
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

402 | P a g e

www.ijacsa.thesai.org

An Artificial Deep Neural Network for the Binary

Classification of Network Traffic

Shubair A. Abdullah1

College of Education, Department of Instructional and

learning Technology, Sultan Qaboos University

Muscat, Oman

Ahmed Al-Ashoor2

College of Pharmacy, Department of Pharmacognosy

University of Basra

Basra, Iraq

Abstract—Classifying network packets is crucial in intrusion

detection. As intrusion detection systems are the primary defense

of the infrastructure of networks, they need to adapt to the

exponential increase in threats. Despite the fact that many

machine learning techniques have been devised by researchers,

this research area is still far from finding perfect systems with

high malicious packet detection accuracy. Deep learning is a

subset of machine learning and aims to mimic the workings of

the human brain in processing data for use in decision-making. It

has already shown excellent capabilities in dealing with many

real-world problems such as facial recognition and intelligent

transportation systems. This paper develops an artificial deep

neural network to detect malicious packets in network traffic.

The artificial deep neural network is built carefully and

gradually to confirm the optimum number of input and output

neurons and the learning mechanism inside hidden layers. The

performance is analyzed by carrying out several experiments on

real-world open source traffic datasets using well-known

classification metrics. The experiments have shown promising

results for real-world application in the binary classification of

network traffic.

Keywords—Deep learning; ANN; packet classification; binary

classification; malicious traffic classification

I. INTRODUCTION

The classification of network packets refers to the task of
identifying abnormal behavior in networks. Currently,
governmental and organizational networks across the world are
natural targets for attackers who aim to compromise them in
order to perform illegal activities such as information stealing.
As each generation of malware is progressively more
advanced, the development of successful online intrusion
detection systems is at the forefront of information security
tasks.

Naturally, a host compromised by malware will most
probably generate packets that serve the malware’s activities,
i.e. malicious packets. A packet is a container used to carry
data over a network. It normally represents the smallest amount
of data that can traverse over a network at a single time.
Normal TCP/IP packets contain several forms of information,
including the data it is carrying, source and destination IP
addresses, source and destination port numbers, and other
information related to the quality of service and packet
handling. A straightforward way to detect intrusions is with
packet classification, which could be implemented using
machine learning techniques. Machine learning is an
application of artificial intelligence that provides software with

the ability to automatically learn and evolve from experience
without being explicitly programmed. It could be used to solve
problems of predictions and classifications. In general,
machine learning techniques are divided into two types:
supervised and unsupervised. Packet classification is modeled
as classification problem in supervised learning. Supervised
learning has a set of input features and output classes. It has an
algorithm to learn the mapping function from the input features
to the output class. The goal is to approximate the mapping
function. When new input features are introduced, the
algorithm predicts the output class. In unsupervised learning,
on the other hand, there is a set of input features without
corresponding output classes to perform the learning task. The
goal for unsupervised learning is to model the underlying
distribution in input data to learn more about the data [1].

Deep learning is a subset of machine learning. In a deep
learning system, multiple layers, i.e. input, hidden, and output
layers, are stacked to form a neural network. Each hidden layer
applies neuron mathematical structures to perform the learning
task. The learning approach is designed to analyze data
continually with a logic structure similar to how a human
would draw a conclusion. The data analysis is repeated as long
as inaccurate predictions occur. When the system returns a low
accurate prediction level, the learning approach will
automatically make an adjustment. Usually, a deep learning
neural network has more than one hidden layer, which
determines the network depth between the input and output
layers. The learning process consists of two crucial elements:
forward feature abstraction and backward error feedback. The
first element is important for input data analysis and the second
is important for tweaking the neurons [2].

Two gaps were observed in the literature related to the
classification of the network packet problem, though there is a
long record of research in packet classification over the last
three decades [3]. The first gap is that the research field is still
far from finding a perfect system with high malicious packet
detection accuracy. The second gap is the lack of
comprehensive research attempts that have employed deep
learning approaches to classify network packets. Since it is a
relatively new research area, there have been few research
attempts investigating, evaluating, and tuning well-known deep
learning approaches to classify the network packet problem [4].

