X,Y € ker(n);

2. R(DX,BY)E = R(D2X, B2Y)E = R(OX, DY) = 0; VY X,V € X(M).

Proof: The outcomes are obvious from Lemma 5.2.1 and Theorem 5.2.2. O
Now, we are in position to calculate the components of Ricci tensor r of ACR—

manifold of class C' on AG—structure space.
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Theorem 5.2.3 On AG-—structure space, the components of Ricci tensor of ACR—

manifold of class Cio are given below.
1. Too = Q(Og — (e Ca);
2. Ta0 — 0,’
3. Tab = Cab - Oa Ob;
4. Tap — CZ? - C" Cb—i-Agg,
and the remaining components are conjugate to the above components or given by
the symmetric property.
Proof: Regarding Definition 1.4.3 and Theorem 5.2.1, we have the following:
Too = —ngozg;
= _Rgoo — Rioa — Roa;
= 0+ Ry + Riaos
= 2R8a0;
=2(Cy —C* C,).

So, we can follow the same above technique to proof the others items. O

Theorem 5.2.4 On AG—structure space, an AC R—manifold (M?*" ' & n,®, g) of
class Cyy is an n—Einstein manifold if and only if, M*" ! satisfies the following

conditions:
a+p=2C—-C"C,), Cup=0CuCy, ady=C—C"Cy+ AY.

Proof: According to Definition 1.4.4, we have that M?"*! is an n—Einstein manifold
if and only if its Ricci tensor r satisfies the following for all vector fields X, Y over
M:
r(X,Y) =ag(X,Y)+ 8 n(X) n(Y),
where «, 5 € C*°(M). On the AG—structure space, the above equation equivalent
to the following:
Tij = gig + B i 1.
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Making use of Definition 1.3.6, it follows that:
roo =a+ 0, rw=Tw=0, Ta=ady.
Regarding Theorem 5.2.3 and the last equations, we get the requirement. O

Corollary 5.2.2 If (M*"*1 ¢ n,®, g) is an n— Einstein manifold of class C1o with
Cp=C* Gy, then a+ =0 and o = n~ 1A%,

Proof: Using Theorem 5.2.4 and contracting the following conditions:
Cy=C"Cy, ady=C—C"Cp+ A%.

Subsequently, we get the desired. O
Now, we discuss the nullity conditions for AC'R—manifold of class C5. From

Definition 1.4.12, we have
R(ZW)Y =r{gW,Y)Z — g(Z, Y)W} + p{gW,Y)hZ — g(Z,Y)hW }.
Since R(X,Y, Z,W) = g(R(Z, W)Y, X), then we get
R(X,Y, Z,W) = x{g(X, Z)g(Y, W) — (X, W)g(Y, Z)}
+u{g(Y,W)g(X, hZ) — g(Y, Z)g(X, hW)}.

On AG—structure space, the above identity equivalent to the following:

Rijir = K(gik g1 — giu 9ix) + 1(git Gis Dy — Gik gis hi), (5.2.8)
where 2,7, k,l,s = 0,1, ..., 2n. Then we have the following:

Lemma 5.2.2 If (M?"*! £ n, @, g) belongs to the class C}y, then on AG— structure

1

space, the tensor h =

L£¢(P) has the following components forms:

v—1
h) = —TCa; hy = —v—-1C",
and the other components are identical to zero or the conjugate to the above com-

ponents.
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Proof: Regarding Definition 1.4.12, we have
1
hX) = §{V§(¢’)X — Vox{+ 2(Vx§} VX € X(M).

So, regarding equation (5.1.3) and Theorem 5.1.1, we can rewrite the above equation

as follow:

1
X)) = S{Ve(@)X +n(X)@(G)}; ¥ X € X(M).
On AG—structure space, the above equation has the following form:
T o i ik . .
hj = 5{(139‘,0 -n; 0, G b4,k =0,a,a.

