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A B S T R A C T

This paper, puts forward the control of chaos phenomena in an important endocrine glucose–insulin metabolic
regulatory system. Using a robust fixed-time synergetic controller, which has been designed to regulate
the plasma glycemic level in type 1 diabetic patients (T1D). In the view of the recent improvement in
synergetic control algorithm, terminal attractor technique and fixed time stability. The introduced technique
has the benefit of utilizing a continuous control law. In addition, the proposed control algorithm, other than
being without chattering, has the advantage of being converging in finite fixed-time. Lyapunov framework
is exploited to ensure the stability of the controlled system. Simulation results of the designed synergetic
controller, are exhibiting the ability of the proposed control technique for rapidly achieving normoglycemia
in type 1 diabetes patients and stabilizing the biological disorder in a robust manner. These features make
it interesting because one of the great matters in the diabetes mellitus treatment is the search of the best
controller acting as an artificial pancreas and a safe and efficient control algorithm of the plasma glucose level
and control devices enhancement, which relieves the diabetic subjects.
. Introduction

The human body needs blood glucose levels (blood sugar) main-
ained within a very narrow range. To make this happen two hormones
re utilized insulin and glucagon which play major roles in regulating
he glucose level. The pancreas secretes both these two hormones,
nd thus are called pancreatic endocrine hormones. The production of
nsulin and glucagon from the pancreas substantially determines if a
atient has diabetes hyperglycemia, hypoglycemia, or other diabetes
roblem. Human body desires plasma glucose to be regulated in the
ange 70 [mg/dl] to 110 [mg/dl]. If below 70 [mg/dl] is termed
‘hypoglycemia’’. And above 180 [mg/dl] is called ‘‘hyperglycemia’’
equivalent to mean ‘‘high level of glucose in the blood’’). The abnormal
ecretion of these two hormones in humans prompts to the occurrence
f diabetes type 1 or type 2. Globally, diabetes is among the main 10
easons for death. The number of deaths due to diabetes mellitus (DM)
nd its complications in 2019 is estimated to be 4.2 million (IDF, 2019).
iabetes type 1 (T1D) is an autoimmune disease, characterized most

eriously by pancreas 𝛽-cell failure to secret any amount of insulin to
egulate the blood glycemic level within normal limit, and leading to
serious increase in blood glucose above 120 [mg/dL] (Ma, Tang, &

hen, 2018; Turksoy, Littlejohn, & Cinar, 2018), which causes long-
erm complications. The insulin shortage is normally treated by an
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external insulin source through Function Insulin Therapy or Treatment
(FIT) (Amear, Raafat, & Al-Khazraji, 2019).

The blood glucose can be regulated by a closed loop controller in
an automated manner, through continuously monitoring blood glucose
levels and injecting the appropriate amount of insulin automatically
without intervention from the patient. The artificial pancreas can re-
alize these processes autonomously. It represents a system with an
essential element is an insulin-pump empowered by an effective control
technique to continuously administrates correct dose of insulin to the
diabetic subject of type 1 diabetes in real time as same as a real
human pancreas do. The feedback controller used must automatically
calculate and adjust the insulin dose in real time to regulate blood
sugar level emulating the function of a healthy biological pancreas,
thus limiting the risks and time spent under a high glycemic level state.
Several automatic closed loop control algorithms have been developed
successfully, for example, proportional integral derivative (PID) (Gao
& Wang, 2012) and 𝐻∞ controller (Mandal & Sutradhar, 2010), both
these techniques need system linearization through the design, which
clearly limits the system robustness. Another control method developed
in Abedini Najafabadi and Shahrokhi (2016) and Ning and Wang
(2015) is the model predictive control (MPC) where the system model,
is used to predict and to minimize the tracking error, by obtaining the
insulin delivery rate, with a period of infusion every 10–15 [min], due
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to this a problem of hypoglycemia may occur using this type of control
algorithm, which is a serious matter and can lead to death. Moreover,
a precise mathematical model of the system must be employed to
linearize the input–output model dynamics, which is hard to achieve
in biological systems subjected to parametric variations, and are under-
going external disturbances. A learning-type model predictive control
algorithm is proposed in Wang et al. (2017), and a customized model
predictive control presented in Messori, Ellis, Cobelli, Christofides, and
Magni (2015).

