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Abstract—Classifying network packets is crucial in intrusion 

detection. As intrusion detection systems are the primary defense 

of the infrastructure of networks, they need to adapt to the 

exponential increase in threats. Despite the fact that many 

machine learning techniques have been devised by researchers, 

this research area is still far from finding perfect systems with 

high malicious packet detection accuracy. Deep learning is a 

subset of machine learning and aims to mimic the workings of 

the human brain in processing data for use in decision-making. It 

has already shown excellent capabilities in dealing with many 

real-world problems such as facial recognition and intelligent 

transportation systems. This paper develops an artificial deep 

neural network to detect malicious packets in network traffic. 

The artificial deep neural network is built carefully and 

gradually to confirm the optimum number of input and output 

neurons and the learning mechanism inside hidden layers. The 

performance is analyzed by carrying out several experiments on 

real-world open source traffic datasets using well-known 

classification metrics. The experiments have shown promising 

results for real-world application in the binary classification of 

network traffic. 
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I. INTRODUCTION 

The classification of network packets refers to the task of 
identifying abnormal behavior in networks. Currently, 
governmental and organizational networks across the world are 
natural targets for attackers who aim to compromise them in 
order to perform illegal activities such as information stealing. 
As each generation of malware is progressively more 
advanced, the development of successful online intrusion 
detection systems is at the forefront of information security 
tasks. 

Naturally, a host compromised by malware will most 
probably generate packets that serve the malware’s activities, 
i.e. malicious packets. A packet is a container used to carry 
data over a network. It normally represents the smallest amount 
of data that can traverse over a network at a single time. 
Normal TCP/IP packets contain several forms of information, 
including the data it is carrying, source and destination IP 
addresses, source and destination port numbers, and other 
information related to the quality of service and packet 
handling. A straightforward way to detect intrusions is with 
packet classification, which could be implemented using 
machine learning techniques. Machine learning is an 
application of artificial intelligence that provides software with 

the ability to automatically learn and evolve from experience 
without being explicitly programmed. It could be used to solve 
problems of predictions and classifications. In general, 
machine learning techniques are divided into two types: 
supervised and unsupervised. Packet classification is modeled 
as classification problem in supervised learning. Supervised 
learning has a set of input features and output classes. It has an 
algorithm to learn the mapping function from the input features 
to the output class. The goal is to approximate the mapping 
function. When new input features are introduced, the 
algorithm predicts the output class. In unsupervised learning, 
on the other hand, there is a set of input features without 
corresponding output classes to perform the learning task. The 
goal for unsupervised learning is to model the underlying 
distribution in input data to learn more about the data [1]. 

Deep learning is a subset of machine learning. In a deep 
learning system, multiple layers, i.e. input, hidden, and output 
layers, are stacked to form a neural network. Each hidden layer 
applies neuron mathematical structures to perform the learning 
task. The learning approach is designed to analyze data 
continually with a logic structure similar to how a human 
would draw a conclusion. The data analysis is repeated as long 
as inaccurate predictions occur. When the system returns a low 
accurate prediction level, the learning approach will 
automatically make an adjustment. Usually, a deep learning 
neural network has more than one hidden layer, which 
determines the network depth between the input and output 
layers. The learning process consists of two crucial elements: 
forward feature abstraction and backward error feedback. The 
first element is important for input data analysis and the second 
is important for tweaking the neurons [2]. 

Two gaps were observed in the literature related to the 
classification of the network packet problem, though there is a 
long record of research in packet classification over the last 
three decades [3]. The first gap is that the research field is still 
far from finding a perfect system with high malicious packet 
detection accuracy. The second gap is the lack of 
comprehensive research attempts that have employed deep 
learning approaches to classify network packets. Since it is a 
relatively new research area, there have been few research 
attempts investigating, evaluating, and tuning well-known deep 
learning approaches to classify the network packet problem [4]. 

The main contribution of this paper is to fill the 
abovementioned gaps by designing and implementing an 
artificial deep neural network (ADNN) using the state-of-the-
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art methodologies of deep neural networks. The ADNN is 
evaluated using standard classification quality metrics and 
compared with well-known classification algorithms including 
kNN, SVM, and Naive Bayes. 