Since the tensor G has the components C* and C,, then G¥ = 0 at & = 0. So,
regarding the components of G, Definition 1.3.6 and setting (7, j) = (0,a), (a,0) in

the above equation, we attain the requirements. O

Theorem 5.2.5 The ACR—manifold (M*""1,&,n,®,9) of class Cio has (k, u)-
nullity distribution if and only if, the following conditions hold:

1. Cf =0 Cy+ K 0%
2. C=Ce CY;
3. A =g 52 6.

Proof: Since R;‘kl = Ry, then according to equation (5.2.8) and Definition 1.3.6,

we get

Raowo = H(gab goo — Jao QOb) + M(goo Gas Iy, — gov Gas hS);
=K 0y +p hy.

So, regarding Theorem 5.2.1 and Lemma 5.2.2, we attain item 1. Therefore, we can

follow the same argument to prove the remaining items. O

Corollary 5.2.3 If (M*"*1 & n, @, g) is an AC R—manifold of class Cyy with (k, )-

nullity distribution, then Kk =0 orn = 1.
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Proof: From Theorem 5.1.2, we have Al[id] = Aﬁfﬁ} = 0, then making use of Theorem

5.2.5; item 3, we get

0=k 6£“ 53};

0 = {62 68 — 62 67} (5.2.9)

Then the contracting of equation (5.2.9) with respect to the indexes (a,c), we get
(n — 1)k = 0 and this implies that Kk =0 or n = 1.

Then we attain the claim of the corollary. O

Theorem 5.2.6 If (M?" ™! & n, @, g) is an ACR—manifold of class Cyy with n >
1 and it satisfies (k,pu)-nullity condition, then M has flat Riemannian curvature

tensor. That is

R(X,Y)Z=0; VX,Y,ZecX(M).

Proof: Suppose that X,Y,Z € X (M), then R(X,Y)Z = Rf]g X' Y7 7% ¢;, where
1,2,7,0 = 0,1, ..., 2n. Regarding Theorems 5.2.1, 5.2.5 and Corollary 5.2.3, we con-

clude that Rfﬂ = 0, and this leads to the result. O

Theorem 5.2.7 Suppose that M is ACR—manifold (M3,&,n,®,g) of class Chs.
Then M satisfies (k, p)-nullity condition if and only if M is an Einstein manifold

with a = 2k.

Proof: According to Theorems 5.2.3 and 5.2.5, we get the desired result. O



LN LN LN LN LN LN LN LN LN LN LN N LN LN LN LN LN LN LN LN LN LN LN LN N LN LN SN LN LN

AN AN ANTANTONIAONTIANTANTAONTONTANT AN ANT AN

NN

g p.
D
O
-
5
—
5
e
=

NN

AN ON OO AONON OO ONTONONNON OO OTONTONTONONONTONONONTONONAOATONTAS



References

1]

8]

H. M. Abood and F. H. J. Al-Hussaini, Locally conformal almost cosymplectic
manifold of ®—holomorphic sectional conharmonic curvature tensor, European

J. Pure Appl. Math. 11 (2018), no. 3, 671-681.

H. M. Abood and F. H. Al-Hussaini, Constant curvature of a locally confor-
mal almost cosymplectic manifold, AIP Conference Proceedings, 2086 (2019),
030003; https://doi.org/10.1063/1.5095088.

H. M. Abood and F. H. J. Al-Hussaini, On the conharmonic curvature tensor
of a locally conformal almost cosymplectic manifold, Commun. Korean Math.

Soc. 35 (2020), no. 1, 269-278.

H. M. Abood and N. J. Mohammed, Projectively vanishing nearly cosymplec-
tic manifold, Commun. Math. Appl. 9 (2018), no. 2, 207-217.

P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms,

Israel J. Math. 141 (2004), 157-183.

P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms,

Differential Geom. Appl. 26 (2008), 656-666.

P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian space forms,

Taiwanese J. Math. 13 (2009), no. 3, 923-941.

P. Alegre, L. M. Fernandez and A. Prieto-Martin, A new class of metric
f—manifolds, arXiv:1612.07063v2 [math.DG] 2 Aug 2017.

