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Abstract 

This paper proposed a novel energy management system for grid-connected 
mode and islanded mode. In this paper, a hybrid system that includes distribution 
electric grid, photovoltaic, and batteries are employed as energy sources in the 
residential of the consumer in order to meet the demand. The proposed system 
permits coordinated operation of distributed energy resources to concede 
necessary active power and additional service whenever required. This paper uses 
a home energy management system which switches between the distributed 
energy and the grid power sources. The home energy management system 
incorporates controllers for maximum power point tracking, battery charge and 
discharge, and inverter for effective control between different sources depending 
upon load requirement and availability of sources at the maximum power point. 
Also, this paper aims to demonstrate the usefulness of the adaptive neuro-fuzzy 
inference system for tracking maximum power in a photovoltaic system. The 
simulation results have verified the effectiveness and feasibility of the introduced 
strategy and the capability of proposed controller for a hybrid microgrid 
operating in different modes. The results showed that 1) energy management and 
energy interchange were effective and contributed to cost reductions, CO2 
mitigation, and reduction of primary energy consumption and 2) the developed 
new energy management system proved to provide more robust and high 
performance control than conventional energy management systems. Also, the 
results demonstrate the effectiveness of the proposed robust model for the 
microgrid energy management. 

Keywords: Adaptive neuro-fuzzy inference system (ANFIS), Energy management 
system, Hybrid renewable energy. 
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1.  Introduction 
Microgrids are low-voltage small-scale electrical networks composed of distributed 
energy resources, such as energy storage systems, distributed generation systems, 
and controllable and non-controllable loads. This set of technologies requires a 
management system capable of controlling, supervising, and planning its operation 
while guaranteeing a reliable performance, economical, and efficient. Currently, 
with the evolution of new digital technologies, such as micro-processed systems, 
and advances in power electronics, many applications have been implemented in 
the smart grid, specifically in the development of controllers and electronic energy 
converters. In recent years, researchers have made significant contributions that 
have a high impact in these areas, mainly aimed at data acquisition, automation, 
and control of microgrids [1]. The microgrids not only integrate the distributed 
generation to the utility grid in a reliable and clean fashion but also provide high 
reliability in its capacity to operate in the face of natural phenomena and active 
distribution grids, which in turn results in less energy losses in transmission and 
distribution and less construction and investment time [2] 

Since the management functionalities of a microgrid deal with issues from 
different technical areas, timescales, and infrastructure levels, the hierarchical 
control scheme has been widely accepted as a standardized solution. The adoption 
of a hierarchical control scheme becomes more relevant when it is used to analyse 
different processing times required to execute the main processes at each control 
level: first, fast dynamic control of voltages and frequency of the DER units is used 
to maintain the system’s stability; second, slower dynamic control is deployed for 
the long-term economic dispatch. The idea behind these different control levels is 
that each level operates with its own processing time, data inputs, and infrastructure 
requirements. In general, the hierarchical control comprises three levels: (1) 
primary level, responsible for local control of the distributed energy resources, (2) 
secondary level, which deals with primary deviations in variables as voltage and 
frequency, (3) tertiary level, which is also known as the energy management 
system, which introduces smart to the system to coordinate and manage the 
operation of optimal power flows [3-11]. 

The rest of this paper is organized as follows. Section 2 describes the related 
work. Section 3 presents a description of the proposed system. Section 4 presents 
the ANFIS system, Section 5 presents maximum power point methods, Section 6 
presents the ANFIS method based on MPPT. Section 7 presents the home energy 
management system. Section 8 presents the results of the proposed method, Finally, 
Section 9 concludes the paper. 

2.  Related Works 

In this section, we review relevant research covering energy management strategies 
in the context of areas related to this work. In Gules et al. [12] research, the 
photovoltaic system with batteries backup is operated in the islanded and grid-
connected modes of operation. In this paper, separate control algorithms are 
implemented for Inverter, Battery, and photovoltaic array for maximum utilization 
of available sources for meeting the energy requirement of the consumer. Kalika et 
al. [13] presented a neural fuzzy controller based maximum power point. The neural 
network is used to compute MPPT voltage depended on given irradiation and 
temperature values, while the fuzzy logic controller is used to force the photovoltaic 
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panel voltage to track MPTT voltage by changing of the duty ratio of the buck-
boost converter. The simulation result reveals that the neural-fuzzy controller track 
MPPT effectively under rapid variation of load, irradiation, and temperature. 

