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Abstract 
In this paper, some new exact solutions of the important nonlinear partial 

differential equations in physics as Gardener’s equation and Sharma-Tasso-Over 

equation are formally derived by utilizing the first integral method, where it is 
equipment us with many exact solutions by using the travelling wave transform, 

then deduce a system of ordinary differential equations which is solved by 

depending on theorem in commutative algebra and with helping the mathematical 
software like Maple and Wolfram Mathematica.  
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First integral method; Gardener’s equation and Sharma-Tasso-Over equation, a 
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1. Introduction 
In the recent years, A matter of getting the exact solution of nonlinear partial differential equations (NLPDEs) has 

aroused the interest of many scientists, due to the appearance of these equations in many scientific fields such as 

engineering complex physics phenomena, mechanics, chemistry and biology etc, also as a result of the development 

in the field of computer software like Maple or Mathematica, which enables us to perform the complicated and 
tedious algebraic calculations easily and high efficiency, moreover, by the exact solutions, we can easily verify the 

accuracy and validity of the numerical solutions and also analyses the stability of these solutions, so many efficient 

analytical methods have emerged to find the exact solutions of nonlinear evolution equations had proposed such as 
tanh method was applied by Khater et al. [9], tanh-sech method Malfliet [11], extended tanh method by  El-Wakil 

and Abdou [3], sine-cosine method  Wazwaz [18, 19], F-expansion method Sheng [15], the extended mapping 

method Peng and Krishnan [20], the exp(-G(ξ)) Method Fengyan [7] etc. 
 Feng [6], proposed a new powerful method, which called the first integral method for solving Burgers-KdV 

equation. This method depends on the concept of the theory of commutative algebra Ding and Li [2]. The 

magnificence of this method embodies in the enjoyment of the following advantages, firstly, it avoids a great deal 

of tiresome and complicated calculations and the second point it supplies different more exact and explicit travelling 

solitary solutions, moreover, it has proved ease and applicability for different types of differential equations, so it is 

considered an easier and quicker method than other traditional techniques. Recently this useful method was applied 

to solve fractional equation Eslami1 et al. [5] also used widely by many researchers [1, 10, 12, 13, 14, 16, 17]  

 In the present work, we would like to extend the application of the first integral method to solve important 

equations are Gardener’s equation and Sharma-Tasso-Over equation. The  Structure of this article can be arranged 
as follows: Section 2, gives a short introduction to the first integral method. Applying the first integral method and 

some new exact solutions are obtained for nonlinear partial differential equation (PDE) as Gardner's equation and 

the Sharma- Tasso- Olver equation In section 3. Finally, in section 4,  the conclusion of this research is summarized. 
 

2.   The basic idea of the first integral method(FIM)  

We recap the main points of FIM by considering a general nonlinear PDE in the form 

                                                                    ���, ��, ��, ��, ���, ���, ���, ���, ����, … � = 0,                                            (2.1) 
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where �(	, 
, �) is the solution of the equation (2.1). By  using  the wave transformations  

                                                                 �(	, 
, �) = �(),  = 	 + ℎ
 + ��,                                                            (2.2) 

where ℎ and �   are constant. This enables us to use the following changes:  

                                          
�
��

(∙) = �
�

�
(∙);   

�
�	

(∙) =
�

�
(∙);  

�
�


(∙) = �
�

�
(∙);  

��

�	� (∙) =
��

�� (∙), …                     (2.3) 

 

we use (2.3) to change the partial differential equation( PDE) (2.1) to ordinary differential equation (ODE): 

 

                                                                       �(� , ��, ��, ��, … ) = 0.                                                                                  (2.4) 
 

Now, we introduce new independent variables  �() = �(), �() =  ��()  which change to a system of ODEs 

 

                                                                �
�� = �,                                                                                                                                 
                                                                                                                                     (2.5)
�� = ���(),   �()�                                                                                                        

 

       