75



References 76

[9]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. B. Banaru, On almost contact metric hypersurfaces with type number 1 in
6-dimensional Kéhler submanifolds of the Cayley algebra, Russian Math. (Iz.
VUZ) 58 (2014), no. 10, 10-14.

M. B. Banaru, Geometry of 6-dimensional Hermitian manifolds of the octave

algebra, J. Math. Sci. 207 (2015), no. 3, 354-388.

M. B. Banaru, On almost contact metric 2-hypersurfaces in Kahlerian mani-

folds, Bull. Transilv. Univ. Bragov, Series III 9(58) (2016), no. 1, 1-10.

M. B. Banaru, On almost contact metric hypersurfaces with type number 1
or 0 in 6-dimensional Hermitian submanifolds of the Cayley algebra, Siberian

Math. J. 58 (2017), no. 4, 559-563.

M. B. Banaru and V. F. Kirichenko, Almost contact metric structures on the
hypersurface of almost Hermitian manifolds, J. Math. Sci. 207 (2015), no. 4,
513-537.

R. L. Bishop and S. I. Goldberg, Tensor analysis on manifolds, Dover Publi-
cations, New York, 1980.

R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer.
Math. Soc. 145 (1969), 1-49.

D. E. Blair, The theory of quasi-Saskian structures, J. Differential Geom. 1
(1967), 331-345.

D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific

J. Math. 39 (1971), no. 2, 285-292.

D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in

Math. Vol. 509, Springer Verlag, 1976.

D. E. Blair, Riemannian geometry of contact and symplectic manifolds,

Progress in Math. Vol. 203, Birkhauser Boston, 2002.

D. E. Blair, On the sign of the curvature of a contact metric manifold, Math.

7 (2019), no. 10, 892.



References 77

[21]

[22]

[23]

[24]

[25]

D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds

satisfying a nullity condition, Israel J. Math. 91 (1995), 189-214.

D. E. Blair and G. D. Ludden, Hypersurfaces in almost contact manifolds,
To6hoku Math. J. 21 (1969), 354-362.

D. E. Blair and D. K. Showers, Almost contact manifolds with Killing structure
tensors, II, J. Differential Geom. 9 (1974), 577-582.

D. E. Blair, D. K. Showers and K. Yano, Nearly Sasakian structures, Kodai
Math. Sem. Rep. 27 (1976), 175-180.

D. E. Blair and K. Yano, Affine almost contact manifolds and f—manifolds
with affine Killing structure tensors, Kodai Math. Sem. Rep. 23 (1971), 473-
479.

E. Boeckx, A full classification of contact metric (k, ut)-spaces, Illinois J. Math.
44 (2000), no. 1, 212-219.

W. M. Boothby, An introduction to differentiable manifolds and Riemannian
geometry, Academic Press, New York, 1975.

W. M. Boothby and H. C. Wang, On contact manifolds, Ann. Math. 68 (1958),
no. 3, 721-734.

F. M. Cabrera, On the classification of almost contact metric manifolds, Dif-

ferential Geom. Appl. 64 (2019), 13-28.
B.-Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.

B.-Y. Chen, Differential geometry of warped product manifolds and subman-

ifolds, World Scientific, New Jersey, 2017.

S.-S. Chern, Pseudo-groupes continus infinis, in: Colloq. Internat. Centre Nat.

Rech. Scient. 52, Strasbourg, 1953, Paris (1953), pp. 119-136.

D. Chinea, Harmonicity on maps between almost contact metric manifolds,

Acta Math. Hungar. 126 (2010), no. 4, 352-365.



References 78

[34]

[35]

[36]

[37]

[38]

[42]

[43]

[44]

D. Chinea and C. Gonzalez, A classification of almost contact metric mani-

folds, Annali di Matematica Pura ed Applicata 156 (1990), no. 1, 15-36.

D. Chinea, J. C. Marrero and J. Rocha, Almost contact submersions with
total space a locally conformal cosymplectic manifold, Annales de la Faculté

des sciences de Toulouse: Mathématiques, Série 6, 4 (1995), no. 3, 473-517.