Kharb et al. [14] presented the design and implementation of the Adaptive 
Neuro-Fuzzy Inference System (ANFIS) based MPPT. The MPPT controller is 
composed of ANFIS and PI controller. The result of the simulation shows that the 
ANFIS controller can track the maximum power point effectively and quickly 
under varying the atmospheric conditions. Specially, under little irradiation, the 
proposed controller can track MPPT without high oscillations of the power and 
during short response time. In [15], Mahdavi et al. proposed ANFIS based 
maximum power point controller. The proposed controller is composed of FLC and 
ANFIS. The ANFIS works as a reference model of the photovoltaic module and 
computes maximum power point voltage (Vmpp) from input variables of the 
ANFIS which are temperature and irradiation. While the input of the FLC is the 
error that is computed by the difference between Vmpp and output voltage of the 
photovoltaic module; and output of the fuzzy logic controller is fed to a duty cycle 
of the buck-boost converter. The simulation results reveal that the ANFIS controller 
is less oscillation and fast response than the FLC. In [16], Khosyrojerdi et al. 
presented an ANFIS based MPPT controller with a DC-DC converter. The 
simulation results highlighted the benefits of determining duty cycle and reference 
voltage as output membership functions of the control system without using the 
voltage and current sensors. The presented method has the following 
disadvantages: 

• Several energy management strategies designs are based on the small-signal 
model. that's mean cannot guarantee global stability. 

• Many existing models suffer from incomplete plant dynamics because they 
ignore the inner controllers’ impact on the control, thus affecting both the 
performance and stability of converters. 
To overcome the aforementioned difficulties, this paper proposes a new, home 

energy management for an islanded and grid-connected microgrids. we can 
summarize the main advantages of the proposed method as follows:  

• To the best of the authors’ knowledge, this paper is the first to propose a home 
energy management control for both frequency and voltage restoration of a 
grid-connected microgrid and islanded microgrid based on consideration of a 
complete nonlinear system model, irrespective of parametric disturbances and 
uncertainties. 

• In the case of frequency restoration, the distributed consensus-based control 
demonstrates the accuracy of power-sharing. 

• In this paper, a new approach is proposed to design the ANFIS based maximum 
power point tracking for the photovoltaic system. 

3.  Proposed System Description 
Figure 1 illustrates the overall configuration of the proposed system which includes 
a photovoltaic system with maximum power point tracking control and inverter 
control, battery, and control. The system incorporates a battery source as a backup 
unit for supplying power during emergency conditions to critical loads and also for 
maintaining the voltage and frequency in the microgrid. The battery is usually 
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placed parallel to the photovoltaic system. The batteries either absorb or injects real 
power via a converter.  

The converter operates in boost mode when the battery feeds the power into a 
grid or load and operates in buck mode when the battery draws power from the 
photovoltaic array. The battery either injects or absorbs real power via a converter. 
The batteries are usually placed parallel to the photovoltaic system. The converter 
operates in boost mode when the batteries feed the power to load or grid and 
operates in buck mode when the batteries draw power from the photovoltaic array. 
The lead-acid batteries are commonly selected for photovoltaic applications. 

 
Fig. 1. The proposed system structure. 

4.  Adaptive Neuro-Fuzzy Inference System Architecture 
It is a process for mapping of given data set from multi inputs or a single input to a 
single output which is achieved by the fuzzy logic and the artificial neuro networks. 
Using given input-output data sets, ANFIS constructs a Fuzzy Inference System 
(FIS) whose fuzzy membership function parameters are adjusted using hybrid 
learning method includes back propagation and least square algorithms [17, 18]. 