The mentioned concerns have led to turn the research to use robust
techniques such as sliding mode control (SMC) algorithm characterized
by their high efficiency, precise tracking, and robustness toward system
dynamics uncertainties. Sliding mode control (SMC) has been used
widely in robust control methods in numerous applications (Fridman,
Levant, et al., 2002; Hosseinnia, Ghaderi, Mahmoudian, Momani, et al.,
2010; Zhihong, Paplinski, & Wu, 1994) and among which in controlling
the glucose–insulin regulatory system (Abu-Rmileh, Garcia-Gabin, &
Zambrano, 2010; Hernández et al., 2013). However, in practical appli-
cations of SMC, the designer may experience undesirable oscillations
having finite frequency and amplitude, which is known as chattering
phenomenon. Chattering is a ruinous phenomenon because it reduces
control accuracy, excites fast dynamics which were neglected in the
ideal model, induces instability, and may cause severe damage and high
wear of moving mechanical parts of actuators through high frequency
control effort (Yu, Yu, Shirinzadeh, & Man, 2005). Several solutions
have been proposed to overcome this problem, among which SMC
approximations (Slotine, Li, et al., 1991), as well as the development
of High Order Sliding Mode (HOSM) (Emel’Yanov, Korovin, & Levant,
1996). In Hernández et al. (2013) the HOSM approach has been em-
ployed in controlling the blood glucose level at the normal range. All
these methods alleviate chattering to different degrees at expenses of
added complexity and often robustness.

Another robust control technique is the synergetic control ap-
proach, based on the analytical design of aggregated regulators (ADAR)
(Kolesnikov, Veselov, Kolesnikov, et al., 2000), remove chattering as a
whole by the use of completely continuous control law and achieves
the same level of closed loop invariance similar to the SMC. This
method provides the advantages of the SMC without the chattering
phenomena and its complications. The synergetic control theory has
recently attracted a lot of attention, is based on the principle of
directed self-organization (Ahifar, Noei, & Rahmani, 2019). System
synthesis problems, i.e. finding the rules of the common goal of control
processes in the complex nonlinear dynamical systems, are currently
complex and infeasible in different aspects for the existed control
science. Kolesnikov, the Russian scientist, proposed the essential rules
of nonlinear system synthesis theory based on the synergetic realization
in addition to its applications that is known as the synergetic control
theory (SCT) (Kolesnikov et al., 2000). The main advantages of the
synthesis procedure of the synergetic controller are, its works on the full
nonlinear system and does not need any simplification or linearization
of the input–output system dynamics, as required in the traditional
control theory during application (Lazarević, 2015).

Chaos existed in nonlinear dynamical systems whose behavior is
highly sensitive to initial conditions. Therefore, small changes in ini-
tial conditions can produce totally different time-responses (Hilborn
et al., 2000). Some evidence claims that chaos exists in many bio-
logical systems both in normal and abnormal situations, e.g. brain
(Baghdadi, Jafari, Sprott, Towhidkhah, & Golpayegani, 2015; Freeman
& Barrie, 1994), heart (Goldberger, 1991), kidney (Jensen, Holstein-
Rathlou, Leyssac, Mosekilde, & Rasmussen, 1987). Many practical re-
search (Frandes, Timar, Timar, & Lungeanu, 2017; Li, Tuo, & Wang,
2018), proved the existence of chaos in the dynamics of the glucose–
insulin regulatory system due to metabolic disorder. This is adding an
extra challenge for the control algorithm to be applied to regulate the
blood glucose level. This is a blind point of all the aforementioned
glucose level control algorithms which are studied simple mathemat-

ical models for the glucose–insulin regulatory system and not tackled a

2

the chaos stabilization that may occur in the endocrine system. The
main contributions of the paper are the following aspects: suppressing
chaotic oscillation in the predator–prey based model of endocrine
glucose–insulin regulatory system is investigated and to the best of
the authors knowledge, no controller designed for the model yet. A
synergetic controller will be designed based on its fixed time version to
elaborate a robust control algorithm for regulating blood glucose levels
in diabetes type 1 patients.