The fundamental idea of our approach is to find two first integrals of the system (2.5) at the same conditions by 

depending on the theorem commutative algebra of differential equations [2], then the solutions of (2.5) can be 

obtained directly. Since, it isn't easy to deduce this even for a single first integral, because for the presence of a plane 

autonomous system, there is an important theorem of commutative algebra that tells us how to can find the first 

integral which called the division theorem. So, it is worth noting here to recall the division theorem for two variables 

in the complex domain ℂ [X, Y] 

 

2.1. Division Theorem [2]: Suppose that !(�, �) and "(�, �) are polynomials of two variables X and Y in #[X, Y] 

and !(�, �)is irreducible in #[X, Y]. If  "(�, �) vanishes at all zero points of !(�, �), then there exists a 

polynomial �(�, �) in ℂ [X, Y] such that 

  

"(�, �) = �(�, �)�(�, �). 
3. Application  

     In this section, we will clarify the applicability of the first integral method for solving two-dimensional 

nonlinear partial equations. 

 

3.1. Example  

The Gardner equation is an integrable nonlinear partial differential equation was introduced by the scientist Clifford 

Gardner [8] in 1968 to generalize and modified KdV equation.   This equation relates the seismic compressional 
wave (P-wave) velocity to the bulk density of the lithology in which the wave travels. Also, there are many 

applications of this equation in plasma physics, hydrodynamics, and quantum field theory 

 

                                                                          �� = 6(� + ����)�� + ���� ,                                                                    (3.6) 

 

where � is a constant, for finding exact solutions using (2.2) and (2.3), such that   = 	 + ��,  equation (3.6) 

becomes  
 

                                                                        ��� = 6(� + ����)�� +  �� ,                                                                        (3.7) 
    

     by integrating equation (3.7), we get  

 

                                                                        �� = � + �� − 3�� − 2���$,                                                                       (3.8) 
 

 where � is an arbitrary integration constant. Put X ( ) = f(ξ) and � (  ) = ��(), then equation (3. 8 ) is equivalent 

to  
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                                                                       �
�� = �,                                                                                                                                          

                                                                                     (3.9)
�� = � + �� − 3�� − 2���$.                                                                                                

 

 Now, according to the concept of our approach, we suppose the � = � ( )  and � = � ( ) are the nontrivial 

solutions to (3.9), and &(�, �) = ∑ *-
/
-:< (�)�- is an irreducible polynomial in ℂ [X, Y], such that 

 

                                                                     &�� ( ), � ( )� = > *-

/

-:<
(�)�- = 0,                                                      (3.10) 

 

noting that *-( � ) ( ? =  0,1,2 , , m )   are polynomials of X and */( � ) ≠ 0. Equation (3.10) is called the first 

integral to equation (3.9). According to the Division Theorem, there exists a polynomial A(	)  +  ℎ(�)� in # [�, �], 
such that 
 

            
�&
�

=   
�&
��

��
�

+  
�&
��

��
�

= ( A(	)  +  ℎ(�)�) B> *-

/

-:<
(�)�-C,                                                                   (3.11) 

 

in our study we will take discuss two cases are clarify as follows: 

 

Case 1  
By taking  D = 1 in (3.11). Now the 

EF
E�

   is a polynomial in X and Y, and &(�, �) = 0 implies  EF
E�

= 0,   

> *-
�

G

-:<
(�)�-HG + > ?*-

G

-:<
(�)�-IG(� + �� − 3�� − 2���$)                        

= ( A(	)  +  ℎ(�)�) B> *-

G

-:<
(�)�-C,                    (3.12) 

 

on both sides of (3.12) by equating the coefficients of �- when ? = 2, 1, 0, we will get 

  

                                                                     *G
� (�) = *G(�)ℎ(�) ,                                                                                     (3.13*) 

                                                     *<
� (�) = *G(�)A(�) + *<(�)ℎ(�) ,                                                                          (3.13J) 

                                       *G(�)(� + �� − 3�� − 2���$) = *<(�)A(�) ,                                                                  (3.13K) 
 

note that *G(�) is a polynomial of X, then by (3.13a), the  *G(�)  can be concluded as a constant and ℎ(�)  =  0. 

