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Abstract.In this study, the extended element free Galerkin method (XEFG) is used for crack analysis 
an edge crack parallel to the material variation in a rectangular functionally graded material (FGM) 
plate under traction loading. For the first time, the effective parameters of XEFGM are employed such 
as the sub-triangulation term for numerical integration, suitable influence domain, and enrichment 
functions for discontinues locations in the fracture analysis of different crack positions of an edge 
cracked FGM plate. In addition, the incompatible formulation is adopted to extract the stress intensity 
factors (SIFs). Good data and results are observed about the relationship between the crack lengths and 
SIFs with good verification during changing XEFG parameters. There is good agreement and stability 
in the results of SIFs through the sizes of J-integral rJ equal to 0.4 -0.8. In addition, the acceptance 
results for the size of the support domain are bound between dmax=1.52 to 2. 
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NOMENCLATURE 
 

Symbol Description Unit 

E Modulus of elasticity (Young's Modulus)   MPa 

G Shear modulus MPa 

M  Interaction integral  N/m 
N number of nodes  ……. 
a The length of a crack  mm 
b Body force N 

d�� variation of the support domain m 
n Number of nodes in the influence of domain ……. 
n� The unit outward normal to contour  ……. 
r Radial distance from a crack tip m 
rJ Size of J-Inegral m 
t̅ traction force  N 
t Time s 

u� The unknown trial approximation of displacement  m 
u� The prescribed displacements on the boundary  m 

w  The weight function of an influence node  ……. 
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Ω The global domain of the problem ……. 
Γ Boundary of the global domain ……. 
δ Kronecker delta ……. 
ϕ Shape function ……. 
ν Poisson’s ratio  ……. 
κ Kolosov constant  ……. 
ρ Mass density kg m⁄  
λ Lagrange multiplier  ……. 

 
 
1. Introduction 

In the recent decades, there are many applications for functionally graded materials (FGMs) in the 
engineering fields, involving military usages, space vehicle, electrical insulator, bio-medical, etc. According 
to the literature survey, the fracture analysis of FGMs was studied by many of researchers using the 
conventional and advanced numerical methods as the finite element method (FEM) [1-4], boundary element 
method [5], meshfree methods [6-10], and extended finite element method (XFEM) [11-15]. Most of the 
mentioned references focused on the employed of the numerical methods to extract the stress intensity factors 
at fixed crack tip position. The study of the effect of the crack length or crack size in certain materials not 
FGM was done by some of researchers as depicted in [16-19]. These studies were important to know the 
strength ranges of the related materials against the fracture, and to understand the critical fractures parameters 
and terms for the whole domain. However, the effect of the crack length on the fracture terms such as SIFs is 
unadulterated interest in this research. In the particular, lately, Khazal et al. [6] adopted an extended element 
free Galerkin method (XEFGM) for extract SIFs in one crack position in a rectangular FGM plate, therefore 
this paper will extend the investigation of the effect of the discontinuity length on the fracture parameters by 
using XEFGM. In addition, verification is employed between the results obtained by the present study and 
available references solutions in the literature. Hence, this study will report the effect of crack lengths on the 
fracture parameters of a functionally graded material numerically. The incompatible interaction integral 
method will use to determine the fracture parameters as SIFs. In addition, the effective parameters of XEFGM 
will employ such as the sub-triangulation term for numerical integration, suitable influence domain, and 
enrichment functions for discontinues locations in the fracture analysis of different crack positions of an edge 
cracked FGM plate. 
 

2. Displacement and Stress Field Equations 
 

Referring to Hook's law, the strain can be written as follow: 
 

� = �� = �
��� ��� ���
��� ��� ���
��� ��� ���

� �
���
���
���

�                                                                                                     (1) 

 
where C is the compliance matrix.  In FGM as illustrated in Figure 1, the material traits such as the Young 
modules Y and the Poisson’s ratio ν, change referring to: 

 
� = �(��, ��) = �(�),� = �(��, ��) = �(�)                                                                                  (2)                                   
                                                                                                                    
 

In addition, the singular stress field (σ) and displacement field in the terms of the standard angular 
functions at the crack location can be written as [20]:  
 
��� = �

√���
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""($)]                                                                                                    (3) 
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3. XEFGM Procedure 
 

Figure 2 depicts 2D problem of fracture problem that includes a crack DE. For this issue, the PD 
equation can be defined in the form of equilibrium equation as [6]: 
 
FHI + J = 0    OQ RSUVWXZ\ \Z^OQ _                                                                                              (10) 
 
 

where   L is the differential operator written as 
 

` = b

c
ce 0
0 c

ch
c

ch
c

ce

i                                                                                                                                   (11) 

 
and  I, J and j are the stress, body force, and displacement vectors, respectively. EFGM adopts moving least 
squares (MLS) technique [21] that put the shape functions to be worked totaly in the terms of distributed nodes. 
The weak form of the governing equation can be defined as[6]: 
 
∫ (Foj)H(pFj)\_ 

q − ∫ o 
q jHJ\_ − ∫ o 

vx
jHy̅\Γ − ∫ o 

vz
|H(~ − ~�)\Γ − ∫ o 

vz
jH�\Γ = 0       (12) 

 
 
where | represents the Lagrange multiplier variable. 
 
