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Article Info  ABSTRACT  
 

 

Received  

 In recent years, using Unmanned Arial Vehicles (UAV) like quadcopter in 

civilian and military fields are increased dramatically. Performance and 

robustness are the most important specifications required for most 

applications. Different sensors are usually used for a quadcopter to provide the 

necessary measured states (attitude and position) for control. The white noise 

generated by physical sensors is one of the important issues that affect the 

quality of states measurements. The available solutions are still have limited 

performance for a wide range of nonlinearity. In this paper, Unscented 

Kalman Filter (UKF) is proposed as a robust estimator that has the ability to 

work efficiently with high nonlinear systems. Modified PID (PI-D) controller 

which has better properties than traditional PID controller is used with 

proposed filter in order to get better performance of quadcopter. The obtained 

results are compared with that of Extended Kalman Filter (EKF) and proved 

to be more reliable. Moreover, the results show that the proposed filter largely 

decreases the error generated by noise and improves the performance of 

quadcopter better than the EKF. 
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1. Introduction  

  

The use of the unmanned aerial vehicles (UAV), such as the quadcopter, has recently increased in various 

civilian areas because of its advantages, particularly vertical takeoff, landing in a small area and hovering. 

Therefore, the quadcopters have become the focus of great attention by researchers to find scientific and 

practical solutions to the problems that arise when using it in various applications such as agriculture, 

monitoring, rescue missions, delivery applications, etc. [1]. Quadcopter is dynamically unstable and require 

on board a control algorithm to control its attitude and position through flight. A widespread controller is 

Modified PID (PI-D) controller used to control the quadcopter because its simplicity calculations and easy of 

implement in real time. Also, sensors such as gyroscope, accelerometer, GPS, compass, barometer are 

required to fed control algorithm with measured states to keep quadcopter under control [2]. Most of the 

sensors used in quadcopters are cheap (low quality) because the high quality devices are very expensive and 

the price exceeds the price of the quadcopter itself [3]. Therefore, the information signals measured by these 

sensors have much noise caused by sensors itself and uncertainties in measurements of control algorithms [4]. 

mailto:hanbas632@gmail.com
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Noise has a negative effect on the control algorithm and this leads to decreasing the performance and 

robustness of the quadcopter [5]. To improve these two factors, a reliable states estimation algorithm should 

be added to the controller to estimate accurate states. Several methods have been proposed to improve the 

performance of quadcopter. The main progress in previous attempts can be summarized as follows: In [3], this 

approach uses Kalman Filter (KF) to estimate actual states of quadcopter from noisy measured states. The KF 

is designed especially for linear systems while the quadcopter is nonlinear system. Therefore, this filter does 

not work properly in the nonlinear behavior of quadcopter and this lead to push the quadcopter out of control, 

while in the approach of [5], the authors uses Extended Kalman Filter (EKF) to estimate actual states of 

quadcopter from noisy measured states. EKF is a modified version of KF designed to operate properly with 

nonlinear systems. The EKF uses linearized model of nonlinear system to estimate its states. Therefore, its 

stability is highly affected by nonlinearities of the system. Moreover, the EKF has a relatively slower 

performance since it takes more iterations to estimate actual states [6].  

Consequently, the quadcopter performance and robustness directly affected by estimated states. Therefore, 

improving the quality of estimation leads to increasing the stability of quadcopter against external influences 

like wind or other disturbances.  In this paper, Unscented Kalman Filter (UKF) is proposed as states estimator 

to estimate actual states of quadcopter from measured noisy states. UKF is designed to operate properly with 

nonlinear system because it uses multiple points called Sigma Points to describe the behavior of nonlinear 

system through unscented transform algorithm. Therefore, the states being estimated by UKF are highly 

accurate. Also, UKF is faster than EKF because it less mathematical operations complexity to estimate actual 

states [6, 7].  

Matlab simulink ver. R2018a is used to test the effect of proposed filter on the quadcopter control algorithm. 

After several iterations by matlab simulink platform, the results show that UKF improves the performance of 

quadcopter better than EKF. Also, movements of quadcopter become smoother and closer to the desired path. 

Therefore, the proposed filter is also improving the resistance of quadcopter to the external disturbances like 

wind.   

The rest of paper is organized as follows: Section 2 describes the dynamic model of the quadcopter, Section 3 

describes altitude and attitude controls by modified PID controller, Section 4 gives the basics of UKF, Section 

5 gives a detailed description of block diagram of proposed control method, Section 6 gives the results and 

discussion, and the conclusion is given in section 7. 