The rest of the article is divided into five sections. Section 
II reviews notable research in the area. Section III provides the 
architectural designs of the ADNN proposed in this study along 
with the implementation details, including the hardware and 
software used. Section IV presents the experimental results. 
Finally, Section V concludes the paper and presents some 
future facts. 

II. RELATED WORK 

Several research papers have been published in the last 
decades dealing with enhancing the performance of network 
packet classifications. Most published papers have employed 
both supervised and unsupervised machine learning 
approaches. Examples of supervised approaches employed 
include support vector machine (SVM) [5] and k-nearest 
neighbors (kNN) [6]. For unsupervised approaches, the most 
common employed approach is k-means clustering [7]. 
Interested readers may refer to the work of Nguyen et al. [8] 
and Dainotti et al. [9] for a detailed overview of the machine 
learning techniques applied to traffic classification. Abdullah et 
al. [10] proposed a novel evolving fuzzy system to discriminate 
anomalies by inspecting the network traffic. The system 
incorporated the knowledge base-evolving mechanism and 
showed a significant positive impact on the classification 
accuracy. An open source tool for network traffic classification 
called the traffic identification engine (TIE) was developed in 
2008 and gradually evolved over the years from 2009 to 2014 
through the support of the open source community. TIE uses a 
combination of different traffic classification techniques and 
can be applied to both live traffic and previously captured 
traffic traces [11]. 

The application of deep neural network approaches such as 
deep autoencoders, deep belief neural (DBN) networks, deep 
convolutional neural networks (CNN), and recurrent neural 
networks (RNN) to solve the packet classification problem is a 
relatively new area of research. These approaches have already 
shown excellent capabilities in dealing with real-world 
problems such as facial recognition [12], intelligent 
transportation systems [13], etc. Lotfollahi et al. [14] proposed 
the “deep packet” system employing the deep CNN approach 
to integrate feature extraction and classification. Deep packet 
can handle traffic characterization to categorize network traffic 
into classes, i.e. FTP and P2P, and application identification to 
identify end-user application e.g. BitTorrent and Skype. Rahul 
[15] applied deep learning techniques to the classification of 
network protocols and applications using flow features and 
data signatures. They used their own dataset for traffic 
identification and the Microsoft Kaggle dataset for malware 
classification tasks. The DBN network is a type of generative 
neural network that uses an unsupervised machine learning 
model to produce results. Alom [16] explored the capabilities 
of the DBN network in performing intrusion detection. They 
performed a series of experiments after training the DBN 
network with the NSL-KDD dataset. The RNNs are designed 
for sequence prediction problems, which involve using 

historical sequence information to predict the next values or 
next single value in a sequence. Lopez-Martin et al. [17] 
presented a complete study on several architectures that 
integrate a CNN and an RNN. They showed that the integration 
of RNN with CNN could provide the best results for the 
Internet of Things (IoT) network traffic classification. 

Despite these efforts, the literature lacks comprehensive 
attempts that have investigated, evaluated, and tuned well-
known deep learning approaches for classifying network 
packets. The strategy used in the research methodology in this 
paper is to investigate and experiment each stage in building 
the network separately. Moreover, the final stage involves 
tuning the parameters in order to reach the highest possible 
level of accuracy in classifying network packets into malicious 
and normal packets. 

III. METHODOLOGY 

A. Dataset Description 

Suppose that D is a supervised training dataset for network 
packet classification with i-tuple elements. D is divided into 
two subsets: DN contains normal packets and DM contains 
malicious packets: 

𝐷𝑁 ⊂ 𝐷 ⋀ 𝐷𝑀 ⊂ 𝐷  𝐷 ≡ 𝐷𝑁  ∪  𝐷𝑀 

The D set can be represented by the set builder notation: 

𝐷 =  {𝑥|𝑥 ∈ 𝐷𝑁 ∨ 𝑥 ∈ 𝐷𝑀} 

Where x is 11-tuple element that includes 10 features plus 1 
class for describing the packet. The class of the packet c is 
defined as follows: 

𝑐 = {
0 𝑖𝑓 𝑥 ∈ 𝐷𝑁

1 𝑖𝑓 𝑥 ∈ 𝐷𝑀
 

In a normal situation, i.e. where there are no malicious 
packets, packets are considered as normal, that is XN ={x1, x2, 
x3, xn} ⊂ 𝐷𝑁. This situation can be represented as follows: 