The displacement form that extract from the governing equation by applying XEFGM can be written as: 

Figure 1: A cracked FGM domain. 
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���                                                                           (13) 

 
where  J� represents extra DOFs that add crack tips, �� is the nodes which the discontinuity in its support 
domain, and ��(�) are the enrichment functions [6, 22]:  
 
�(S, $) = �√S �U� ��

�
� , √S �OQ ��

�
� , √S �OQ ��

�
� �OQ($) , √S �U� ��

�
� �OQ($)�                         

(14) 
 
Discretization of Eq. (12) defines: 
 

�
� �
�� �� ��

|� = ��
��                                                                                                                         (15) 

 
where � represents the global stiffness matrix, � defines as  the global force vector, � and  � are 

the Lagrange related terms for enforcement of the boundary conditions by the Lagrange multipliers | [6]. In 
a particular, suitable election for the influence domain near a crack tip is adopted which is depended on the 
similar method used in FGMs crack examples by [6,23].  

For the numerical integrations of the relevant equations, Gauss quadrature method is applied thru 
the background cell of XEFGM. The background cell that existed with a crack is divided at both sides into 
sub-triangles that edges are used to the crack surfaces. Gauss quadrature that uses a background structure and 
uniform nodal distribution are used in the modeling of the numerical examples. More details for the 
representation of the Gauss quadrature method and sub-triangles technique can be viewed in [23].  

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.  Calculation of SIFs by the interaction integral method 
 

The incompatibility formulation is followed for the auxiliary fields of cracked body [2,6]: 
��  = ¡� �¢(�)��¢  ,      ��  ≠ �

�
>~�,  + ~ ,�A  , �� ,  = 0                                                                         (16) 

 
The equivalent domain equation of the J-integral of Γ around the crack tip represents as (Figure 3): 

 
¤ = ∫ >�� ~�,� − ¥o� A¦,  \§ +¨ ∫ >�� ~�,� − ¥o� A

, 
¦\§¨                                                              (17) 

 
            where w represents the strain energy density: 

X2 

X

xx

tΓ

Γ
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Figure 2: A 2D fractured domain. 
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1
2

�� ��                                                                                                                                                       (18) 
 
The incompatibility formulation is implemented to find the mode I and II SIFs : 

 

© = ª «�� ~�,�
¬� + �� 

¬�~�,� −
1
2

(���~��
¬� + ���

¬�~�)o� ® ¦,  \§
¨

+ ª ¯��  ��� �¢
��° − �� �¢(�)� ��¢,�

¬�± ¦\§                                                                 (19)
¨

 

 
Therefore, J-integral can be written in terms of  mode I and mode II SIFs: 
 
¤¢²³¬¢ = (!"

� + !""
�)/���°                                                                                                         (20) 
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¬�A

�
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�
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          = ¤¢²³¬¢ + ¤¢²³¬¢
¬� + ©¢²³¬¢                                                                                                            (21) 

 
 
Where Jlocal drived by Eq. (20), and  ¤¢²³¬¢

¬�    represent by  
 
¤¢²³¬¢

¬� = [(!"
¬�)� + (!""

¬�)�] ���°
 ´                                                                                                    (22) 

 
and Mlocal is  
 
©¢²³¬¢ = 2(!"!"

¬� + !""!""
¬�)  ���°

 ⁄                                                                                              (23) 
 
The mode I and mode II SIFs are extracted as gives: 
 
!" = ©¢²³¬¢

(�) ���°
  2 ,         (!"

¬� = 1.0 , !""
¬� = 0.0)⁄ ,                            

 
!"" = ©¢²³¬¢

(�) ���°
  2 ,         (!"