For simplicity, we suppose that *G(�)  =  1, and balancing the degrees of *<(�), *G(�), and A(�),  we can deduce 

that degree of A(�) equal one  only, after that we suppose A(�)  =  L� +  M, we find *<(�) from (3.13b) 

 

                                                                          *<(�) =
L��

2
+ M� + N                                                                             (3.14) 

 

here L, M, and  N are constants. By substituting *G(�), *0(�)*O� A(�) in (3.13c) and all the coefficients of power 

X equaling to zero. We will get a system of nonlinear algebraic equations 
 

                                                          
L�

2
= −2��   ,   

3
2

 LM = −3 ,    M� + LN = � , NM = � ,                                      (3.15) 

 

solving the system of equations in equation (3.15), we have 

 

                                    � =
−1 + 2��P

��  ,       N = −?�� ,      M =
?
�

 ,     L = 2?� ,                                                     (3.16*) 

                                  � =
−1 + 2��P

��  ,       N = ?�� ,      M = −
?
�

 ,     L = −2?� ,                                                   (3.16J) 

 

using (3.16a) and (3.16b) in (3.10), we obtain 
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                                                                        � =
?(��� − �(1 + ���))

�
,                                                                      (3.17*) 

                                                                     � =
?(−��� + �(1 + ���))

�
,                                                                    (3.17J) 

respectively. Combining equations (3.17a, b) with (3.9), we get the exact solutions of equation (3.8) as follows: 

                                                    �() =
−1 + Q−1 − 4��P  Tan R

Q−1 − 4��P   (−? + �NG)
2� S

2��  ,                    (3.18*) 

and  

                                                  �() =
−1 + Q−1 − 4��P  Tan R

Q−1 − 4��P   (? + �NG)
2� S

2��  ,                         (3.18b) 

where NG is a constant. Then the exact solution of equation (3.6) with variables 	 and � become  

 

        �(	, �) =  

−1 + Q−1 − 4��P  Tan U
Q−1 − 4��P   (−?(	 + −1 + 2��P

�� � + �NG)
2� V

2��  ,                          (3.19*) 

       �(	, �) = −

−1 + Q−1 − 4��P  Tan U
Q−1 − 4��P   (?(	 + −1 + 2��P

�� � + �NG)

2� V

2��  ,                           (3.19J) 

 
Case 2 
We assume that D = 2 in (10), and &(�, �) = 0 this implies  EF

E�
= 0, 

> *-
�

�

-:<
(�)�-HG  + > ?*-

�

-:<
(�)�-IG(� + �� − 3�� − 2���$) 

= ( A(	)  +  ℎ(�)�) B> *-

�

-:<
(�)�-C,     (3.20) 

 

on both sides of (3.20) by equating the coefficients of �- when ? = 2, 1, 0, we will get 

 

                                                                        *�
� (�) = *�(�)ℎ(�) ,                                                                                (3.21*) 

                                                        *G
� (�) = *�(�)A(�) + *G(�)ℎ(�) ,                                                                       (3.21J) 

                            *<
� (�) + 2*�(�)(� + �� − 3�� − 2���$)   = *G(�)A(�) + *<(�)ℎ(�) ,                             (3.21K) 

                                          *G(�)(� + �� − 3�� − 2���$) = *<(�)A(�) ,                                                              (3.21�) 
 

note that *�(�) is a polynomial of X, then by (3.21a), the  *�(�)  can be concluded as a constant and ℎ(�)  =  0. 