Let P(x) denote x  𝑋𝑁 where 𝑋𝑁  ⊂  𝐷𝑁 

Then the truth-value of ∀ 𝑥 𝑃(𝑥) is True            (1) 

The truth-value of (1) is changed to false if the universe of 
discourse contains normal packets and malicious packets, that 
is XNM ={x1, x2, x3, xn}, XNM  ⊂  𝐷𝑁  ⋀ 𝑋𝑁𝑀 ⊂ 𝐷𝑀 . This new 
situation is represented as follows: 

Let P(x) denote x  𝑋𝑁𝑀 where 𝑋𝑁𝑀  ⊂  𝐷𝑁  ∪  𝐷𝑀 

Then the truth-value of ∀ 𝑥 𝑃(𝑥) is False           (2) 

The truth-value of  𝑥 𝑃(𝑥) is True            (3) 

In this case x is called a counterexample for (2) since it 
turns its truth-value into false. The objective of the ADNN is to 
identify and classify the counterexamples as malicious. 

The dataset used in this research was prepared from the 
UNSW-NB 15 dataset, which has been created by the IXIA 
PerfectStorm tool in the Cyber Range Lab of the Australian 
Centre for Cyber Security (ACCS) in the University of New 
South Wales, Canberra, Australia [18]. It contains a hybrid of 
real modern normal activities and synthetic contemporary 
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attack behaviors. The training set contains 175,341 records and 
the testing set contains 82,332 records from both normal and 
malicious packets. For each record, there are 48 features 
(dependent variables) and one label (dependent variable). The 
preparation of training and test datasets involved. 

1) Feature selection: this task aims to find and select the 

most useful features in a dataset. The features with low 

importance are removed. For example, the feature swin, which 

refers to the value of source TCP window advertisements and 

the feature dwin, which refers to the value of destination TCP 

window advertisements. 

2) Encoding categorical features: this task aims to convert 

categorical features into numeric values. Three categorical 

features exist in the dataset: proto, service, and state. The 

values in these features have no ordinal relationship. Therefore, 

integer encoding was used [2]. Each unique category value was 

assigned an integer value. Table I describes the features that 

are selected. 

3) Dataset filtration: this task is done by removing the 

records with a high percentage of missing values. For example, 

any record with a service marked as (- hyphen) or with 

duration equal to zero was removed from the dataset. Table II 

describes the dataset after completing the filtration task. 

4) Feature scaling: this task is important when working 

with a learning model. It aims to scale the features to a range 

centered on zero. It prevents features that have high variance 

from dominating other features in the dataset. The standard 

scaler and the results were as expected and the features are 

normalized so that they have mean = zero and standard 

deviation = one. 

B. ADNN Architecture 

The architecture of the ADNN is shown in Fig 1. It is 
composed of four layers, namely an input layer, two hidden 
layers, and an output layer. 

TABLE. I. DESCRIPTION OF 12-TUPLE ELEMENTS (PACKET FEATURES) 

# Feature  Description 

1 dur Record total duration 

2 proto Transaction protocol (TCP | UDP) 

3 service 
0=http, 1=ftp, 2=smtp, 3=ssh, 4=dns, 5=ftp-data , 6=irc 

and 7=(-) if not a much used service 

4 state 
Indicates the state and its dependent protocol, e.g. 0=ACC, 
1=CLO, 2=CON, 3=ECO, 4=FIN, 5=REQ, and 6=RST 

5 spkts Source to destination packet count 

6 sbytes Source to destination transaction bytes 

7 sttl Source to destination time to live value 

8 sload Source bits per second 

9 swin Source TCP window advertisement value 

10 synack 
TCP connection setup time, the time between the SYN and 

the SYN_ACK packets 

11 ackdat 
TCP connection setup time, the time between the 
SYN_ACK and the ACK packets 

12 label 0= normal and 1=malicious 

TABLE. II. DATASET DESCRIPTION 

Item Description 

Total number of records 210,191 records 

Normal packets 124,709 records 

Malicious packets 85,482 records 

 

Fig. 1. ADNN Architecture. 