¬� = 0.0 , !""
¬� = 1.0)⁄ .                                                                 (24) 

 
 

 
 

 
 
 
 

Figure 3: The model of contour at the tip of discontinuity . 
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5. Numerical case study 
An edge crack FGM plate under traction load is adopted as shown in Figure 4. The change of the 

material properties is in the x1- direction according to the following equation: 
�(�1) = �U X� ��, · = �

¸
ln �º»

º²
�                                                                                                    (25) 

 

 
  
 

Where Y0=10000 MPa and Yw=50000 MPa are the Young’s modulus at the left and right side of 
the plate, respectively. Circular support domain in term of cubic spline weight function with linear basis 
function are employed. Uniform distribution nodes, and background cells with Gauss quadrature term in each 
cell are adopted. Total number of nodes and background cells are 1624 and 1479 respectively. Total enrichment 
nodes in the crack tip are 64 node (16×4). The integration of the numerical equation is done by a 2×2 Gauss 
quadrature rule in all cell except at the crack  sub-triangle cells is adopted by 13 Gauss nodes. Figures 5 and 6 
represent the geometry and numerical model of XEFGM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  (b)                          (c)                                  (d) 
Figure 5: (a) nodal distribution, (b) Gauss points, (c) background cell, and (d) enrichment nodes  of the 

numerical model of  an edge crack FGM plate (clack length a=5 mm). 
 
 
 
 

 
 
 

 
 
 
 
 

Figure 4: An edge crack FGM plate (b= 10 mm, 2h = 30 mm, ν=0.25). 
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(a)                                                   (b) 

 
 
 
 
 
 
 
  

(c)                                                     (d)                                 
 

Figure 6. (a) 1 Gauss point for each proposed sub-triangle, (b) 13 Gauss points for each proposed sub-
triangle, (c) 7 Gauss points for each proposed sub-triangle, and (d) 16 Gauss points of the standard approach 

of the numerical model in the crack region. 
 
 

Table 1 compares the values of normalized SIFs in terms of crack lengths of the current work. For 
the verification issue, the work is compared with [5] at crack length equals to 4 mm because [5] have result 
only for this length only that used boundary element method. The error of the XEFG method with [5] can be 
viewed in Table 2. There is good agreement and stability in the results of SIFs through the sizes of J-integral 
rJ equal to 0.4 -0.8.   
 
 
Table 1 Normalized SIFs (KI) of the present work in terms of the size of the J-integral domain (rJ) at size of 

support domain dmax=1.7 with 13 Gauss points for each sub-triangle. 
 

a S¼ = 0.4 S¼ = 0.5 S¼ = 0.6 S¼ = 0.7 S¼ = 0.8 S¼ = 0.9 S¼ = 1 [5] 
1 0.82388 1.0446 1.0446 1.0446 1.0502 1.0581 1.0768 - 
2 0.70708 1.1816 1.1636 1.1479 1.1479 1.1598 1.1923 - 
3 1.4034 1.4034 1.3818 1.3892 1.3892 1.3994 1.4646 - 
4 1.7566 1.7566 1.7385 1.7681 1.7681 1.7873 1.8587 1.741 
5 2.351 2.351 2.4041 2.4041 2.4041 2.4848 2.5095 - 
6 3.5226 3.5226 3.5372 3.5206 3.5206 3.607 3.687 - 
7 5.7538 5.7538 5.8018 5.7968 5.7968 5.9481 6.1907 - 
8 9.6987 11.5217 11.8456 11.9466 11.9466 12.2571 12.7251 - 
9 35.7161 42.3974 42.3974 42.3974 44.673 44.6849 46.7381 - 
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Table 2 The error of Normalized KI in comparing with [5] for S¼ = 0.5, dmax=1.7, 13 Gauss points for each 
sub-triangle at a= 4 mm. 

 
½¾ XEFG Normalized KI Normalized KI [5] Error % 

0.4 1.7566 1.741 0.90 
0.5 1.7566 1.741 0.90 
0.6 1.7385 1.741 0.14 
0.7 1.7681 1.741 1.56 
0.8 1.7681 1.741 1.56 
0.9 1.7873 1.741 2.66 
1 1.8587 1.741 6.76 

 
 

Table 3 shows the efficiency of the present technique (the sub-triangle technique) of the Gauss points 
distribution to calculate the correct SIF against standard approach. To further clarify Figure 6-a gives 
acceptance results for normalized KI at 1 Gauss point  for each sub-triangle in comparing with standard 
approach 8×8 Gauss points. The best results can be determined at 7 and 13 Gauss points for each sub-triangle 
at the crack region as depicted in Table 4.  
 