For simplicity, it is assumed that the fuzzy inference system has two inputs x and 
y and one output z. The common rules set with fuzzy if then rules are given as [19, 20]: 
Rule 1: If 𝑥𝑥 is 𝐴𝐴1 and 𝑦𝑦 is 𝐵𝐵1, then 𝑓𝑓1 = 𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1  
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Rule 1: If 𝑥𝑥 is 𝐴𝐴2 and 𝑦𝑦 is 𝐵𝐵2, then 𝑓𝑓2 = 𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2  

The reasoning mechanism for this model is shown in Fig. 2(a). The equivalent 
ANFIS architecture is shown in Fig. 2(b), where nodes of the same layer have 
similar functions, as described next. (Here, the output of the 𝑖𝑖𝑖𝑖ℎ node in layer 𝑙𝑙 is 
denoted as 𝑂𝑂𝑙𝑙,𝑖𝑖). 

Layer 1. Every node i in this layer is an adaptive node with a node function 

𝑂𝑂1,𝑖𝑖 = �  𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥)       𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2
𝜇𝜇𝐵𝐵𝑖𝑖−2(𝑦𝑦)     𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 3,4                                                                               (1) 

where 𝑦𝑦 (or 𝑥𝑥) is the input to node 𝑖𝑖 and 𝐴𝐴𝑖𝑖 (or 𝐵𝐵𝑖𝑖−2) is a linguistic value (such as "hot" 
or "cold") associated with this node. In other words, 𝑂𝑂1,𝑖𝑖 is the membership grade of a 
fuzzy set 𝐴𝐴 ( 𝐴𝐴1,𝐴𝐴2,𝐵𝐵1 𝑓𝑓𝑟𝑟 𝐵𝐵2) and it specifies the degree to which the given input 𝑥𝑥 
(or 𝑦𝑦) satisfies the quantifier 𝐴𝐴. The membership function for 𝐴𝐴 can be any appropriate 
parameterized membership function, such as the generalized triangle function: 

𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

0                           𝑥𝑥 ≤ 𝑎𝑎𝑖𝑖
𝑥𝑥−𝑎𝑎𝑖𝑖
𝑏𝑏𝑖𝑖−𝑎𝑎𝑖𝑖

                𝑎𝑎𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑏𝑏𝑖𝑖
𝑐𝑐𝑖𝑖−x
𝑐𝑐𝑖𝑖−𝑏𝑏𝑖𝑖

                 𝑏𝑏𝑖𝑖 ≤ 𝑥𝑥 ≤ 𝑐𝑐𝑖𝑖
0                             𝑥𝑥 ≥ 𝑐𝑐𝑖𝑖

                                                                          (2) 

where (𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖) are the parameter sets. The parameters 𝑎𝑎𝑖𝑖 and 𝑐𝑐𝑖𝑖 locate the feet of the 
triangle and the parameter 𝑏𝑏𝑖𝑖 locates the peak of the triangle. As the values of these 
parameters change, the triangle-shaped function varies accordingly, thus exhibiting 
various forms of membership function for fuzzy set 𝐴𝐴. Parameters in this layer are 
referred to as premise parameters and they will be adaptive during learning phase. 

Layer 2. Every node in this layer is a fixed node labelled 𝛱𝛱, whose output is the 
product of all the incoming signals 

𝑂𝑂2,𝑖𝑖 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) × 𝜇𝜇𝐵𝐵𝑖𝑖(𝑥𝑥),   𝑖𝑖 = 1,2                                                                    (3) 

Each node output represents the firing strength of a rule. In general, any               
other T-norm operators that perform fuzzy 𝐴𝐴𝐴𝐴𝐴𝐴 can be used as the node function 
in this layer. 

Layer 3. Every node in this layer is a fixed node labelled N. The ith node calculates 
the ratio of the ith rule's firing strength to the sum of all rules' firing strengths: 

𝑂𝑂3,𝑖𝑖 = 𝑤𝑤�𝑖𝑖 = 𝑤𝑤𝑖𝑖
𝑤𝑤1+𝑤𝑤2

,               𝑓𝑓𝑓𝑓𝑟𝑟 𝑖𝑖 = 1,2  (4) 

Outputs of this layer are called normalized firing strengths. 