 

2. Dynamic Model of Quadcopter 

Mathematical dynamical model of quadcopter is needed to study its stability, design suitable controller and 

implement future modifications and developments. Generally, the Quadcopter use two pairs of identical fixed 

pitched propellers as shown in figure 1; two clockwise (CW) and two counterclockwise (CCW). Figure 1 

shows most of the forces that affect the quadcopter. Some of these forces are external forces such as gravity 

and the other are generated by the quadcopter through its motors in order to enable it to control, fly and 

perform the missions [8, 9].  

There are several papers, articles, and books showed how to drive the mathematical model of quadcopter. In 

this section, the mathematical dynamics equations of the quadcopter are mentioned and briefly explained so 

for more details, please see the relevant sources. The quadcopter has six degree of freedom in terms of linear 

position ξ = (x, y, z) and the attitude (angular position) which is defined by Euler angles H = (roll (ϕ), pitch 

(ϴ), yaw (ψ)) with respect to the inertial frame. The Euler angles determine the rotation of the quadcopter 

around each axis. Roll angle ϕ determines the rotation around x-axis while Pitch angle ϴ determines the 

rotation around y-axis and yaw angle ψ determines the rotation around z-axis [10-13].   

https://en.wikipedia.org/wiki/Clockwise
https://en.wikipedia.org/wiki/Counterclockwise
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Figure 1. The Inertial and Body Frames of the quadcopter [14] 

The movement of the quadcopter is always represented by linear and angular acceleration equations. 

Equations 1 represents the angular mathematical dynamic equations which are used to measure the angular 

states (angles) of quadcopter around x-axis, y-axis, and z-axis [10-13]. 
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where,     ,    and    are control inputs generated by controller which are used to generate the required 

torques    ,    and    by quadcopter motors to move it around linear axis (x, y, and z). Ix, Iy, and Iz are the 

moments of inertia about the x, y, and z-axes, respectively [10-13].  

Equation 2 represents the linear motion in the direction of x, y, and z-axis and it is used to measure the linear 

states of quadcopter. 
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where, U1 is the control input generated by flight controller to introduce the desired thrust force for 

quadcopter. m represents mass of the quadcopter.                                        . g is 

the earth’s gravity [10-13]. 

Equations 1 and 2 can be used with special platform like Matlab simulink to test the proposed method. The 

measured states                                 of quadcopter are obtained by performing first and second 

integrations to the equations 1 and 2. 

The state space of quadcopter mathematical model is representing the state transition function as in the 

following equations [15]  
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Also, the measurement functions are representing the measured states (        ,   ,    , and    ) in the 

equation 3 and can be expressed as in equation (4): 
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        Equations (3) and (4) are used by UKF block to estimate accurate states of quadcopter. 

 

3.  Modified PID controller 

    The quadcopter is aerodynamically unstable and therefore a control system is needed to control its attitude 

and position to keep it stable during flight. The modified PID (PI-D) controller as shown in figure 2 is used in 

this paper because it is simple, efficient, and easy to implement in real and simulation platforms [16]. The 

main task of PI-D controller is to control the quadcopter through flight and hovering by decreasing the error 

between desired and measured states.  

 
Figure 2. Modified PID (PI-D) controller structure 

 

The mathematical representation of P-ID controller is [15-18]: 

 

                                                         
 

 
   

 

  
                                                   (5)  

where, 

                                           

   ,    and    are the proportional, integral and derivative gains respectively. The 
 

  
      represents the 

derivative of state measured by sensor.  

The desired control signals can be generated using equation 5 as follows:  

 

                                                      
 
                                                             (6) 
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where,                        and    is the error signal, i.e. the difference between desired and 

measured states (             ) , where      and       are desired and measured values respectively. 

The control signal    is used to control the altitude of quadcopter while              are control signals 

used to control the three angles Roll, Pitch, and Yaw of quadcopter. The mass of quadcopter is represented by 

m where            is the earth gravity.  

The quadcopter has 6 DOF and only 4 actuators (motors) so it is not possible to control all these DOF directly. 

The control equations (6) are used to directly control 4 DOF (z,  ,  ,  ). The roll and pitch angles make the 

quadcopter move towards the desired x and y. So, the desired x and y will be used first to calculate the desired 

roll and pitch angles to be able to control x and y positions indirectly. The equations which are used to 

calculate desired roll and pitch angles are frequently written in terms of desired x and y accelerations. The 

following equations are used to calculate desired acceleration though desired x, y and z [13]: 

 

                                                                                                                      (7) 

                                                                                                                      (8) 

                                                                                                                (9) 

 

     The equations below represent the relations between desired linear accelerations with respect to the inertial 

frame, and the desired related angles roll, pitch and yaw with respect to the body frame [13]: 
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   The block diagram of the quadcopter with a PI-D controller is as shown in Figure 3 [13]. 