The main contribution of this paper is to fill the
abovementioned gaps by designing and implementing an
artificial deep neural network (ADNN) using the state-of-the-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

403 | P a g e

www.ijacsa.thesai.org

art methodologies of deep neural networks. The ADNN is
evaluated using standard classification quality metrics and
compared with well-known classification algorithms including
kNN, SVM, and Naive Bayes.

The rest of the article is divided into five sections. Section
II reviews notable research in the area. Section III provides the
architectural designs of the ADNN proposed in this study along
with the implementation details, including the hardware and
software used. Section IV presents the experimental results.
Finally, Section V concludes the paper and presents some
future facts.

II. RELATED WORK

Several research papers have been published in the last
decades dealing with enhancing the performance of network
packet classifications. Most published papers have employed
both supervised and unsupervised machine learning
approaches. Examples of supervised approaches employed
include support vector machine (SVM) [5] and k-nearest
neighbors (kNN) [6]. For unsupervised approaches, the most
common employed approach is k-means clustering [7].
Interested readers may refer to the work of Nguyen et al. [8]
and Dainotti et al. [9] for a detailed overview of the machine
learning techniques applied to traffic classification. Abdullah et
al. [10] proposed a novel evolving fuzzy system to discriminate
anomalies by inspecting the network traffic. The system
incorporated the knowledge base-evolving mechanism and
showed a significant positive impact on the classification
accuracy. An open source tool for network traffic classification
called the traffic identification engine (TIE) was developed in
2008 and gradually evolved over the years from 2009 to 2014
through the support of the open source community. TIE uses a
combination of different traffic classification techniques and
can be applied to both live traffic and previously captured
traffic traces [11].

The application of deep neural network approaches such as
deep autoencoders, deep belief neural (DBN) networks, deep
convolutional neural networks (CNN), and recurrent neural
networks (RNN) to solve the packet classification problem is a
relatively new area of research. These approaches have already
shown excellent capabilities in dealing with real-world
problems such as facial recognition [12], intelligent
transportation systems [13], etc. Lotfollahi et al. [14] proposed
the “deep packet” system employing the deep CNN approach
to integrate feature extraction and classification. Deep packet
can handle traffic characterization to categorize network traffic
into classes, i.e. FTP and P2P, and application identification to
identify end-user application e.g. BitTorrent and Skype. Rahul
[15] applied deep learning techniques to the classification of
network protocols and applications using flow features and
data signatures. They used their own dataset for traffic
identification and the Microsoft Kaggle dataset for malware
classification tasks. The DBN network is a type of generative
neural network that uses an unsupervised machine learning
model to produce results. Alom [16] explored the capabilities
of the DBN network in performing intrusion detection. They
performed a series of experiments after training the DBN
network with the NSL-KDD dataset. The RNNs are designed
for sequence prediction problems, which involve using

historical sequence information to predict the next values or
next single value in a sequence. Lopez-Martin et al. [17]
presented a complete study on several architectures that
integrate a CNN and an RNN. They showed that the integration
of RNN with CNN could provide the best results for the
Internet of Things (IoT) network traffic classification.

Despite these efforts, the literature lacks comprehensive
attempts that have investigated, evaluated, and tuned well-
known deep learning approaches for classifying network
packets. The strategy used in the research methodology in this
paper is to investigate and experiment each stage in building
the network separately. Moreover, the final stage involves
tuning the parameters in order to reach the highest possible
level of accuracy in classifying network packets into malicious
and normal packets.