Layer 4. Every node 𝑖𝑖 in this layer is an adaptive node with a node function: 

𝑂𝑂3,𝑖𝑖 = 𝑤𝑤�𝑖𝑖𝑓𝑓𝑖𝑖 = 𝑤𝑤�𝑖𝑖(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖)         𝑖𝑖 = 1,2  (5) 

where 𝑤𝑤�𝑖𝑖  is a normalized firing strength from Layer 3 and {𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖 , 𝑟𝑟𝑖𝑖} are the 
parameter sets of this node. Parameters in this layer are referred to as consequent 
parameters and they will be adaptive during learning phase. 

Layer 5. The single node in this layer is a fixed node labelled 𝛴𝛴, which computes 
the overall output as the summation of all incoming signals: 
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𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙 𝑓𝑓𝑜𝑜𝑖𝑖𝑝𝑝𝑜𝑜𝑖𝑖 = 𝑂𝑂5 = ∑ 𝑤𝑤�𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

                                                               (6) 

Thus, an adaptive network has been constructed. It is functionally equivalent 
to a Sugeno fuzzy model. 

 
(a) 

 
(b) 

Fig. 2. (a) Two inputs first order Suguno with two rules.  
(b) Equivalent typical ANFIS architecture [20]. 

5.  Maximum Power Point Tracking Methods 
There are many MPPT methods available in literatures which can be classified into 
two categories direct and indirect methods. Direct methods are based on the 
principle that the slope of the PV module power-voltage curve is positive on the 
left of the MPP, zero at the MPP, and negative on the right; or any alternative 
relationships derived from this principle. They always require only voltage and 
current sensors. Direct methods are Perturb and Observe method (P & O), 
Incremental Conductance (Inc. Cond.) method, Fuzzy Logic Control (FLC) 
method, and slide control method. Indirect methods are not based on the operating 
principle of the direct methods, where MPP estimates from irradiation, temperature, 
empirical data, and/or mathematical expressions of numerical approximation as 
well as voltage and/or current. The estimation in this method is carried out for a 
specific PV module while direct method is not required prior knowledge of PV 
module, therefore MPP tracking of the direct method is true while MPP tracking of 
the indirect method is quasi. Indirect methods are constant voltage method, curve 
fitting method, lookup table method, fractional open circuit voltage method, and 
fractional short circuit current method. 
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The proposed ANFIS-reference model method is one of the indirect methods 
since MPP estimates from given irradiation and temperature. In this paper, three 
methods which are the constant voltage method, the incremental conductance 
method, and the proposed ANFIS-reference model method; will be highlighted. 

6.  Constant Voltage Method Based MPPT 
The constant voltage algorithm is the simplest MPPT method. The operating point 
of the PV module is kept near the MPP by regulating the PV module voltage and 
matching it to a fixed reference voltage (𝑉𝑉𝑟𝑟𝑟𝑟𝑓𝑓). The 𝑉𝑉𝑟𝑟𝑟𝑟𝑓𝑓  value is set equal to the 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  of the characteristic PV module under standard conditions (1000 W/m2 
irradiation and 25 °C temperature). This method assumes that effects of the 
irradiation and temperature variations on the PV module are insignificant and that 
the constant reference voltage is an adequate approximation of the true MPP. 
Therefore, the operation is never exactly at the MPP because irradiation and 
temperature variations differs respect to different geographical regions. 

The constant voltage method gives a simplified system and low cost to implement 
since it does require only one input 𝑉𝑉𝑃𝑃𝑃𝑃 as well as it is cheap. The duty cycle change of 
the DC/DC convertor (𝛥𝛥𝐴𝐴) is controlled by a controller which calculates error value 
(𝑂𝑂) as difference between 𝑉𝑉𝑟𝑟𝑟𝑟𝑓𝑓  and 𝑉𝑉𝑃𝑃𝑃𝑃, as shown in Fig. 3 [2, 21]. 

 
Fig. 3. Block diagram of constant voltage method based MPPT. 

7.  Incremental Conductance Method Based MPPT 
The incremental conductance method is the most commonly used MPPT for PV systems. 
It is based on the fact that the derivative of the power of a PV module with respect to 
voltage is positive on the left of the MPP, zero at the MPP and negative on the right. 