U. C. De and S. Ghosh, E—Bochner curvature tensor on N (k)—contact metric
manifolds, Hacettepe J. Math. Stat. 43 (2014), no. 3, 365-374.

U. C. De and P. Majhi, On invariant submanifolds of Kenmotsu manifolds, J.

Geom. 106 (2015), no. 1, 109-122.

U. C. De and Y. J. Suh, On weakly semiconformally symmetric manifolds,

Acta Math. Hungar. 157 (2019), no. 2, 503-521.

R. Deszcz, M. Glogowska and G. Zafindratafa, Hypersurfaces in space form-
s satisfying some generalized Einstein metric condition, arXiv:1810.01402v2

[math.DG] 2 Mar 2019.

G. Dileo, On the geometry of almost contact metric manifolds of Kenmotsu

type, Differential Geom. Appl. 29 (2011), S58-S64.

G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry,

Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 343-354.

G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds with a condition of

n-parallelism, Differential Geom. Appl. 27 (2009), 671-679.

G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distri-
butions, J. Geom. 93 (2009), 46-61.

H. Endo, On the curvature tensor of nearly cosymplectic manifolds of constant
d—sectional curvature, An. Stiint. Univ. Al I. Cuza lagi. Mat. (N.S.) 51
(2005), no. 2, 439-454.



References 79

[45]

[46]

[47]

[48]

[49]

[55]

[56]

M. Falcitelli, A class of almost contact metric manifolds with pointwise con-
stant ¢-sectional curvature, Math. Balkanica (N.S.) 22 (2008), no. 1-2, 133-
153.

M. Falcitelli, A class of almost contact metric manifolds and twisted products,

Balkan J. Geom. Appl. 17 (2012), no. 1, 17-29.

M. Falcitelli, S. Tanus and A. M. Pastore, Riemannian submersions and related

topics, World Scientific, Singapore, 2004.

M. Falcitelli and A. M. Pastore, f—Structures of Kenmotsu type, Mediterr. J.
Math. 3 (2006), no. 3-4, 549-564.

M. Falcitelli and A. M. Pastore, Almost Kenmotsu f—manifolds, Balkan J.
Geom. Appl. 12 (2007), no. 1, 32-43.

A. Ghosh, Quasi-Einstein contact metric manifolds, Glasgow Math. J. 57
(2015), 569-577.

S. I. Goldberg, Totally geodesic hypersufaces of Kaehler manifolds, Pacific J.
Math. 27 (1968), no. 2, 275-281.

S. I. Goldberg and K. Yano, Integrability of almost cosymplectic structures,
Pacific J. Math. 31 (1969), no. 2, 373-382.

A. Gray, Nearly Kéhler manifolds, J. Differential Geom. 4 (1970), 283-3009.

A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds,

Téhoku Math. J. 28 (1976), 601-612.

J. W. Gray, Some global properties of contact structures, Ann. Math. 69
(1959), no. 2, 421-450.

A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian mani-
folds and their linear invariants, Annali di Matematica Pura ed Applicata 123

(1980), no. 1, 35-58.



References 80

[57]

[58]

[66]

[67]

S. K. Hui, T. Pal and J. Roy, Another class of warped product skew CR-
submanifolds of Kenmotsu manifolds, arXiv:1806.09800v1 [math.DG] 26 Jun
2018.

L. A. Ignatochkina, Generalization for transformations of 7' —bundle which
induced by conformal transformations of their base, Sb. Math. 202 (2011),
no. 5, 665-682.

L. A. Ignatochkina, Induced transformations for almost Hermitian structure

of linear extensions, Chebyshevskii Sb. 18 (2017), no. 2, 144-153.

L. A. Ignatochkina and P. B. Morozov, The transformations induced by con-

formal transformations on 7"-bundle, J. Basrah Researches ((Sciences)) 37

(2011), no. 4C, 8-15.