The input layer is the first layer of the ADNN. It does not 
apply any operations and has no associated values of weights. 
It consists of 11 neurons, one neuron for each input feature. 
Given a set of training samples {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛}, where 𝑥𝑖 ∈
 𝑋𝑁 ∨ 𝑥𝑖 ∈  𝑋𝑀, an input neuron accepts 𝑥𝑖 and passes it to one 
or more neurons in the next layer - the first hidden layer. 

Two hidden layers were created in the ADNN and each 
layer contains five neurons. All the neurons are connected to 
every neuron in the next layer. For each neuron, there are a 
certain number of inputs and weights. The number of weights 
for a neuron equals the number of its input values. Each neuron 
in hidden layer #1 has 11 inputs and 11 weights, and each 
neuron in hidden layer #2 has five inputs and five weights. 
Weights are crucial to ADNN functioning because they are 
learnable parameters. The values of weights are initialized 
randomly to be close to zero but not zero before the learning 
starts. When presented with data during training, their values 
are adjusted to new values, and this adjustment will contribute 
to deciding the importance of inputs. 

Three operations are done by a single neuron. First, it 
calculates the weighted summation of all the input values (𝑥𝑛). 
Then, it applies an activation function to the weighted 
summation. Finally, it passes the results to a neuron in the next 
layer, as shown in: 

Ź = ∑ (𝑤𝑖𝑥𝑖)𝑚
𝑖=1               (4) 

 

Ō = Ø(Ź)              (5) 

Where 𝑤𝑖  is an input data 𝑥𝑖 weight, m is the number of 
neuron input data, Ź is the weighted summation, Ō is the output 
of the neuron, and Ø (theta) is the activation function. 

The activation function is responsible for transforming the 
weighted summation from the neuron into the activation of the 
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next neuron. There are several activation functions in the 
literature. In this study, we used the rectified linear activation 
unit, or ReLU for short, for two reasons: (1) its computational 
simplicity and (2) its linear behavior increases the chances of 
optimizing the ADNN [19]. The ReLU activation function is 
formalized as below: 

Ø(Ź) =  𝑚𝑎𝑥 (Ź, 0)             (6) 

This is the last layer in the ADNN. It receives input from 
hidden layer #2, makes some transformation, and outputs a 
binary (zero = normal or one = malicious). It consists of a 
single neuron that calculates the weighted summation of its 
input values and applies the sigmoid activation function to 
produce the final output. As we have two events that are 
mutually exclusive and cannot both occur at the same time 
(normal traffic and malicious traffic), we used the sigmoid 
activation function, which performs perfectly in this type of 
classification problem. Moreover, a single sigmoid neuron can 
be used to estimate the probability p(y=1) [19]. The sigmoid 
activation function is represented as below: 

ȳ = Ø1(Ź) =
1

1+𝑒−Ź
             (7) 

Where Ź is the output of hidden layer #2 calculated as in 
(5) and (6), ȳ is the output of the neuron, and Ø1 is the sigmoid 
activation function. Fig. 2 illustrates the architecture of the 
hidden and output layers. 

The input  {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛} , where 𝑥𝑖 ∈  𝑋𝑁 ∨ 𝑥𝑖 ∈  𝑋𝑀 
provides the initial information that propagates to the hidden 
neurons at each layer and finally produces the output ȳ, which 
is a number in the range from 0 – 1. We used the cross-entropy 
loss function [2] to compute the average error across all examples. 
The cross-entropy loss function is represented as follows: 

𝐻(𝑦, ȳ) =  − ∑ 𝑦𝑖

𝑛

𝑖=1

log ȳ𝑖  

Where 𝑦 is the actual value, ȳ is the output of the ADNN, 
and 𝐻(𝑦, ȳ)  is the cross-entropy loss function. After each 
forward propagation, the ADNN seeks a set of weights that 
minimize the difference between ȳ  and  𝑦 . To get the least 
possible difference, the ADNN backpropagates the information 
about the error through the layers in order to tweak the weights 
and recalculate a new  ȳ . We used the adaptive moment 
estimation (Adam) optimizer [20], which is a search technique 
to tweak weights in each neuron in the hidden layers. Adam is 
an adaptive learning rate optimizer that has been designed 
specifically for training deep neural networks. There are other 
options for optimizing the weights of neurons i.e. root mean 
square propagation (rmsprop), which is a gradient-based 
optimization technique. 