This paper is organized as follows. In Section 2, the mathematical
model of the glucose–insulin regulatory system was introduced based
on the predator–prey modeling approach, and the system dynamics
investigated to reveal the system behavior which shows a chaotic state
at abnormal metabolic. In Section 3, the fixed time synergetic controller
preliminaries are given and the general design framework is provided.
In Section 4, four simulation scenarios were provided to reveal the
controller effectiveness and robustness. Then general conclusions and
discussion are given in Section 5.

2. Mathematical model

Insulin and glucagon hormones support maintaining the homeosta-
sis state, in which the status inside the human body remains constant.
The pancreas keeps monitoring the blood glucose level, when it is too
high, the pancreas 𝛽-cell secretes the required amount of insulin to
help the body reduce the glucose level. The body cells need sugar
for producing energy. However, most of them cannot utilize glucose
without the existence of insulin. It gives glucose entry to the body cells.
Insulin activates transmembrane receptors on the cell called insulin
receptors, instructing the cells to open special gates and allow glucose
entry to target cells. Low levels of insulin circulate steadily throughout
the body. A spike in insulin signals to the liver that blood glucose level
is also high. The liver absorbs sugar in response to the insulin spike
then converts it into an energy storage molecule called glycogen. When
plasma glucose levels decrease below basal level, the pancreas 𝛼-cells
release glucagon triggering the lever to convert back the glycogen to
glucose until normal glucose level is achieved. A schematic diagram
demonstrating this process is given in Fig. 1. Based on the aforemen-
tioned process one can conceive the glucose and insulin relationship as
a prey and predator nature, therefore, a continuous nonlinear model for
insulin–glucose regulatory system using the prey and predator model
has been presented in Shabestari, Panahi, Hatef, Jafari and Sprott
(2018) and adapted here as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̇�(𝑡) = −𝑎1𝑥 + 𝑎2𝑥𝑦 + 𝑎3𝑦2 + 𝑎4𝑦3 + 𝑎5𝑧 + 𝑎6𝑧2

+𝑎7𝑧3 + 𝑎20
�̇�(𝑡) = −𝑎8𝑥𝑦 − 𝑎9𝑥2 − 𝑎10𝑥3 + 𝑎11𝑦(1 − 𝑦) − 𝑎12

⋅𝑧 − 𝑎13𝑧2 − 𝑎14𝑧3 + 𝑎21
�̇�(𝑡) = 𝑎15𝑦 + 𝑎16𝑦2 + 𝑎17𝑦3 − 𝑎18𝑧 − 𝑎19𝑦𝑧.

(1)

𝐽 =

⎡

⎢

⎢

⎢

⎣

−𝑎1 + 𝑎2𝑦 𝑎2𝑥 + 2𝑎3𝑦 + 3𝑎4𝑦2 𝑎5 + 2𝑎6𝑧 + 3𝑎7𝑧2

−𝑎8𝑦 − 2𝑎9𝑥 − 3𝑎10𝑥2 −𝑎8𝑥 + 𝑎11(1 − 2𝑦) −𝑎12 − 2𝑎13𝑧 − 3𝑎14𝑧2

0 𝑎15 + 2𝑎16𝑦 + 3𝑎17𝑦2 − 𝑎19𝑧 −𝑎18 − 𝑎19𝑦

⎤

⎥

⎥

⎥

⎦

(2)

here 𝑥(𝑡) represents the predator population density (plasma insu-
inemia), 𝑦(𝑡) represents the prey population density (plasma glycemia)
nd 𝑧(𝑡) is the pancreatic 𝛽-cells population density. The system (1)
ncorporates various parameters whose values are essential in changing
he system behavior. The parameters of system (1) are defined in
able 1.

The endocrine regulatory system (1) has two positive equilibrium
oints (0.805, 1.815, 1.319) and (0.624, 0.935, 0.877), for the param-
ters set in Table 2 and 𝑎1 = 3. To reveal the dynamical behavior of
ystem (1) the eigenvalues of the Jacobian matrix given in (2) evaluated

t each equilibrium points that the system has. The eigenvalues are
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Fig. 1. Schematic diagram of glucose–insulin regulatory system.
able 1
ystem (1) parameters essential rule.
Parameter Function

−𝑎1 Insulin natural reduction rate in absence of glucose
𝑎2 Insulin propagation rate in presence of glucose
𝑎3, 𝑎4 Insulin increasing rate in response to glucose increase
𝑎5, 𝑎6, 𝑎7 Insulin increasing rate due to 𝛽-cells secretion
−𝑎8 Insulin effect on glucose
𝑎9, 𝑎10 Glucose reduction rate triggered by insulin secretion
𝑎11 Glucose natural growth in absence of insulin
𝑎12, 𝑎13, 𝑎14 Glucose reduction rate due to insulin secreted by 𝛽-cells
𝑎15, 𝑎16, 𝑎17 𝛽-cells increasing rate due to glucose increase
𝑎18, 𝑎19 𝛽-cells natural decreasing rate

Table 2
System (1) parameters values.