D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors,

Kodai Math. J. 4 (1981), 1-27.

J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math.
Soc. 42 (2005), no. 3, 435-445.

K. Kenmotsu, A class of almost contact Riemannian manifolds, Téhoku Math.

J. 24 (1972), 93-103.

S. V. Kharitonova, Almost C'(A)—manifolds, J. Math. Sciences 177 (2011),
no. 5, TA2-747.

J. H. Kim, J. H. Park and K. Sekigawa, A generalization of contact metric

manifolds, Balkan J. Geom. Appl. 19 (2014), no. 2, 94-105.

V. F. Kirichenko, Geometry of nearly Sasaki manifolds, Dokl. Akad. Nauk
SSSR 269 (1983), no. 1, 24-29 (in Russian).

V. F. Kirichenko, Almost cosymplectic manifolds satisfying the axiom of
®—holomorphic planes, Dokl. Akad. Nauk SSSR 273 (1983), no. 2, 280-284

(in Russian).



References 81

[68]

[69]

[71]

[72]

V. F. Kirichenko, Axiom of ®—holomorphic planes in contact metric geometry,

Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), no. 4, 711-734 (in Russian).

V. F. Kirichenko, Methods of generalized Hermitian geometry in the theory of
almost-contact manifolds, Itogi Nauk i Tekhniki, Seriya Problemy Geometrii
18 (1986), 25-71, (English translation: Plenum Publishing Corporation (1988),
1885-1919).

V. F. Kirichenko, On the geometry of Kenmotsu manifolds, Dokl. Akad. Nauk
380 (2001), no. 5, 585-587 (in Russian).

V. F. Kirichenko, Differential-geometric structures on manifolds, MSPU,

Moscow, 2003 (in Russian).

V. F. Kirichenko, Differential-geometric structures on manifolds, Second edi-

tion, Pechatnyy dom, Odessa, 2013 (in Russian).

V. F. Kirichenko and N. S. Baklashova, The geometry of contact Lee forms
and a contact analog of Ikutas theorem, Math. Notes 82 (2007), no. 3, 309-320.

V. F. Kirichenko and N. N. Dondukova, Contactly geodesic transformations
of almost contact metric structures, Math. Notes 80 (2006), no. 2, 204-213.

V. F. Kirichenko and S. V. Kharitonova, On the geometry of normal locally
conformal almost cosymplectic manifolds, Math. Notes 91 (2012), no. 1, 34-45.

V. F. Kirichenko and E. V. Kusova, On geometry of weakly cosymplectic
manifolds, J. Math. Sciences 177 (2011), no. 5, 668-674.

V. F. Kirichenko and E. A. Polkina, Geodesic rigidity of certain classes of
almost contact metric manifolds, Russian Math. (Iz. VUZ) 51 (2007), no. 9,
37-44.

V. F. Kirichenko and E. A. Pol’kina, A criterion for the concircular mobility

of quasi-Sasakian manifolds, Math. Notes 86 (2009), no. 3, 349-356.



References 82

[79]

[80]

[81]

[82]

[83]

V. F. Kirichenko and E. A. Pol’kina, Contact Lie form and concircular geom-
etry of locally conformally quasi-Sasakian manifolds, Math. Notes 99 (2016),
no. 1, 52-62.

V. F. Kirichenko and I. V. Uskorev, Invariants of conformal transformations

of almost contact metric structures, Math. Notes 84 (2008), no. 6, 783-794.

J. M. Lee, Riemannian manifolds: An introduction to curvature, Springer-

Verlag, New York, 1997.

J. M. Lee, Introduction to smooth manifolds, Second edition, Springer Sci-

ence+Business Media, New York, 2013.

E. Loiudice, A dimensional restriction for a class of contact manifolds, Demon-

str. Math. 50 (2017), 231-238.

K. Mandal and S. Makhal, x—Ricci solitons on three-dimensional normal al-
most contact metric manifolds, Lobachevskii J. Math. 40 (2019), no. 2, 189-
194.