 
Figure 3. Block diagram of the control algorithm of quadcopter with PI-D controller  

 

4. Unscented Kalman Filter (UKF) 

 

The Unscented Kalman Filter (UKF) is a modern nonlinear filter used to estimate the accurate states of 

nonlinear systems corrupted by Gaussian noise. UKF is an efficient method to calculate the statistics of a 

random variable by a nonlinear transformation called Unscented transformation (UT). UKF is based on a 

simple assumption that it is easier to approximate a Gaussian distribution than to approximate an arbitrary 

nonlinear function or transformation. A finite number of points called sigma points are generated when 

applied the UKF to the measured data, to sample the prior distribution, and keeps the sample mean and sample 

covariance the same as the original distribution [19], [20]. 

The UKF has two phases: the time-update (prediction phase) and the measurement-update (correction phase). 

In the prediction phase, sigma points are calculated for the last available estimated states and each point is 

assigned a weight. Thereafter, the sigma points are put through the nonlinear model equations to obtain 

predicted states. In the measurements-update phase, the predicted states are corrected by adding the effect of 

the information obtained from the new state measurements to estimate the actual states [19], [21]. 
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UKF predicts the states of the last estimated states by the following equation: 

 

                                                                                                                                 (12) 

 

The discrete predicted states         at k+1 are updated with the measurement information by the following 

equation: 

 

                                                                                                                                (13) 

 

where        is the discrete state transition matrix from k to k+1,       is estimated states at k,     is the 

process noise vector at k,       is the estimated state vector at k+1,      is the measurement noise vector, 

       is the observation matrix. The state transition matrix is linear and derived from dynamic model 

acceleration equations of the quadcopter. Only the observation matrix        contains nonlinear equations 

and it is calculated by the following equation:  
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where,    are the weights,            
   are the sigma points which describe the predicted states         ,           

  

are the sigma points describing the measurement noise [19-22]. 

The number of sigma points depends on the dimensionality of the system. The general formula to calculate the 

number of sigma points is 2n+1, where n is the dimension of the system. 

The following equations are used to calculate the sigma points for the predicted states         [19], [21]: 

                                            

                                                                   i=1, ……., n 

                                                                i=n+1, ……., 2n 

where,    is the mean of the predicted states        ,   is the scaling factor which tells how far from the mean 

we should choose our sigma points,       is the covariance matrix of predicted states,                 is the i-

th column of the square root weighted covariance [19]. 

 

5. Quadrotor States Estimation Using UKF 

 

The UKF is implemented in this paper to estimate accurate linear and angular states from noisy measured 

states of quadcopter. The proposed filter is one of the robust and reliable nonlinear estimator. The simulations 

are performed using Matlab Simulink to test the proposed method. Figure 4 shows the simulink block diagram 

of quadcopter with added white noise and UKF as estimation filter. In the position controller block, U1 

control signal is generated and the linear position (x, y, z) is controlled in terms of desired linear acceleration 

using equations (8, 9, and 10).  

In the non-holonomic constraints block, the desired Roll (    ) and Pitch (    ) angles are calculated with 

respect to the desired linear position (Xdes and Ydes) using equations (11, and 12). In the angular position 

controller block, the equations (5, 6, and 7) are performed to generate the control signals U2, U3, and U4 

which are used to control the angular position of quadcopter. The control signals (U1, U2, U3, and U4) are 

feeds to the plant block were dynamic equations 1 and 2 are included to measure linear and angular states of 

quadcopter. 
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These measured states are equivalent to the measured states by sensors in real quadcopter and the noise is 

added to each measured states to make the simulation similar to reality. The UKF is used to decrease the 

effect of noise as much as possible and estimate optimal states to improve the performance of quadcopter. 

Now, the estimated states are feeds to the controller blocks as feedback signals to control quadcopter by 

generating the desired control signals. The state transition functions (equations (3)) and measurements 

functions (equations (4)) are used by UKF block to estimate the states of quadcopter.  
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Figure 4. The estimation and control block diagram of the quadrotor  

 

 

6. Results and Discussion  

 

A dynamic model of the quadcopter and UKF are used in our study and performed by using matlab simulink 

2018a. Firstly, the mathematical dynamic model of quadcopter with PI-D controller are performed to tuned 

the gains of PI-D of all states for better response. Table 1 represent the physical parameters of quadcopter 

while table 2 represent the tuned gains of PI-D controllers.  