III. METHODOLOGY

A. Dataset Description

Suppose that D is a supervised training dataset for network
packet classification with i-tuple elements. D is divided into
two subsets: DN contains normal packets and DM contains
malicious packets:

𝐷𝑁 ⊂ 𝐷 ⋀ 𝐷𝑀 ⊂ 𝐷 𝐷 ≡ 𝐷𝑁 ∪ 𝐷𝑀

The D set can be represented by the set builder notation:

𝐷 = {𝑥|𝑥 ∈ 𝐷𝑁 ∨ 𝑥 ∈ 𝐷𝑀}

Where x is 11-tuple element that includes 10 features plus 1
class for describing the packet. The class of the packet c is
defined as follows:

𝑐 = {
0 𝑖𝑓 𝑥 ∈ 𝐷𝑁

1 𝑖𝑓 𝑥 ∈ 𝐷𝑀

In a normal situation, i.e. where there are no malicious
packets, packets are considered as normal, that is XN ={x1, x2,
x3, xn} ⊂ 𝐷𝑁. This situation can be represented as follows:

Let P(x) denote x 𝑋𝑁 where 𝑋𝑁 ⊂ 𝐷𝑁

Then the truth-value of ∀ 𝑥 𝑃(𝑥) is True (1)

The truth-value of (1) is changed to false if the universe of
discourse contains normal packets and malicious packets, that
is XNM ={x1, x2, x3, xn}, XNM ⊂ 𝐷𝑁 ⋀ 𝑋𝑁𝑀 ⊂ 𝐷𝑀 . This new
situation is represented as follows:

Let P(x) denote x 𝑋𝑁𝑀 where 𝑋𝑁𝑀 ⊂ 𝐷𝑁 ∪ 𝐷𝑀

Then the truth-value of ∀ 𝑥 𝑃(𝑥) is False (2)

The truth-value of 𝑥 𝑃(𝑥) is True (3)

In this case x is called a counterexample for (2) since it
turns its truth-value into false. The objective of the ADNN is to
identify and classify the counterexamples as malicious.

The dataset used in this research was prepared from the
UNSW-NB 15 dataset, which has been created by the IXIA
PerfectStorm tool in the Cyber Range Lab of the Australian
Centre for Cyber Security (ACCS) in the University of New
South Wales, Canberra, Australia [18]. It contains a hybrid of
real modern normal activities and synthetic contemporary

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

404 | P a g e

www.ijacsa.thesai.org

attack behaviors. The training set contains 175,341 records and
the testing set contains 82,332 records from both normal and
malicious packets. For each record, there are 48 features
(dependent variables) and one label (dependent variable). The
preparation of training and test datasets involved.

1) Feature selection: this task aims to find and select the

most useful features in a dataset. The features with low

importance are removed. For example, the feature swin, which

refers to the value of source TCP window advertisements and

the feature dwin, which refers to the value of destination TCP

window advertisements.

2) Encoding categorical features: this task aims to convert

categorical features into numeric values. Three categorical

features exist in the dataset: proto, service, and state. The

values in these features have no ordinal relationship. Therefore,

integer encoding was used [2]. Each unique category value was

assigned an integer value. Table I describes the features that

are selected.

3) Dataset filtration: this task is done by removing the

records with a high percentage of missing values. For example,

any record with a service marked as (- hyphen) or with

duration equal to zero was removed from the dataset. Table II

describes the dataset after completing the filtration task.

4) Feature scaling: this task is important when working

with a learning model. It aims to scale the features to a range

centered on zero. It prevents features that have high variance

from dominating other features in the dataset. The standard

scaler and the results were as expected and the features are

normalized so that they have mean = zero and standard

deviation = one.

B. ADNN Architecture

The architecture of the ADNN is shown in Fig 1. It is
composed of four layers, namely an input layer, two hidden
layers, and an output layer.

TABLE. I. DESCRIPTION OF 12-TUPLE ELEMENTS (PACKET FEATURES)

Feature Description

1 dur Record total duration

2 proto Transaction protocol (TCP | UDP)

3 service
0=http, 1=ftp, 2=smtp, 3=ssh, 4=dns, 5=ftp-data , 6=irc

and 7=(-) if not a much used service

4 state
Indicates the state and its dependent protocol, e.g. 0=ACC,
1=CLO, 2=CON, 3=ECO, 4=FIN, 5=REQ, and 6=RST

5 spkts Source to destination packet count

6 sbytes Source to destination transaction bytes

7 sttl Source to destination time to live value

8 sload Source bits per second

9 swin Source TCP window advertisement value

10 synack
TCP connection setup time, the time between the SYN and

the SYN_ACK packets

11 ackdat
TCP connection setup time, the time between the
SYN_ACK and the ACK packets

12 label 0= normal and 1=malicious

TABLE. II. DATASET DESCRIPTION

Item Description

Total number of records 210,191 records

Normal packets 124,709 records

Malicious packets 85,482 records

Fig. 1. ADNN Architecture.