For simplicity, we suppose that *�(�)  =  1, and balancing the degrees of *<(�), *G(�), and A(�),  we can deduce 

that the degree of  A(�) equal one only, after that we suppose A(�)  =  L� +  M,  and L ≠ 0, then we evaluate  

*G(�), and *<(�)from (3.21b, c) 
 

                                                                  *G(�) = B
L
2

�� + M� + NC  ,                                                                         (3.22*) 

    *<(�) = � + (MN − 2�)� + (
M�

2
+

1
2

LN − �)�� + (2 +
1
2

LM)�$ + (
L�

8
+ ��)�P ,                                   (3.22J) 

 

where L, M, N and � are constants. By substituting *�(�), *G(�), *<(�) *O� A(�) in (3. 21d) and all the coefficients 
of power X equaling to zero. We will get a system of nonlinear algebraic equations 
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L = −4i�, M = −
2i
�

, N =
i + i���

�$ , W = −
0.25  + 0.5��� + 0.25���P

�Y , � =
0.5  + 0.5���

�P ,  

(3.23*) 

L = 4i�, M =
2i
�

, N = −
i + i���

�$ , W = −
0.25  + 0.5��� + 0.25���P

�Y , � =
0.5  + 0.5���

�P ,   

(3.23J) 
using (3.23a, b) in (3.10), we obtain 

                                                                   � = −
1
2 (	��P   + 2	�� − k�� − 1)

�$  ,                                                          (3.24*) 

                                                                 � = −
1
2 (	��P   + 2	�� − k�� − 1)

�$ ,                                                             (3.24J) 

respectively. Combining equations (3.24a, b) with (3.9), we will obtain the new exact solutions of equation (3.8)  

as: 

                         �() =  −
1
4

Ztanh \
Q�P + 8kβ� + 8    (NG +  ξ)

2�$ _ Q�P + 8kβ� + 8  + β�`,                              (3.25*) 

                        �() =  
1
4

  Ztanh \
Q�P + 8kβ� + 8    (NG +  ξ)

2�$ _ Q�P + 8kβ� + 8 + β�`,                                  (3.25J) 

 

where NG is a constant. Then the new exact solutions of equation (3.6) as follows: 

 

                       �(	, �) = −
1
4

 Ztanh \
QβP + 8kβ� + 8    (CG +  x + kt)

2β$ _ QβP + 8kβ� + 8 + β�`,                   (3.26*) 

                  �(	, �) =  
1
4

 Ztanh \
Q�P + 8kβ� + 8    (NG +  	 + ��)

2�$ _ Q�P + 8kβ� + 8  + β�`.                          (3.26J) 

 
3.2. Example  
Assuming n=2 in Burgers hierarchy equation we obtain the Sharma- Tasso- Olver equation, this equation attracted 

the attention of many researchers from them Erbas and Yusufoglu [4]. 

                                                                      �� + �(�$)� +
3
2

�(��)� + ����� = 0,                                                      (3.27) 

 

where a constant for finding exact solutions using (2.2) and (2.3), Eq. (3.27) becomes 

                                                                         � �� + �(�$)� +
3
2

�(��)� + ����� = 0,                                                   (3.28) 

 

 by integrating equation (3.28) and rearrangement we get 

 

                                                                     ��� =
N<

�
−

�
�

 � − �$ − 3���,                                                                         (3.29) 

 

here N< is a constant. Let �() = �(),   �() =  ��(), then equation (3.29) is equivalent to  

 

                                                                   g

�� = �,                                                                                                                               
                                                                                                                            (3.30)

��() =
N<

�
−

�
�

 � − �$ − 3��.                                                                                    
 

 

Now, according to the concept of our approach, we suppose the � = � ( )  and � = � ( ) are the nontrivial 

solutions to (3.30), and &(�, �) = ∑ *-
/
-:< (�)�- is an irreducible polynomial in ℂ [X, Y], such that 

 

                                                             &�� ( ), � ( )� = > *-

/

-:<
(�)�- = 0,                                                              (3.31) 
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where at *-( � )  when  ? =  0,1,2 , , m    are polynomials of X and */( � ) ≠ 0. Equation (3.31) represents the first 

integral of equation (3.30). By utilizing the Division Theorem, there exists a polynomial A(	)  +  ℎ(�)� in  ℂ[X, Y], 
such that 
 