Table 3 Normalized SIFs (KI) of the present work in terms of  various Gauss points in each cell in the crack 

region at dmax=1.7 with rJ=0.5. 
 

a Normalized 
KI at 1 Gauss 
point  for each 

sub-triangle 

Normalized 
KI at 7 Gauss 

points for 
each sub-
triangle 

Normalized 
KI at 13 

Gauss points  
for each sub-

triangle 

Normalized 
KI at 

standard 
approach 4×4 
Gauss points 

Normalized 
KI at 

standard 
approach 8×8 
Gauss points 

Normalized 
KI [5] 

1 1.0377 1.0441 1.0446 0.99138 0.99961 - 
2 1.1422 1.1800 1.1816 1.0547 1.0805 - 
3 1.3149 1.4005 1.4034 1.2883 1.3075 - 
4 1.5835 1.7563 1.7566 1.5983 1.678 1.741 
5 2.0243 2.3455 2.351 2.141 2.2965 - 
6 2.9779 3.5006 3.5226 3.4958 3.5109 - 
7 4.7191 5.7405 5.7538 6.0703 6.0671 - 
8 9.9591 11.5894 11.5217 13.1671 12.613 - 
9 56.7955 42.7133 42.3974 55.901 48.4083 - 

 
 
Table 4 The error in Normalized KI in comparing with [5] for various  number of Gauss points in each cell in 

the region of crack at crack length a=4 mm, and dmax=1.7 with rJ=0.5. 
 

Gauss points distribution XEFG Normalized KI Normalized KI [5] Error % 

1 Gauss point  for each sub-triangle 1.5835 1.741 9.04 
7 Gauss points for each sub-triangle 1.7563 1.741 0.87 

13 Gauss points  for each sub-triangle 1.7566 1.741 0.89 
standard approach 4×4 Gauss points 1.5983 1.741 8.19 
standard approach 8×8 Gauss points 1.678 1.741 3.61 
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In addition, Figure 7 clears that the SIF increases when the crack length increases. The SIF at crack 

lengths equals to 9 mm is huge due to the plate reaches to the break as depicted in Figure 8. 
 
 
 
 
 
 
 
 

 

 

 

 

 
Figure 7: Values of normalized KI for various crack length at dmax=1.7, rJ=0.5, and 13 Gauss points for 

each sub-triangle. 
 
 

      
 

Figure 8: The deform shape of an edge cracked plate at crack lengths (a=1 to 7 mm). 
 

Figure (9) illustrates the result of SIFs in terms of a number of nodes and background cells. Therefore, 
optimal background cell has to be chosen to avoid unnecessary computational costs with giving the same 
accuracy. In addition, meshfree methed has been good agreement, convergence, and stability against change 
the total number of background cells. 
 

 Hence, Figure (10) is given to depict the influence of size of support domain on the precision of 
normalized KI. The acceptance results are bound between dmax=1.52 to 2. The best result of SIFs is at 
dmax=1.52 to 1.7. It is clear that when the size of the support domain more than 2, the results of SIFs is not 
well convergence. Finally, despite the change in properties of the material through the x-axis, as illustrated in 
Figure (10), exceedingly regular stress contours are extracted without any stress extrapolation or stress refine 
methods. It is also obviously cleared that the right side from the plate seems higher ��� stress, due to intense 
stiffness, where Yw/Y0 is more than 2.5. 
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Figure 9: Values of normalized KI for various crack length at different number of nodes  ( dmax=1.7, rJ=0.5, 

and 13 Gauss points  for each sub-triangle). 
 

 
 

Figure 10:  Values of normalized KI in terms of crack lengths at different sizes of support domain (rJ=0.5, 
and 13 Gauss points for each sub-triangle). 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 11: Stress contours of an edge cracked FGM plate under tensile loading ( rJ=0.5, dmax=1.7, 13 gauss 

points for each sub-triangle) 
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6. CONCLUSIONS 
 

This study reports the effect of crack lengths on the fracture parameters of a functionally graded 
material numerically and major conclusions of this study can explain in the following points: 
 

1-The incompatible interaction integral method was used to determine the fracture parameters as SIFs.  
2- The effective parameters of XEFGM were employed such as the sub-triangulation term for numerical 
integration, suitable influence domain, and enrichment functions for discontinues locations in the fracture 
analysis of different crack positions of an edge cracked FGM plate.  
3- SIF in the plate increased when the crack length increased. The SIF at crack lengths equals to 9 mm is huge 
due to the plate reached to the break. In addition, in Gauss quadrature rule, the utilize of the sub- triangulation 
technique was given best results with good verification and stability with less integration points in comparing 
with the standard approach.  
4- There is good agreement and stability in the results of SIFs through the sizes of J-integral rJ equal to 0.4 -
0.8.  
5- The acceptance results for the size of the support domain are bound between dmax=1.52 to 2. 
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