The input layer is the first layer of the ADNN. It does not
apply any operations and has no associated values of weights.
It consists of 11 neurons, one neuron for each input feature.
Given a set of training samples {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛}, where 𝑥𝑖 ∈
 𝑋𝑁 ∨ 𝑥𝑖 ∈ 𝑋𝑀, an input neuron accepts 𝑥𝑖 and passes it to one
or more neurons in the next layer - the first hidden layer.

Two hidden layers were created in the ADNN and each
layer contains five neurons. All the neurons are connected to
every neuron in the next layer. For each neuron, there are a
certain number of inputs and weights. The number of weights
for a neuron equals the number of its input values. Each neuron
in hidden layer #1 has 11 inputs and 11 weights, and each
neuron in hidden layer #2 has five inputs and five weights.
Weights are crucial to ADNN functioning because they are
learnable parameters. The values of weights are initialized
randomly to be close to zero but not zero before the learning
starts. When presented with data during training, their values
are adjusted to new values, and this adjustment will contribute
to deciding the importance of inputs.

Three operations are done by a single neuron. First, it
calculates the weighted summation of all the input values (𝑥𝑛).
Then, it applies an activation function to the weighted
summation. Finally, it passes the results to a neuron in the next
layer, as shown in:

Ź = ∑ (𝑤𝑖𝑥𝑖)𝑚
𝑖=1 (4)

Ō = Ø(Ź) (5)

Where 𝑤𝑖 is an input data 𝑥𝑖 weight, m is the number of
neuron input data, Ź is the weighted summation, Ō is the output
of the neuron, and Ø (theta) is the activation function.

The activation function is responsible for transforming the
weighted summation from the neuron into the activation of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

405 | P a g e

www.ijacsa.thesai.org

next neuron. There are several activation functions in the
literature. In this study, we used the rectified linear activation
unit, or ReLU for short, for two reasons: (1) its computational
simplicity and (2) its linear behavior increases the chances of
optimizing the ADNN [19]. The ReLU activation function is
formalized as below:

Ø(Ź) = 𝑚𝑎𝑥 (Ź, 0) (6)

This is the last layer in the ADNN. It receives input from
hidden layer #2, makes some transformation, and outputs a
binary (zero = normal or one = malicious). It consists of a
single neuron that calculates the weighted summation of its
input values and applies the sigmoid activation function to
produce the final output. As we have two events that are
mutually exclusive and cannot both occur at the same time
(normal traffic and malicious traffic), we used the sigmoid
activation function, which performs perfectly in this type of
classification problem. Moreover, a single sigmoid neuron can
be used to estimate the probability p(y=1) [19]. The sigmoid
activation function is represented as below:

ȳ = Ø1(Ź) =
1

1+𝑒−Ź
 (7)

Where Ź is the output of hidden layer #2 calculated as in
(5) and (6), ȳ is the output of the neuron, and Ø1 is the sigmoid
activation function. Fig. 2 illustrates the architecture of the
hidden and output layers.