In deep learning, when an entire dataset is passed forward 
and backward through the neural network once, this full cycle 
is called an epoch. The number of epochs is a tunable 
parameter, and usually more than one epoch is used. To 
optimize the learning, we used 20 epochs to train the ADNN. 
The batch size, which is the number of training examples in 
one epoch, is set to 10 samples in order to avoid overloading 
the processor and the RAM of the computer. 

 

Fig. 2. Neuron of Hidden and Output Layers. 

IV. EXPERIMENTS 

The experiments conducted aligned with the strategy of the 
research methodology. Five experiments were conducted 
aiming to gradually and systematically build and optimally set 
up the ADNN. At each experiments, an investigation task for a 
deep learning technique was performed. 

Prominent metrics were used to evaluate the classification 
quality of the ADNN, such as accuracy, area under curve 
(AUC), recall, precision, and F1. These evaluation metrics 
were computed using a confusion matrix, which presents four 
measures: True Positive (TP): malicious traffic is classified by 
the ADNN as malicious traffic; False Positive (FP): normal 
traffic is classified by the ADNN as malicious traffic; True 
Negative (TN): malicious traffic is classified by the ADNN as 
normal traffic; False Negative (FN): normal traffic is classified 
by the ADNN as normal traffic. 

A. Initial Experiment 

The initial experiment was conducted in a straightforward 
way only to verify the code implementation and the parameter 
configurations. The dataset was split randomly into 75% 
training set (157,643 samples) and 25% test set (52,548 
samples). The values for the number of epochs, batch size, and 
optimizer are 20, 10, and 'Adam' respectively. Fig. 3 shows the 
results of fitting the ADNN to the training set. It shows the 
accuracy for each epoch. The accuracy of the first epoch is 
81%, which then increases steadily until it reaches a peak of 
86% in the eleventh epoch. The accuracy begins to stabilize at 
slightly below 85% in the fourteenth epoch. The mean value of 
84% along with the variance 0.01 show that the accuracies of 
20 epochs are related to each other. 

Figure 4 shows the results of classifying the test set in 
terms of the confusion matrix. The accuracy is calculated using 
equation, and te result generated is 84%: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑡𝑝 + 𝑡𝑛) (𝑡𝑝 + 𝑡𝑛 + 𝑓𝑛 + 𝑓𝑝)⁄  

 

Fig. 3. Epoch Accuracies for Fitting the Training Set. 
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Fig. 4. Confusion Matrix for Classifying the Test Set in the First 

Experiment. 

B. K-Fold Cross-Validation Technique 

In the previous experiment, the ADNN was trained using a 
75% training set (157,643 samples), with the result revealing a 
low accuracy both for the training set and test set. Judging the 
ADNN performance on the accuracy obtained from one test set 
does not give a complete idea of the performance with regard 
to variance. Variance occurs when very different accuracies are 
obtained after testing a model using different test sets. In order 
to optimize the method used to evaluate the ADNN, the k-fold 
cross-validation technique is employed in this experiment. The 
advantage of this technique is that all samples are used for both 
training and validation, with every single sample being used 
for validation exactly once. The following steps were followed 
in this experiment: 

1) The original dataset comprised of 210,191 samples was 

randomly partitioned into 10 equal sized subsets. Each subset 

contained 12,019 samples. k=10 was chosen as it is commonly 

used in the literature. 

2) The partitioning of the original dataset into 10 subsets 

was governed by criteria to ensure that each subset has 60% 

normal samples and 40% malicious samples. A stratified cross-

validation process that is common variation of cross-validation 

to ensure each subset has the same proportion of normal and 

malicious samples was used. We used a 60/40 proportion to 

create a semi-stratified cross-validation. 

3) Of the 10 subsets, a single subset was used to testing. 

The remaining 9 subsets were used as the training sets. 

4) The cross-validation process was repeated 10 times, 

with each subset being used only one time as the test set. 

5) The values of the epochs and batch size variables used 

in the previous experiment were used again. 