M. Markellos and C. Tsichlias, Contact metric structures on S*, Kodai Math.
J. 36 (2013), no. 1, 154-166.

N. J. Mohammed and H. M. Abood, Generalized Projective curvature tensor
of nearly cosymplectic manifold, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math.
Stat. 69 (2020), no. 1, 183-192.

A. D. Nicola, G. Dileo and I. Yudin, On nearly Sasakian and nearly cosym-
plectic manifolds, arXiv:1603.09209v2 [math.DG] 26 May 2017.

A. V. Nikiforova, The invariants of generalized f—transformations for almost

contact metric structures, Chebyshevskii Sbh. 18 (2017), no. 2, 173-182.

A. V. Nikiforova and L. A. Ignatochkina, The transformations induced on hy-
persurfaces of almost Hermitian manifolds, J. Basrah Researches ((Sciences))

37 (2011), no. 4C, 1-7.



References 83

[90]

[91]

[92]

93]

[94]

[100]

[101]

Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2,
239-250.

7. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math.
57 (1989), no. 1, 73-87.

J. A. Oubina, New classes of almost contact metric structures, Publicationes

Mathematicae Debrecen 32 (1985), no. 3-4, 187-193.

D. Perrone, Minimal Reeb vector fields on almost cosymplectic manifolds,

Kodai Math. J. 36 (2013), no. 2, 258-274.

I. A. Petrov, The structure of almost Hermitian structures of total space of

principal fiber 7' —bundle with flat connection over some classes of almost

contact metric manifolds, Chebyshevskii Sb. 18 (2017), no. 2, 183-194.

G. Pitig, Geometry of Kenmotsu manifolds, Editura Universitatii Transilvania,

Brasov, 2007.

E. A. Polkina, Curvature identities for almost contact metric manifolds, Rus-

sian Math. (Iz. VUZ) 51 (2007), no. 7, 54-57.

N. A. Rehman, Harmonic maps on Kenmotsu manifolds, An. St. Univ. Ovidius

Constanta 21 (2013), no. 3, 197-208.

A. R. Rustanov, Geometry of quasi-Sasakian manifolds, Ph. D. Thesis, MSPU,
Moscow, 1994 (in Russian).

A. R. Rustanov, O. N. Kazakova and S. V. Kharitonova, Contact analogs
of Grays identity for NCjy—manifolds, Sib. Elektron. Mat. Izv. 15 (2018),
823-828 (in Russian).

A. R. Rustanov, T. L. Melekhina and A. I. Yudin, Geometry of the Nijen-
huis tensor of SPC's-manifolds, Izvestiya Vuzov. Severo-Kavkazskii Region.

Natural Science. (2019), no. 2, 15-19 (in Russian).

S. Sasaki, Almost contact manifolds, Lect. Notes, v.1 (1965), v.2 (1967).



References 84

102]

103]

104]

[105]

[106]

107]

108

109]

[110]

[111]

[112]

A. A. Shaikh and H. Kundu, On equivalency of various geometric structures,

J. Geom. 105 (2014), no. 1, 139-165.

B. Shanmukha and Venkatesha, Projective curvature tensor on generalized

(k; )—space forms, Italian J. Pure Appl. Math. 42 (2019), 840-850.

A. N. Siddiqui, M. H. Shahid and J. W. Lee, Geometric inequalities for warped
product bi-slant submanifolds with a warping function, J. Inequal. Appl. 265
(2018), 1-15.

L. Stepanova and M. B. Banaru, On hypersurfaces of quasi-Kéhlerian mani-

folds, An. Stiint. Univ. AL I. Cuza lasi. Mat. (N.S.) 47 (2001), no. 1, 165-170.

L. V. Stepanova, M. B. Banaru and G. A. Banaru, On geometry of QS-
hypersurfaces of Kihlerian manifolds, Sib. Elektron. Mat. Izv. 15 (2018), 815-
822 (in Russian).

S. Tanno, Sasakian manifolds with constant ®-holomorphic sectional curva-

ture, Tohoku Math. J. 21 (1969), no. 3, 501-507.