The input {𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛} , where 𝑥𝑖 ∈ 𝑋𝑁 ∨ 𝑥𝑖 ∈ 𝑋𝑀
provides the initial information that propagates to the hidden
neurons at each layer and finally produces the output ȳ, which
is a number in the range from 0 – 1. We used the cross-entropy
loss function [2] to compute the average error across all examples.
The cross-entropy loss function is represented as follows:

𝐻(𝑦, ȳ) = − ∑ 𝑦𝑖

𝑛

𝑖=1

log ȳ𝑖

Where 𝑦 is the actual value, ȳ is the output of the ADNN,
and 𝐻(𝑦, ȳ) is the cross-entropy loss function. After each
forward propagation, the ADNN seeks a set of weights that
minimize the difference between ȳ and 𝑦 . To get the least
possible difference, the ADNN backpropagates the information
about the error through the layers in order to tweak the weights
and recalculate a new ȳ . We used the adaptive moment
estimation (Adam) optimizer [20], which is a search technique
to tweak weights in each neuron in the hidden layers. Adam is
an adaptive learning rate optimizer that has been designed
specifically for training deep neural networks. There are other
options for optimizing the weights of neurons i.e. root mean
square propagation (rmsprop), which is a gradient-based
optimization technique.

In deep learning, when an entire dataset is passed forward
and backward through the neural network once, this full cycle
is called an epoch. The number of epochs is a tunable
parameter, and usually more than one epoch is used. To
optimize the learning, we used 20 epochs to train the ADNN.
The batch size, which is the number of training examples in
one epoch, is set to 10 samples in order to avoid overloading
the processor and the RAM of the computer.

Fig. 2. Neuron of Hidden and Output Layers.

IV. EXPERIMENTS

The experiments conducted aligned with the strategy of the
research methodology. Five experiments were conducted
aiming to gradually and systematically build and optimally set
up the ADNN. At each experiments, an investigation task for a
deep learning technique was performed.

Prominent metrics were used to evaluate the classification
quality of the ADNN, such as accuracy, area under curve
(AUC), recall, precision, and F1. These evaluation metrics
were computed using a confusion matrix, which presents four
measures: True Positive (TP): malicious traffic is classified by
the ADNN as malicious traffic; False Positive (FP): normal
traffic is classified by the ADNN as malicious traffic; True
Negative (TN): malicious traffic is classified by the ADNN as
normal traffic; False Negative (FN): normal traffic is classified
by the ADNN as normal traffic.

A. Initial Experiment

The initial experiment was conducted in a straightforward
way only to verify the code implementation and the parameter
configurations. The dataset was split randomly into 75%
training set (157,643 samples) and 25% test set (52,548
samples). The values for the number of epochs, batch size, and
optimizer are 20, 10, and 'Adam' respectively. Fig. 3 shows the
results of fitting the ADNN to the training set. It shows the
accuracy for each epoch. The accuracy of the first epoch is
81%, which then increases steadily until it reaches a peak of
86% in the eleventh epoch. The accuracy begins to stabilize at
slightly below 85% in the fourteenth epoch. The mean value of
84% along with the variance 0.01 show that the accuracies of
20 epochs are related to each other.

Figure 4 shows the results of classifying the test set in
terms of the confusion matrix. The accuracy is calculated using
equation, and te result generated is 84%:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡𝑝 + 𝑡𝑛) (𝑡𝑝 + 𝑡𝑛 + 𝑓𝑛 + 𝑓𝑝)⁄

Fig. 3. Epoch Accuracies for Fitting the Training Set.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

406 | P a g e

www.ijacsa.thesai.org

Fig. 4. Confusion Matrix for Classifying the Test Set in the First

Experiment.

B. K-Fold Cross-Validation Technique

In the previous experiment, the ADNN was trained using a
75% training set (157,643 samples), with the result revealing a
low accuracy both for the training set and test set. Judging the
ADNN performance on the accuracy obtained from one test set
does not give a complete idea of the performance with regard
to variance. Variance occurs when very different accuracies are
obtained after testing a model using different test sets. In order
to optimize the method used to evaluate the ADNN, the k-fold
cross-validation technique is employed in this experiment. The
advantage of this technique is that all samples are used for both
training and validation, with every single sample being used
for validation exactly once. The following steps were followed
in this experiment:

1) The original dataset comprised of 210,191 samples was

randomly partitioned into 10 equal sized subsets. Each subset

contained 12,019 samples. k=10 was chosen as it is commonly

used in the literature.