                                          
�&
�

=   
�&
��

��
�

+  
�&
��

��
�

= ( A(	)  +  ℎ(�)�) B> *-

/

-:<
(�)�-C,                                    (3.32) 

 

in our study will take discuss two cases are clarify as follows: 

 
Case 1  
Suppose D = 1 in equation (3.31). Find that  EF

E�
   is a polynomial of X and Y, when &(�, �) = 0 then  EF

E�
= 0,    

 

> *-
�

G

-:<
(�)�-HG +  > ?*-

G

-:<
(�)�-IG B

N<

�
−

�
�

 � − �$ − 3��C 

                                                                                                                     = ( A(	)  +  ℎ(�)�) B> *-

G

-:<
(�)�-C.      (3.33) 

On equating the coefficient of �- (? = 2,1,0) on both sides of (3.33), we obtain  

 

                                                                               *G
� (�) = *G(�)ℎ(�) ,                                                                           (3.34*) 

                                                       *<
� (�) + *G(�)(−3�) = *G(�)A(�) + *<(�)ℎ(�) ,                                           (3.34J) 

                                                              *G(�) B
N<

�
−

�
�

 � − �$C = *<(�)A(�) ,                                                          (3.34K) 

 

note that *G(�) is a polynomial of X, then by (3.34a), the  *G(�)  can be concluded as a constant and ℎ(�)  =  0. 

For simplicity, we suppose that *G(�)  =  1, and balancing the degrees of *<(�), *G(�), and A(�),  we can deduce 

that degree of A(�) equal one  only, after that we suppose A(�)  =  L� +  M, we find *<(�) from (3.34b) 

 

                                                                  *<(�) =
(L + 3)��

2
+ M� + N                                                                         (3.35) 

 

here L, M, and N are constants. By substituting *G(�), *0(�)*O� A(�) in (3.34c) and all the coefficients of power 

X equaling to zero. We will get a system of nonlinear algebraic equations 
 

                                              MN =
N<

�
,     M� + LN =

−�
�

,
3M
2

+
3
2

LM = 0,       
3L
2

+
L�

2
= −1 ,                     (3.36) 

 

solving the last algebraic equations in (3.36), we have 
 

                                                     L = −1 , N =
� + M��

�
,         N< = M(� + M��),                                             (3.37*) 

                                                   L = −2, M = 0, N =
�

2�
,          N< = 0 ,                                                        (3.37J) 

 

using (3.37a) and (3.37b) in (3.10), we obtain 

 

                                                                                      � = −
� + M�� + ��(M + �)

�
,                                                  (3.38*) 

                                                                                    � = −
� + ���

�
,                                                                               (3.38J) 

 

respectively. Combining equations (3.38a, b) with (3.9), the exact solutions of equation (3.8) has become:  
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                                             �() =   
1
2

⎣
⎢
⎢
⎢
⎡
−M −

v*O R√3M��� + 4��    (NG +  )
2� S √3M�� + 4�

√�
⎦
⎥
⎥
⎥
⎤

,                       (3.39*) 

                                             �() = −
√� v*O R√� (NG + )

2√�
S

√�
                                                                                      (3.39J) 

 

 

where NG is a constant. Then the new exact solution of equation (3.27) as follows:  

 

                                �(	, �) =    −
1
2

⎣
⎢
⎢
⎢
⎡
M +

�*O R√3M��� + 4��    (NG + 	 + ��)
2� S √3M�� + 4�

√�
⎦
⎥
⎥
⎥
⎤
,                      (3.40*) 

                            �(	, �) = −
√� v*O R√� (NG + 	 + ��)

2√�
S

√�
.                                                                                        (3.40J) 

 
Case 2 
 We assume that D = 2 in (10), and &(�, �) = 0 this implies  EF

E�
= 0, 

> *-
�

�

-:<
(�)�-HG  + > ?*-

�

-:<
(�)�-IG B

N<

�
−

�
�

 � − �$ − 3��C 

    = ( A(	)  +  ℎ(�)�) B> *-

�

-:<
(�)�-C ,          (3.41) 