To calculate the accuracy, the 10 results were averaged. 
Fig. 5 shows the results of the semi-stratified 10-fold cross-
validation experiment. The total number of samples was 
210,191. In each of the 10 folds, there were 189,172 samples as 
the training set and 21,019 samples as the test set. In contrast 
with the accuracy of 84% obtained in the training phase of the 
previous experiment, the mean accuracy of 86% reflects an 
improvement in the building of the ADNN. The resulting low 
variance of 0.004 also suggests an improvement in the ADNN. 

To determine the accuracy of the ADNN precisely, a test 
set of 50,000 unseen samples was prepared to test the ADNN 
performance on unseen samples. Fig. 6 shows the results of 
classifying the test set in terms of the confusion matrix. An 

accuracy of 84% was calculated - the same value calculated in 
the previous experiment. Although the variance obtained in the 
training phase is quite low, the accuracy obtained from the test 
phase indicates the presence of a bias. The low accuracy means 
that there is a difference between the average prediction of the 
ADNN and the correct value. 

C. Dropout Technique 

The challenge was to beat the low accuracy of 84% 
obtained from testing the ADNN on the unseen 50,000 samples 
in the previous experiment. The accuracy obtained from the 
training part of 86% was probably the result of using a small 
dataset, which may cause overfitting and poor performance. 
When the ADNN was faced with the unseen 50,000 samples, it 
predicted them with lower accuracy than in the training. In 
such a situation, there is a need for regularization. Dropout is 
an approach to regularize deep neural networks that helps 
reducing interdependent learning amongst the neurons [21]. It 
refers to dropping out randomly selected neurons from a 
certain layer during the training. Consequently, the outputs of 
the dropped neurons are not considered during a particular 
forward or backward pass. Normally, the dropout technique is 
applied on the hidden layers and has been proven to enhance 
the performance of deep neural networks over other 
regularization methods [22]. In this experiment, one neuron 
from the hidden layers was dropped. The stratified 10-fold 
cross-validation was implemented on the same dataset used in 
the previous experiment, with 189,172 samples as the training 
set and 21,019 samples as the test set in each fold. Fig. 7 shows 
the results after applying the dropout technique on the hidden 
layers. The mean accuracy of 90% obtained reflects an 
encouraging improvement in building the ADNN. 

 

Fig. 5. 10-Fold Cross-Validation Accuracies for Fitting the Training Set. 

 

Fig. 6. Confusion Matrix for Classifying the Test Set in the Second 

Experiment. 
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Fig. 7. 10-Fold Cross-Validation Accuracies for Fitting the Training Set 

after Applying the Dropout Technique. 

To verify the ADNN performance on unseen samples, a test 
was conducted using the same test set used in the previous 
experiment (50,000 samples). Figure 8 shows the confusion 
matrix resulting from the test. The accuracy of 90% obtained 
confirms the enhancement in the ADNN after applying the 
dropout technique. 

D. Parameter Tuning  

Despite the improvements achieved in building up the 
ADNN, there was still room to enhance the prediction 
accuracy. The best tool to use to achieve a higher accuracy than 
90% at this stage was parameter tuning. The ADNN has two 
types of parameters: 1) tweaking parameters, i.e. the weights 
learned from the model during the training and 2) 
hyperparameters, i.e. number of epochs, batch size, the 
optimizer, and the number of neurons in the layers. 

The technique of grid-search cross-validation (GSCV) [2] 
was used to find the optimal hyperparameters of a neural 
network that result in the most accurate prediction. The GSCV 
technique tests several combinations of hyperparameters values 
and returns the best selection choice that leads to the best 
accuracy. The GSCV technique usually takes a long time to 
test the values and can be computationally expensive in case of 
huge dataset and the number of hyperparameters to be tuned is 
large. To avoid this, the training phase involved only three 
hyperparameters, the number of epochs, the batch size, and the 
optimizer. Table III describes the hyperparameters and the 
combinations of values that are tested. The number of neurons, 
number of folds (k), and hidden layers were not changed. The 
accuracy obtained is 91% for fitting the ADNN to the training 
set. 

 

Fig. 8. Confusion Matrix for Classifying the Test Set in the Third 

Experiment. 