2) The partitioning of the original dataset into 10 subsets

was governed by criteria to ensure that each subset has 60%

normal samples and 40% malicious samples. A stratified cross-

validation process that is common variation of cross-validation

to ensure each subset has the same proportion of normal and

malicious samples was used. We used a 60/40 proportion to

create a semi-stratified cross-validation.

3) Of the 10 subsets, a single subset was used to testing.

The remaining 9 subsets were used as the training sets.

4) The cross-validation process was repeated 10 times,

with each subset being used only one time as the test set.

5) The values of the epochs and batch size variables used

in the previous experiment were used again.

To calculate the accuracy, the 10 results were averaged.
Fig. 5 shows the results of the semi-stratified 10-fold cross-
validation experiment. The total number of samples was
210,191. In each of the 10 folds, there were 189,172 samples as
the training set and 21,019 samples as the test set. In contrast
with the accuracy of 84% obtained in the training phase of the
previous experiment, the mean accuracy of 86% reflects an
improvement in the building of the ADNN. The resulting low
variance of 0.004 also suggests an improvement in the ADNN.

To determine the accuracy of the ADNN precisely, a test
set of 50,000 unseen samples was prepared to test the ADNN
performance on unseen samples. Fig. 6 shows the results of
classifying the test set in terms of the confusion matrix. An

accuracy of 84% was calculated - the same value calculated in
the previous experiment. Although the variance obtained in the
training phase is quite low, the accuracy obtained from the test
phase indicates the presence of a bias. The low accuracy means
that there is a difference between the average prediction of the
ADNN and the correct value.

C. Dropout Technique

The challenge was to beat the low accuracy of 84%
obtained from testing the ADNN on the unseen 50,000 samples
in the previous experiment. The accuracy obtained from the
training part of 86% was probably the result of using a small
dataset, which may cause overfitting and poor performance.
When the ADNN was faced with the unseen 50,000 samples, it
predicted them with lower accuracy than in the training. In
such a situation, there is a need for regularization. Dropout is
an approach to regularize deep neural networks that helps
reducing interdependent learning amongst the neurons [21]. It
refers to dropping out randomly selected neurons from a
certain layer during the training. Consequently, the outputs of
the dropped neurons are not considered during a particular
forward or backward pass. Normally, the dropout technique is
applied on the hidden layers and has been proven to enhance
the performance of deep neural networks over other
regularization methods [22]. In this experiment, one neuron
from the hidden layers was dropped. The stratified 10-fold
cross-validation was implemented on the same dataset used in
the previous experiment, with 189,172 samples as the training
set and 21,019 samples as the test set in each fold. Fig. 7 shows
the results after applying the dropout technique on the hidden
layers. The mean accuracy of 90% obtained reflects an
encouraging improvement in building the ADNN.

Fig. 5. 10-Fold Cross-Validation Accuracies for Fitting the Training Set.

Fig. 6. Confusion Matrix for Classifying the Test Set in the Second

Experiment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

407 | P a g e

www.ijacsa.thesai.org

Fig. 7. 10-Fold Cross-Validation Accuracies for Fitting the Training Set

after Applying the Dropout Technique.

To verify the ADNN performance on unseen samples, a test
was conducted using the same test set used in the previous
experiment (50,000 samples). Figure 8 shows the confusion
matrix resulting from the test. The accuracy of 90% obtained
confirms the enhancement in the ADNN after applying the
dropout technique.

D. Parameter Tuning

Despite the improvements achieved in building up the
ADNN, there was still room to enhance the prediction
accuracy. The best tool to use to achieve a higher accuracy than
90% at this stage was parameter tuning. The ADNN has two
types of parameters: 1) tweaking parameters, i.e. the weights
learned from the model during the training and 2)
hyperparameters, i.e. number of epochs, batch size, the
optimizer, and the number of neurons in the layers.

The technique of grid-search cross-validation (GSCV) [2]
was used to find the optimal hyperparameters of a neural
network that result in the most accurate prediction. The GSCV
technique tests several combinations of hyperparameters values
and returns the best selection choice that leads to the best
accuracy. The GSCV technique usually takes a long time to
test the values and can be computationally expensive in case of
huge dataset and the number of hyperparameters to be tuned is
large. To avoid this, the training phase involved only three
hyperparameters, the number of epochs, the batch size, and the
optimizer. Table III describes the hyperparameters and the
combinations of values that are tested. The number of neurons,
number of folds (k), and hidden layers were not changed. The
accuracy obtained is 91% for fitting the ADNN to the training
set.