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑃𝑃
𝑑𝑑𝑃𝑃

> 0      𝑙𝑙𝑂𝑂𝑓𝑓𝑖𝑖  𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀
𝑑𝑑𝑃𝑃
𝑑𝑑𝑃𝑃

= 0                   𝑎𝑎𝑖𝑖 𝑀𝑀𝑀𝑀
𝑑𝑑𝑃𝑃
𝑑𝑑𝑃𝑃

< 0             𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑖𝑖 𝑀𝑀𝑀𝑀

                                                                                           (7) 

Since 
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𝑑𝑑𝑃𝑃
𝑑𝑑𝑃𝑃

= 𝑑𝑑(𝑃𝑃𝑉𝑉)
𝑑𝑑𝑃𝑃

= 𝐼𝐼 + 𝑉𝑉 𝑑𝑑𝑉𝑉
𝑑𝑑𝑃𝑃
≈ 𝐼𝐼 + 𝑉𝑉 ∆𝑉𝑉

∆𝑃𝑃
                                                                            (8) 

Equation (12) can be rewritten as: 

⎩
⎪
⎨

⎪
⎧

∆𝑉𝑉
∆𝑃𝑃

> 0      𝑙𝑙𝑂𝑂𝑓𝑓𝑖𝑖  𝑓𝑓𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀
∆𝑉𝑉
∆𝑃𝑃

= 0                   𝑎𝑎𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀
∆𝑉𝑉
∆𝑃𝑃

< 0             𝑟𝑟𝑖𝑖𝑟𝑟ℎ𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀

   

 
 

    (9) 

The MPP can thus be tracked by comparing the instantaneous conductance 
(𝐼𝐼/𝑉𝑉) to the incremental conductance (𝛥𝛥𝐼𝐼/𝛥𝛥𝑉𝑉) as shown in the flow chart in Fig. 
4. Therefore the sign of the quantity (𝛥𝛥𝐼𝐼/𝛥𝛥𝑉𝑉) + (𝐼𝐼/𝑉𝑉)  indicates the correct 
direction of perturbation leading to the MPP. When MPP has been reached, the 
operation of PV module is maintained at this point and the perturbation stopped 
unless a change in 𝛥𝛥𝐼𝐼 is noted. In this case, the algorithm decrements or increments 
the 𝑉𝑉𝑟𝑟𝑟𝑟𝑓𝑓  to track the new MPP. The perturbation step size (𝛥𝛥𝐴𝐴) determines how 
fast the MPP is tracked [22]. However, the selection of the perturbation step size is 
difficult because of the trade-off between fast dynamic response and steady state 
performance [2, 23]. It is important to observe that when the PV module is in low 
irradiation conditions, the constant voltage method is more effective than either the 
perturbation and observation method or the incremental conductance method 
because perturbation may be stopped since change in 𝛥𝛥𝐼𝐼 is too small. 

 
Fig. 4. Incremental conductance flow chart based MPPT. 

Input: V(t), I(t)

)()( ttItII ∆−−=∆

0=∆V

0=∆I

0>∆I

    

VIVI // −>∆∆

)()( ttItI ∆−=

)()( ttVtV ∆−=

Return

VIVI // −=∆∆

)()( ttVtVV ∆−−=∆
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8.  The ANFIS-Reference Model Method Based MPPT 
The new proposed controller is composed of ANFIS-reference model and current 
controller as shown in Fig. 5. The ANFIS is employed as reference model due to 
the complex nonlinear relations between the irradiation and temperature which 
represent input variables and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 represents output variable. The adaptive neuro-
fuzzy inference system is trained with data sets obtained from voltage- current and 
voltage- power characteristic of the 6000 W photovoltaic module, to generate 
maximum power corresponding to the given irradiation and temperature. The 
current controller is employed to force the PV module current (𝐼𝐼𝑃𝑃𝑃𝑃) tracks 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 by 
changing duty cycle of the buck converter. The error (𝑂𝑂) is difference between 
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 which is as set point and 𝐼𝐼𝑃𝑃𝑃𝑃 . The error is given to current controller to control 
output signal which changes duty cycle of the buck converter [18]. 

C

L

Diode

C C

Ipv

Controller  e g   

Duty Cycle

Impp

Photovoltaic Array

+
-ANFIS Model

Temperature Irradiation

 

Fig. 5. The diagram of the proposed adaptive neuro-fuzzy inference 
system -reference model-based maximum power point tracking. 