TABLE. III. HYPERPARAMETER TUNING 

Hyperparameter Values tested Best value 

Number of epochs 30 and 35 35 

Batch size 25 and 32 32 

Optimizer "Adam" and "rmsprop" "rmsprop" 

 

Fig. 9. Confusion Matrix for Classifying the Test Set in the Fourth 

Experiment. 

In the test phase, the same test set (50,000 samples) was 
used as in the previous experiments, with the accuracy 
resulting from parameter tuning found to be 91%. Fig 9 shows 
the confusion matrix resulting from the test. 

E. Imbalance Classification Problem 

The imbalance classification problem occurs in binary 
classification when the rate of one class is outnumbered by the 
other class. Two classes were used in this malicious packet 
classification, namely normal packets and malicious packets, 
with the former representing the majority of the dataset. In 
such a situation, the accuracy is not an optimum measure for 
assessing the ADNN performance. Two characteristics of the 
ADNN performance were assessed. First, the ADNN’s ability 
to classify the malicious packets, which are the packets of 
interest in the dataset. Second, the proportion of packets that 
the ADNN classifies as malicious that indeed are actually 
malicious. Recall and precision metrics were used to assess the 
two characteristics. The recall and precision metrics were 
identified as follows: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 +𝑓𝑛
   ,  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑡𝑝

𝑡𝑝 +𝑓𝑝
 

There is a tradeoff between the precision and the recall in 
binary classification. As the precision increases, the recall 
decreases and vice-versa. Finding an optimal balance of recall 
and precision was achieved by combining the two metrics 
using the F1 score, which is a harmonic mean of precision and 
recall that summarizes the model’s ability for a specific 
probability threshold (0.5). The F1 score was computed as in 
the following equation. 

𝐹1 =  2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
 

The precision-recall curve (PRC) metric was used to 
summarize the model’s performance across more than one 
threshold. The PRC is a plot of the precision (y-axis) and the 
recall (x-axis) for different thresholds. Instead of illustrating 
the curves, the area under the curve (AUC) is calculated. The 
AUC is an integral summary of the model’s performance. A 
model that performs perfectly has an AUC of 1.0. We 
compared the accuracy, AUC, recall, precision, and F1 scores 
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with scores of three commonly used models in the literature: 
kNN, SVM, and Naïve Bayes. The scores for testing the 
52,548 samples with both ADNN and conventional machine 
learning models are shown Table IV. Fig. 10 shows the TP, FP, 
FN, and TN scores for ADNN and the three machine learning 
models. The results show that ADNN is the superior method in 
terms of accuracy. 

TABLE. IV. ACCURACY, AUC, RECALL, PRECISION, AND F1 RESULTS 

Algorithm Acc AUC Recall Pre F1 

ADNN 0.92 0.86 0.61 0.96 0.75 

kNN (k=5) 0.87 0.83 0.61 0.90 0.73 

SVM (kernal='rbf') 0.91 0.85 0.60 0.91 0.72 

Naive Bayes 0.89 0.85 0.61 0.86 0.71 

 

Fig. 10. TP, FP, FN, and TN Results. 

V. CONCLUSION 

An artificial deep neural network for binary classifying 
network packets into malicious and normal packets was 
presented in this paper. The strategy for building up the deep 
neural network followed systematic stages in order to reach the 
highest possible level of accuracy. In each stage, an 
investigation task for a deep learning technique was performed, 
followed by experiments involving the technique itself. In the 
final stage, the parameters of the neural network were tuned to 
confirm the optimum setup. For training and evaluation of the 
artificial deep neural network, the UNSW-NB dataset was 
used. The UNSW-NB dataset was created by the IXIA 
PerfectStorm tool in the Cyber Range Lab of the Australian 
Centre for Cyber Security. The preparation of training and test 
datasets involved four tasks: feature selection, encoding of 
categorical features, dataset filtration, and feature scaling. The 
performance was compared with three commonly used models 
in the literature: kNN, SVM, and Naïve Bayes. The results 
show that the artificial deep neural network is superior to the 
competing models in terms of accuracy. Our future research 
will be directed towards investigating other classes of deep 
neural networks, e.g. DBN, RNN, and CNN, and applying 
these algorithms on different public traffic data sets to examine 
their effectiveness. 
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