 

on both sides of (3.41) by equating the coefficients of �- when ? = 0, 1, 2, we will get 

 

                                                              *�
� (�) = *�(�)ℎ(�) ,                                                                                           (3.42*) 

                                           *G
� (�) + 2*�(�)(−3�)           = *�(�)A(�) + *G(�)ℎ(�) ,                                          (3.42J) 

                      *<
� (�) + *G(�)(−3�) + 2*�(�) B

N<

�
−

�
�

 � − �$C             = *G(�)A(�) + *<(�)ℎ(�) ,          (3.42K)  

                                                      *G(�) B
N<

�
−

�
�

 � − �$C = *<(�)A(�) ,                                                                  (3.42�) 

 

note that *�(�) is a polynomial of X, then by (3.42a), the  *�(�)  can be concluded as a constant and ℎ(�)  =  0. 

For simplicity, we suppose that *�(�)  =  1, and balancing the degrees of *<(�), *G(�), and A(�),  we can deduce 

that the degree of  A(�) equal  one only, after that we suppose A(�)  =  L� +  M,  and L ≠ 0, then we evaluate  

*G(�), and *<(�) from (3.42b, c) 
 

                                               *G(�) = B
(L + 6)

2
�� + M� + NC  ,                                                                                (3.43*)  

*<(�) = � + MN� −
2N<

�
� +

M�

2
�� +

3N
2

�� +
LN
2

�� +
}
�

�� + 2M�$ +
LM
2

�$ +
11
4

�P +
9L
8

  �P 

+
L�

8
�P ,    (3.43J)  

where L, M, N and � are constants. By substituting *�(�), *G(�), *<(�) *O� A(�) in (3. 42d) and all the coefficients 
of power X equaling to zero. We will get a system of nonlinear algebraic equations 

 

                                                    L = −2,         M = 0,         � =
N�
2�

,           N< = 0                                                        (3.44*) 

                                                    L = −3,          M = 0, N =
3�
2�

, � =
��

2�� ,        N< = 0                               (3.44J) 



MAICT

Journal of Physics: Conference Series 1530 (2020) 012109

IOP Publishing

doi:10.1088/1742-6596/1530/1/012109

8

 

 

                                                L = −3, M = −
i√�
√�

, N =
�

2�
, � = 0,         N< = 0,                             (3.44K) 

                                                 L = −3, M =
i√�
√�

, N =
�

2�
, � = 0,     N< = 0,                                    (3.44�)  

 

using (3.44 a, b, c and d) in (3.10), we obtain 

 

 � = −
N� + 2��� + Q(N + 2��)�(−2� + N�)

2�
 , and   � =

−N� − 2��� + Q(N + 2��)�(−2� + N�)
2�

,   
 (3.45*)  

                                                           � = −
� + ���

2�
    *O�     � = −

� + ���
�

,                                                         (3.45J) 

                                              � = � R−� +
i√�
√�

S   *O�   � = � R−� −
i√�
√�

S,                                                            (3.45K) 

 

respectively. Combining equations (3.45a,b,c) with (3.28), we have other new exact solutions of equation (3.27) as: 

 �G() =  

⎝

⎜
⎛

  ArcTan R√�ξ
√�

S − ArcTan R√−2� + N�
√�QN + 2ξ�

S

2√��
⎠

⎟
⎞

IG

−


2�
+ NG   

    and    

                                    ��() =

⎝

⎜
⎛

  ArcTan R√�ξ
√�

S + ArcTan R√−2� + N�
√�QN + 2ξ�

S

2√��
⎠

⎟
⎞

IG

−


2�
+ NG                             (3.46*) 

               �G() =  −� 
�
�

 Tan R
√� ( −  2� NG)

2√�
S , and        

 
��

() =  � 
�
�

 Tan R
√� (− + � NG)

√�
S               (3.46J)   

 

 �G() =  
i√�

√� + iCos R√� B 
√�

−  NGCS + Sin R√� B 
√�

−  NGCS
,  

and 

                                          ��() =   
i√�

√� − iCos R√� B 
√�

−  NGCS − Sin R√� B 
√�

−  NGCS
                                   (3.46K) 