L. D. Terlizzi and A. M. Pastore, Some results on —Manifolds, Balkan J.
Geom. Appl. 7 (2002), no. 1, 43-62.

T. Tshikuna-Matamba, Nouvelles classes de variétés de Kenmotsu, An. Stiint.

Univ. Al I. Cuza lagi. Mat. (N.S.) 38 (1992), no. 2, 167-175.

S. Uddin, M. F. Naghi and F. R. Al-Solamy, Another class of warped product
submanifolds of Kenmotsu manifolds, RACSAM 112 (2018), no. 4, 1141-1155.

S. V. Umnova, Geometry of Kenmotsu manifolds and their generalizations,

Ph. D. thesis, MSPU, Moscow, 2002 (in Russian).

I. Vaisman, Conformal change of almost contact metric structures, in: Proc.
Conference on Differential Geometry, Haifa 1979, Lecture Notes in Math. 792,
pp- 435-443, Springer, 1980.



References 85

[113]

[114]

115)

[116]

117]

[118]

[119]

L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curva-
ture tensor, Rendiconti del Seminario Matematico Universita e Politecnico di

Torino 34 (1975-76), 487-498.

V. Venkatesha, H. A. Kumara and D. M. Naik, On a class of generalized
d—recurrent Sasakian manifold, J. Egyptian Math. Soc. 27 (2019), no. 1,
1-14.

E. S. Volkova, Curvature identities for normal manifolds of Killing type, Math.
Notes 62 (1997), no. 3, 296-305.

E. S. Volkova, The axiom of ®-holomorphic planes for normal Killing type
manifolds, Math. Notes 71 (2002), no. 3, 330-338.

Y. Wang, Conformally flat C R-integrable almost Kenmotsu manifolds, Bull.
Math. Soc. Sci. Math. Roumanie 59 (107) (2016), no. 4, 375-387.

A. Yildiz, U. C. De, A classification of (k, ut)-contact metric manifolds, Com-
mun. Korean Math. Soc. 27 (2012), no. 2, 327-339.

F. O. Zengin and E. Bektas, Almost pseudo Ricci symmetric manifold admit-
ting W5— Ricci tensor, Balkan J. Geom. Appl. 24 (2019), no. 2, 90-99.



[ N LN NN IN LN NN LN N LN LN LN NN LN NN NN LN NN LN LN LN NN NN

)

S5

e

N LN LN LN LN LN,

AN

N

e

Submitted
Papers

NN\

Published and

N
4
4
)
Vil
N
>
N
/i
>
<
>
/J_
/
N
Vi
N
/
N
7
S
7
U/[,
/|
N
%
N
%
N
>
N
)
<
%
Vi

AN AN AT AT AT N AT NS AT 0 AN AN AN AT AN AN AN N AN AN AN AT AN 0T AT LN LT AT A




List of Published and Submitted
Papers

[1 ] H. M. Abood and M. Y. Abass, A study of new class of almost contact metric
manifolds of Kenmotsu type, Accepted in the Tamkang Journal of Mathemat-
ics 2020.

[2 ] H. M. Abood and M. Y. Abass, On the geometry of almost contact metric

manifolds of class ('} with nullity condition, Submitted.

[3 ] M. Y. Abass and H. M. Abood, ®—Holomorphic sectional curvature and gen-
eralized Sasakian space forms for a class of Kenmotsu type, Journal of Basrah

Researches ((Sciences)) 45 (2019), no. 2, 108-117.

[4 ] M. Y. Abass and H. M. Abood, Generalized curvature tensor and the hypersur-

faces of the Hermitian manifold for the class of Kenmotsu type, Submitted.

[5 ] M. Y. Abass and H. M. Abood, On generalized ®—recurrent manifolds of Ken-
motsu type, Submitted.