9.  Design and Implementation of ANFIS Based MPPT 
The adaptive neuro-fuzzy inference system design is based on Sugino model. It has 
two input variables which are: the temperature (𝑇𝑇), the irradiation (𝐺𝐺), and one 
output (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 ) is fed to the current controller. It has been chosen three triangle 
membership functions for each input. Figures 6 and 7 illustrate the fuzzy set of the 
temperature and the irradiation respectively. 

If the output of ANFIS is considered as a voltage signal (𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚), but in this case, 
the root meaning of the square error will be 11.71%, while if the output of ANFIS 
is considered as the current signal (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚), the root mean of the square error will be 
1.44%. Therefore, the output of ANFIS has been selected as 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  because it is 
better than the selection of the output of 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 as the output of ANFIS for the same 
number and types of membership functions. After setting data sets, the controller 
has been trained for 200 epochs by the Matlab toolbox. Figure 8 illustrates the 
surface view of the fuzzy rules created by ANFIS. 
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 Fig. 6. Fuzzy set of temperatures.              Fig. 7. The fuzzy set of irradiation. 

 
Fig. 8. The surface view created by ANFIS. 

10.  Home Energy Management System 
In the mode of islanded, the battery is used as a back-up source of power in the case 
where photovoltaic generated power is lower than consumer power demand. In this 
mode, when the photovoltaic source produces more power than that of connected 
loads, then the excess power is stored in the battery. The stored energy in a battery 
used whenever the power demand of consumption exceeds the actual photovoltaic 
power generation. In the mode of grid-connected of operation, the battery is enabled 
to charge from utility power and photovoltaic. In this operating mode, the generated 
power from photovoltaic is delivered to the batteries at a constant rate. At the time 
of beginning, photovoltaic array produces lower power from which the battery 
can’t charge. During this condition, grid power is taken by the inverter as 
supplementary energy. As soon as the battery charge power reduces, the inverter 
begins to supply power into the grid. Once the battery gets fully charged, all the 
generated power from photovoltaic delivered to the grid.  

11.  Simulation Results 
To show the effectiveness of the proposed control method using ANFIS, the hybrid 
AC/DC microgrid systems are simulated under islanded and grid-connected 
operations. At first, the batteries are assumed to be in fully charged condition and 
loads are yet to be connected to the system. The power grid is connected to domestic 
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from the distribution transformer. The surplus power from the home energy 
management system is fed into the power grid. Also, it can supply power to the 
home energy management system in the case of a shortage of power generation in 
the photovoltaic system. This transfer of power between the home energy 
management system and the power grid takes place with the help of a bidirectional 
DC to AC inverter. The photovoltaic is allowed to operate at its standard test 
condition with an operating 1000 W/m2 Irradiation and 25  ͦ𝐶𝐶  temperature. The 
simulation is carried out for 80 seconds. The total power generated by the 
photovoltaic array is maintained constant at 6 kW by the MPPT controller. The 
output current and voltage of the photovoltaic are shown in Fig. 9, where 
photovoltaic voltage 𝑉𝑉𝑃𝑃𝑃𝑃 is always maintained at its maximum value. 

 
(a) 

 
(b) 

Fig. 9. Photovoltaic array voltage and current at MPPT. 

The load on the system is enabled at the specified intervals. In this study, two 
𝑀𝑀𝑃𝑃 loads of each having a rating of 4 𝑘𝑘𝑘𝑘 real power and 100 𝐴𝐴𝑉𝑉𝐴𝐴 of reactive 
power is connected to the home energy management system. 
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Consider the operation grid-connected mode, where the load 1 of 4 𝑘𝑘𝑘𝑘  is 
connected at time t=0.75 second. The load consumes more than half of the power 
generated by the photovoltaic array and remaining power is returned to the power grid. 
At time t=10 second, the load 2 is connected. Now, the total load on the system is 8000 
W which is more than the power generated by the photovoltaic system. Hence, the 
shortage of power is supplied to the consumer by the utility power. Therefore, the grid 
will help to balance the power demand of consumers along with the photovoltaic 
system. The load of residential at different times is shown in Fig. 10 