Fig. 8. Confusion Matrix for Classifying the Test Set in the Third

Experiment.

TABLE. III. HYPERPARAMETER TUNING

Hyperparameter Values tested Best value

Number of epochs 30 and 35 35

Batch size 25 and 32 32

Optimizer "Adam" and "rmsprop" "rmsprop"

Fig. 9. Confusion Matrix for Classifying the Test Set in the Fourth

Experiment.

In the test phase, the same test set (50,000 samples) was
used as in the previous experiments, with the accuracy
resulting from parameter tuning found to be 91%. Fig 9 shows
the confusion matrix resulting from the test.

E. Imbalance Classification Problem

The imbalance classification problem occurs in binary
classification when the rate of one class is outnumbered by the
other class. Two classes were used in this malicious packet
classification, namely normal packets and malicious packets,
with the former representing the majority of the dataset. In
such a situation, the accuracy is not an optimum measure for
assessing the ADNN performance. Two characteristics of the
ADNN performance were assessed. First, the ADNN’s ability
to classify the malicious packets, which are the packets of
interest in the dataset. Second, the proportion of packets that
the ADNN classifies as malicious that indeed are actually
malicious. Recall and precision metrics were used to assess the
two characteristics. The recall and precision metrics were
identified as follows:

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 +𝑓𝑛
 , 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝 +𝑓𝑝

There is a tradeoff between the precision and the recall in
binary classification. As the precision increases, the recall
decreases and vice-versa. Finding an optimal balance of recall
and precision was achieved by combining the two metrics
using the F1 score, which is a harmonic mean of precision and
recall that summarizes the model’s ability for a specific
probability threshold (0.5). The F1 score was computed as in
the following equation.

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The precision-recall curve (PRC) metric was used to
summarize the model’s performance across more than one
threshold. The PRC is a plot of the precision (y-axis) and the
recall (x-axis) for different thresholds. Instead of illustrating
the curves, the area under the curve (AUC) is calculated. The
AUC is an integral summary of the model’s performance. A
model that performs perfectly has an AUC of 1.0. We
compared the accuracy, AUC, recall, precision, and F1 scores

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 1, 2020

408 | P a g e

www.ijacsa.thesai.org

with scores of three commonly used models in the literature:
kNN, SVM, and Naïve Bayes. The scores for testing the
52,548 samples with both ADNN and conventional machine
learning models are shown Table IV. Fig. 10 shows the TP, FP,
FN, and TN scores for ADNN and the three machine learning
models. The results show that ADNN is the superior method in
terms of accuracy.

TABLE. IV. ACCURACY, AUC, RECALL, PRECISION, AND F1 RESULTS

Algorithm Acc AUC Recall Pre F1

ADNN 0.92 0.86 0.61 0.96 0.75

kNN (k=5) 0.87 0.83 0.61 0.90 0.73

SVM (kernal='rbf') 0.91 0.85 0.60 0.91 0.72

Naive Bayes 0.89 0.85 0.61 0.86 0.71

Fig. 10. TP, FP, FN, and TN Results.

V. CONCLUSION

An artificial deep neural network for binary classifying
network packets into malicious and normal packets was
presented in this paper. The strategy for building up the deep
neural network followed systematic stages in order to reach the
highest possible level of accuracy. In each stage, an
investigation task for a deep learning technique was performed,
followed by experiments involving the technique itself. In the
final stage, the parameters of the neural network were tuned to
confirm the optimum setup. For training and evaluation of the
artificial deep neural network, the UNSW-NB dataset was
used. The UNSW-NB dataset was created by the IXIA
PerfectStorm tool in the Cyber Range Lab of the Australian
Centre for Cyber Security. The preparation of training and test
datasets involved four tasks: feature selection, encoding of
categorical features, dataset filtration, and feature scaling. The
performance was compared with three commonly used models
in the literature: kNN, SVM, and Naïve Bayes. The results
show that the artificial deep neural network is superior to the
competing models in terms of accuracy. Our future research
will be directed towards investigating other classes of deep
neural networks, e.g. DBN, RNN, and CNN, and applying
these algorithms on different public traffic data sets to examine
their effectiveness.