86



1 paliival)

do g il Uiiiaal 5 A 85 4 yie Aliale Gl ghaie (e Bapan 408 U e a5l o2 (B
Gl (Siny guri i€ (g shaie b Lid] WSing S julii AV 3 paal) dgiall A8IS4)
sshie G0 il gan ) Jai ) (Sar saaall Al AT b ) 8 5S3d)
Uiy said gaisS (g shaia aa (oilaiy 3 a3 53 (5 shatall b Lia o (s )A) cilid g gudi saiS
(lly I ALYl e gaisS (g shaia 5% Y Cuny 5 aad) (63 sl (g shaiall Yl
a8 dall () ey Olag) eliad) el GUS jay S 5l (U IS G alee Uil
S shie (5S35 SAll Ll Jrad 4 sllaall o i) apaas o3 c@lld N Caal Ayl
il 5a3S & 53 (e AL W i o Al S Adll A5al) Upasd aal il

oS g 5l & 53 (pe A5l YUie Uit Aa 5 plaV) o2 6 el e § e

Al il G- Al clmd e Aaal s (3 e sl (g shial o ke
- rhie lindl i L (Sl B ) sSAal) Al 4 plhaall byl (e Jsanll
il T o 585 (5 e Jlsal) il shaia (e Bayna U Lt Tubals s ) ga sl o8
Ui Jaad 3 Jag ) Uaiiin) colld ) dilal Ui ae agille Las gy Lgiliadl

il 5 shaia s 3aaal) il 5 Sluli slind - 3lai asen (38

Cirgl) | s saiS g 55 e Slyshid @ — ) S arend Allad) da 5 HlY] G o

) ALYl | e ) eliaiV) el el A LS je 2 s A pall 038 (e

Lasasd ) Ulaa Tokliie guii 5a3S g 53 (e (g shaie Jand () Jag ) gliinl o el

blae LU i salS & 58 e g shaiall ol Ao laW) Catiinl Ll @ — 1, S

Al ol @lly ) CGacal e GeSall s canlie byl cnd P — ) jSie anend ()5S
Ulne Sl pusi 5aiS ¢ 3 (e (5 shaiall 5 (i) il shaia G A8l Canviial

OS5 SAal) A%al) Gl Lisivia ?L’J‘ cliniy) putt LS e Laas 488l adl

Ghosasion = D abiall cUaiV) i arerd asgie Lt dlld N d8LaYl daulic



o Al T Tl oS3 o sgall Jrny (531 ASI g (g )5 puial) Ja il Lany o3 gy
Aadl) ae 4BNe Uil 2y i) 4ad aexall — P o sehe a2 Liay) | gusi sai€ ¢ 5
63 sohidl aseie lase el ol lisin) —p (gshias suisaiS g g (1
Ui il 5 5SAal) HSEYL aidle Wia g 55 Juadl o Ayl Cum ol oliasY|
Al LG a3y e sed) (s shaiall (B 5h mlauS B3 sa ge sudisalS ¢ g5 (e Al (L

A A8 8 = shadl 5 o 8 (e sl (g shaiall dile HlI e liadW) julial SIS el G

Crp ) e o 8 (5 yiall Jlai¥) (5 shaie dwria Liay) Cadl da 5 510 o2
slmd o i )l g s liaiV) (g et LS ya gy A€ il ¥ aleall a3 o3 (i (S
ALY 2adl) odgd olina¥) Culitaia (gany (X da gyl Liay) Aoyl jiall G — 4l
by il cantinl g €, Al (), pu) — p2adl m)sf CulBU As g kY sda ey )
Dhme 33 (S (1 p) — padl s clliad (Sl ) Saal) 4l 485 4 5 pual)
3 2l (63 Gy Al (e g shasall Jla eliy 31 pa) cpliind —



2B EIRTYREN
el )y Mol aulal 515
b_payl) daala
4 yuall  glall 4y 1) 4408
il ) anid

eUiad) puldi lamy dudia

Fasie da g b
B sl dzala — 43 puall o glall 4y 1) A4S (ulana )
Adeald o) ) 983 da 3 Ja cilathiia (a8 (A
cludly ) o gle 2

J& (e