 
(a) 

 
(b) 

Fig. 10. Load variation at home for many time, 
(a) First load, and (b) Second load 

Now in order to test the behaviour of the proposed system in transition 
condition, the grid is now disabled at time t=30 second. Now the microgrid operates 
in an island mode of operation. The system response to load variation from 4 kW 
to 8 𝑘𝑘𝑘𝑘. In this mode, the photovoltaic system is allowed to generate its maximum 
power of 6 𝑘𝑘𝑘𝑘. Batteries come into picture in the islanded mode of operation. The 
battery will supply the complementary power required to meet consumer power 
demand. The output of inverter decreases or increases based on the requirement of 
load power, while the DC-link voltage is kept constant. Maximum power point 
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tracking controller provides the reference value for DC-link voltage and is 
maintained constant by the battery DC/DC converter by delivering or absorbing the 
adequate power. Again, the load 1 and load 2 of capacity 4 𝑘𝑘𝑘𝑘 each is connected 
to the home energy management system at time t=40 second and t=50 second 
respectively. During the connection of load 1, the photovoltaic array supplies the 
required power as the power demand is below the photovoltaic generated power. 
When load 2 is connected to the home energy management system, the total load 
becomes 8 𝑘𝑘𝑘𝑘 is higher than the photovoltaic generated power. The battery power 
is enabled to supply this difference of power to make power balance. The following 
Fig. 11 and 12 illustrate the various parameters home energy management system 
in the grid-connected and islanded mode of operation. 

 
Fig. 11. Photovoltaic response of the neuro-fuzzy controller-based maximum power point. 

 
Fig. 12. Current contributed via the grid for island and grid modes. 

Figure 11 shows the power generated by the photovoltaic array. The total power 
generated almost maintained constant throughout the simulation at 6 𝑘𝑘𝑘𝑘. It is clear 
that for the time interval from t=0 second to 30 seconds, the system operated in grid-
connected mode drawing power from both grid and photovoltaic systems. From time 
interval t=30 second to 70 seconds, the grid is disabled and now the system is operated 
in islanded mode feeding power to loads from both photovoltaic system and battery. 
Figure 12 shows the current drawn from the utility grid. It is evident that the grid does 
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not contribute to load during the interval of time t=30 to 70 seconds, as the grid is 
disabled. Figure 13 replicates the power drawn from the grid to meet the demand 
power of residential homes. Figure 14 shows the battery parameters current, voltage, 
SoC and power during island operating mode at the time of transfer from the grid to 
island mode, the battery starts to discharge energy into an inverter for meeting the 
insufficient power that is not been ably met by the photovoltaic system. 

 
Fig. 13. The active and reactive power of utility grid. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 14. (a) Battery power, (b) State of charge of battery, 
(c) Battery voltage, and (d) Battery current 

Conclusions 
In this work, a novel home management system shows effectiveness in delivering 
uninterrupted power to the consumer through various controller designs is proposed. 
Also, this paper proposes an effective control strategy for a smooth transition from 
grid-connected to islanding mode due to unintentional islanding. The simulation 
results reveal that the incremental conductance and the ANFIS-reference model 
methods collect more daily energy than the constant voltage method when ambient 
temperature is high. However, the irradiation and load variations tests show that the 
incremental conductance method is less dynamic response, stable and more 
oscillatory about the MPP than the two other methods since it has small fixed 
perturbation step size (𝛥𝛥𝐴𝐴) and is sensitive to a high frequency noise. Therefore, it 
may tend to drift away from the MPP. Hence, the proposed method is more efficient 
than the two other methods. The outcomes suggested that the alternating integration 
of solar energy sources and batteries in the microgrid should be devised carefully in 
individual operation. The recommended control schemes provide exceptional 
performance under various operating conditions. Batteries improve the system 
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reliability since they store additional renewable energy when the demand is low and 
supply energy when the demand is high. As future works, the following points is 
suggestions; 1): implementing the presented strategy on a real network and 
comparing the results, 2): investigating the effects of other uncertain parameters such 
as fuel cost on the microgrid planning. 
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