 

Table 1. Fixed physical parameters values of the quadcopter 

Parameter Value Parameter Value 

m 0.8 kg lzz 0.02 kg.m
2 

g 9.81 m/s
2 

k 3.13*10
-5    

lxx 0.015 kg.m
2 

d 7.5*10
-7

 

lyy 0.015 kg.m
2
 l 0.25 m 

 

Table 2. Tuned values of PI-D controller gains for each state 

Parameter Value Parameter Value 

Kpx 2 Kdϕ 0.5 

Kpy 2 Kdϴ 0.5 

Kpz 10 Kdψ 0.7997 

Kpϕ 1.5 KIx 0.0088 
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Parameter Value Parameter Value 

Kpϴ 1.5 KIy 0.0088 

Kpψ 0.21 KIz 2 

Kdx 2.8 KIϕ 0.8775 

Kdy 2.8 KIϴ 0.8775 

Kdz 7 KIψ 0.0123 

 

Figure 6(a, b, c, d, e) shows the response of each state (X, Y, Z, ϕ, and ϴ) for constant desired position (x=12, 

y=10, z=5, and     ) of quadcopter through 15 seconds. The results are obtained by implementing the block 

diagram reported in Figure 3. 

 

  
                                         (a)                                                                               (b) 

     
                                          (c)                                                                               (d) 

 
       (e) 

Figure 6 (a, b, c, d, e). Time response of quadcopter states under PI-D controller 



 PEN Vol. 7, No. 4, December 2019, pp.1626- 1637 

1634 

 

Each quadcopter state needs to have its own PI-D controller to control it. The gains (Kp, Ki, Kd) of each state 

controller are tuned manually to get better response as much as possible. 

Now, a block diagram in Figure 4 is implemented where white noise is added to each measured state to make 

simulation more realistic and similar to the real quadcopter. Accurate states are measured by proposed filter 

where added to the simulation blocks. The measured states have direct influence of quadcopter controller. 

Therefore, accurate measured states lead to optimized quadcopter performance and increase its stability and 

resistant against external forces like wind. In the real world, most quadcopter routes are nonlinear so, 

nonlinear sine wave trajectory with 0.4 rad/sec and 6 meters’ peak-to-peak is used to test our proposed 

estimator method. The desired altitude is chosen 10 meter so, the quadcopter first takes off to the desired 

altitude and then follow the desired nonlinear trajectory in the x-y plane for 35 seconds.  Figures 7a, 7b, and 

7c shows the response of quadcopter to the nonlinear trajectory. To see how efficiently our proposed method, 

so it compared with other modern estimation filter called Extended Kalman Filter (EKF) where used by 

reference (4) for the same purpose in 2018.  

 
(a) 

 

 

(b) 
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(c) 

Figure 7(a,b,c). x, y, and z-positions responses estimated by UKF and EKF 

 

Figure 7a shows the response of linear x-position of quadcopter to the desired nonlinear sinusoidal path. It is 

very clear that the estimated response by UKF (Blue line) follow the noisy response signal (Yellow line) with 

less fluctuations and smoother than the estimated response by EKF (Red line). Also, the estimated y-position 

(figure 7b) and z-position responses (figure 7c) by UKF are less fluctuations and smoother than the estimated 

responses by EKF.  All results in figures 7 showes that the estimated quadcopter position states by UKF from 

noisy position signals are more accurate than the states estimated by EKF. Also, the estimated movement  of 

quadcopter to follow the desired trajectory by UKF is smoother and less fluctuations than the estimated 

movement by EKF. This mean that the UKF is increase the performance of quadcopter and its resistanse to the 

external desterbances like wind more than the EKF.  

 

7. Conclusion 

In this paper, we addressed the problem of error in measured states caused by generated noise from physical 

sensors of quadcopter. Noisy measured states will reduce the performance of quadcopter and decreases its 

resistance to external disturbances like wind. Different traditional and modern estimation filters are used by 

researchers to estimate accurate states by decreasing the effect of noise as much as possible. But these filters 

can’t work properly with high nonlinearity system while quadcopter has high nonlinearity behavior. The UKF 

is proposed in this paper because it is designed to operate properly with high nonlinear system. The results of 

estimated states by UKF are compared with the states measured by other modern estimation filter called EKF 

for more reliability.  All results show that the states estimated by UKF are more accurate compared with states 

estimated by EKF. The movements of quadcopter with proposed filter are smother and closer to the desired 

path. This lead to improving the performance of quadcopter and increases its stability against external 

disturbances. 
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