 

�G() =

⎝

⎜
⎛ 1

1 + �Cos R2√� B 
√�

−  NGCS − i�Sin R2√� B 
√�

−  NGCS
⎠

⎟
⎞

∙ √� UCos \√� B


√�
−  NGC_

− i �√�Cos \2√� B


√�
−  NGC_ + Sin \√� B


√�

−  NGC_ − i√�Sin \2√� B


√�
−  NGC_�V 

and 
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   �G() =

⎝

⎜
⎛ 1

1 + �Cos R2√� B 
√�

−  NGCS − i�Sin R2√� B 
√�

− NGCS
⎠

⎟
⎞

∙  −√� UCos \√� B


√�
− NGC_

+ i �√�Cos \2√� B


√�
−  NGC_ − Sin \√� B


√�

− NGC_ + i√�Sin \2√� B


√�
−  NGC_�V 

           (3.46�) 
 

where NG is a constant. Then the exact solution with variables 	 *O� � of equation (3.27) become as: 

 �G(	, �) =  

⎝

⎜
⎛

  ArcTan R√�(	 + ��)
√�

S − ArcTan R√−2� + N�(	 + ��)
√�QN + 2(	 + ��)�

S

2√��
⎠

⎟
⎞

IG

−
(	 + ��)

2�
+ NG,     

and 

                 ��(	, �) =

⎝

⎜
⎛

  ArcTan R√�(	 + ��)
√�

S + ArcTan R√−2� + N�(	 + ��)
√�QN + 2(	 + ��)�

S

2√��
⎠

⎟
⎞

IG

−
(	 + ��)

2�
+ NG     (3.47*) 

 �G(	, �) =  −� 
�
�

 Tan R
√� �(	 + ��) −  2� NG�

2√�
S,   ��(	, �) =  � 

�
�

 Tan R
√� (−(	 + ��) + � NG)

√�
S        (3.47J) 

 

�G(	, �) =  
i√�

√� + iCos R√� B(	 + ��)
√�

−  NGCS + Sin R√� B(	 + ��)
√�

−  NGCS
 ,  

and  

                   ��(	, �) =  
i√�

√� − iCos R√� B(	 + ��)
√�

−  NGCS − Sin R√� B(	 + ��)
√�

−  NGCS
,                                 (3.47K) 

 �G(	, �) =

⎝

⎜
⎛ √�

1 + �Cos R2√� B(	 + ��)
√�

− NGCS − i�Sin R2√� B(	 + ��)
√�

− NGCS
⎠

⎟
⎞

∙ UCos \√� B
(	 + ��)

√�
− NGC_

− i �√�Cos \2√� B
(	 + ��)

√�
− NGC_ + Sin \√� B

(	 + ��)
√�

− NGC_

− i√�Sin \2√� B
(	 + ��)

√�
− NGC_�V 
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               ��(	, �) =

⎝

⎜
⎛ −√�

1 + �Cos R2√� B(	 + ��)
√�

− NGCS − i�Sin R2√� B(	 + ��)
√�

− NGCS
⎠

⎟
⎞

  

∙ UCos \√� R
(	 + ��)

√�
− NGS_

+ i �√�Cos \2√� R
(	 + ��)

√�
− NGS_ − Sin \√� R

(	 + ��)
√�

− NGS_

+ i√�Sin \2√� R
(	 + ��)

√�
− NGS_�V.                                                                                            (3.47�) 

 

All these solutions for m=1, 2 for two nonlinear evolution equations in physics are new exact solutions.  

 

4. Conclusions 

In this study, we have illustrated a first integral method and applied it for exploring some new exact solutions of 

important two-dimensional problems in physical phenomena with the help of symbolic computation software 

Maple. The periodic wave solutions and the solitary wave solutions have originated from the exact solutions. This 
method was proved the applicability and effectiveness for solving the nonlinear evolution equations. 
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