REFERENCES

[1] Luo, M., Wang, L., Zhang, H., Chen, J.: A research on intrusion
detection based on unsupervised clustering and support vector machine.
In: International Conference on Information and Communications
Security 2003, pp. 325-336. Springer.

[2] Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press,
Cambridge, MA, USA (2016).

[3] lizadeh, H., Zúquete, A.: Traffic classification for managing
Applications’ networking profiles. Security and Communication
Networks 9(14), 2557-2575 (2016).

[4] Naseer, S., Saleem, Y., Khalid, S., Bashir, M.K., Han, J., Iqbal, M.M.,
Han, K.: Enhanced network anomaly detection based on deep neural
networks. IEEE Access 6, 48231-48246 (2018).

[5] Este, A., Gringoli, F., Salgarelli, L.: On-line SVM traffic classification.
In: 2011 7th International Wireless Communications and Mobile
Computing Conference 2011, pp. 1778-1783. IEEE.

[6] Li, W., Yi, P., Wu, Y., Pan, L., Li, J.: A new intrusion detection system
based on KNN classification algorithm in wireless sensor network.
Journal of Electrical and Computer Engineering 2014 (2014).

[7] Zhang, J., Xiang, Y., Zhou, W., Wang, Y.: Unsupervised traffic
classification using flow statistical properties and IP packet payload.
Journal of Computer and System Sciences 79(5), 573-585 (2013).

[8] Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic
classification using machine learning. IEEE Communications Surveys &
Tutorials 10(4), 56-76 (2008). doi:10.1109/SURV.2008.080406.

[9] Dainotti, A., Pescape, A., Claffy, K.C.: Issues and future directions in
traffic classification. IEEE network 26(1), 35-40 (2012).

[10] Shubair, A., Al-Hashmi, A.S.: TiSEFE: Time Series Evolving Fuzzy
Engine for Network Traffic Classification. International Journal of
Communication Networks and Information Security 10(1), 116-124
(2018).

[11] Donato, W.D., Pescape, A., Dainotti, A.: Traffic identification engine:
an open platform for traffic classification. IEEE Network 28(2), 56-64
(2014). doi:10.1109/MNET.2014.6786614.

[12] Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face
representation by joint identification-verification. In: Advances in neural
information processing systems 2014, pp. 1988-1996.

[13] Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, F.-Y.: Traffic flow prediction
with big data: a deep learning approach. IEEE Transactions on
Intelligent Transportation Systems 16(2), 865-873 (2015).

[14] Lotfollahi, M., Zade, R.S.H., Siavoshani, M.J., Saberian, M.: Deep
packet: A novel approach for encrypted traffic classification using deep
learning. arXiv preprint arXiv:1709.02656 (2017).

[15] Rahul, R., Anjali, T., Menon, V.K., Soman, K.: Deep learning for
network flow analysis and malware classification. In: International
Symposium on Security in Computing and Communication 2017, pp.
226-235. Springer.

[16] Alom, M.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep
belief networks. In: 2015 National Aerospace and Electronics
Conference (NAECON) 2015, pp. 339-344. IEEE.

[17] Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.:
Network Traffic Classifier With Convolutional and Recurrent Neural
Networks for Internet of Things. IEEE Access 5, 18042-18050 (2017).
doi:10.1109/ACCESS.2017.2747560.

[18] Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set).
In: 2015 military communications and information systems conference
(MilCIS) 2015, pp. 1-6. IEEE.

[19] Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural
networks. In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics 2011, pp. 315-323.

[20] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

[21] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research 15(1), 1929-1958 (2014).

[22] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R.R.: Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012).