Parameter Value Parameter Value

𝑎1 2.04 𝑎12 1.37
𝑎2 0.1 𝑎13 −0.3
𝑎3 1.09 𝑎14 0.22
𝑎4 −1.08 𝑎15 0.3
𝑎5 0.03 𝑎16 −1.35
𝑎6 −0.06 𝑎17 0.5
𝑎7 2.01 𝑎18 −0.42
𝑎8 0.22 𝑎19 −0.15
𝑎9 −3.84 𝑎20 −0.19
𝑎10 −1.2 𝑎21 −0.56
𝑎11 0.3

found respectively (1.3802, −1.7563 ± j7.509) and (−2.8372, 0.5262
± j2.3472), then the two equilibrium points are saddle points.

The pathophysiology in diabetes type 1 is a destruction of 𝛽-cells
in the pancreas which is the insulin-producing cell in the human
body. System (1) can exhibit this disorder by varying the 𝑎15 which
represents the rate of increase in population density of 𝛽-cells. If the
𝑎15 parameter is reduced, this renders the pancreas unable to secrete
enough insulin for regulating the blood glucose level. According to that,
system (1) exhibits chaotic behavior for small values of parameter 𝑎15.
It can be deduced from the bifurcation diagram Fig. 2 and Lyapunov
exponents plot presented in Fig. 3 of the system (1) with respect to the
3

Fig. 2. Bifurcation diagram of system (1) with respect to the parameter 𝑎15.

control parameter 𝑎15. The mathematical model (1) shows some kind
of steady state dynamics for a wide range of system parameter 𝑎15 but
when the parameter decreases, the system behaves chaotically which
is corresponding the expectation. The period doubling root to chaos
is clear as an indication of the predator–prey nature of the metabolic
system.

The chaotic systems have high sensitivity to initial conditions there-
fore, small changes in initial insulin concentration value can greatly
affect glucose level response behavior of the endocrine system (1)
(variable 𝑦(𝑡)). It is noted that in some patients, the administration of
insulin dose through an appropriate program is difficult (Shabestari,
Panahi et al., 2018). Furthermore, in such patients, using a combina-
tion of exercise program, timetabled insulin therapy, and scheduled
nutrition is sure inadequate in confining plasma glucose level within
the healthy range. For these reasons, the interaction irregularity of
the glucose–insulin cannot be ignored and must be taken into con-
sideration (Molnar, GD, WF, & AL, 1972; Shabestari, Panahi et al.,
2018).

3. Control design

Synergetic control methodology is a promising trend in control
science based on the principle of directed self-organization (Kondratiev,
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Fig. 3. The Lyapunov exponent diagram of system (1) with respect to the parameter
𝑎15.

Dougal, Kolesnikov, & Veselov, 2001). The method found a partic-
ular application in nonlinear systems for solving complicated con-
trolling problems. Synergetic control theory requires a comprehensive
view of controlled system dynamic interactions between energy, mat-
ter and information being implemented using positive and negative
feedback (Ahifar, Noee, & Rahmani, 2018).

The synergetic control framework is based on the foundation of
xpansion and contraction of the state space dynamics of the controlled
ystem. It has a proper transient performance for the controlled system,
hich is an important requirement and challenge in modern controller
esigning in the nonlinear system control theory (Ahifar et al., 2019).
oreover, the synergetic controller is chattering free, the phenomena

hat restricts the practical usage of the sliding mode control theory
ecause of its discontinuity.

The ensuing subsections, introduce the fixed-time synergetic con-
roller that can steer aggregated macro variable to reach the specified
nvariant manifold within a constant upper bounded fixed-time. The
ontroller designed to control the chaotic state in the glucose–insulin
egulatory system, and effectively enhance the convergence rate of the
odel state variables.

.1. Fixed-time stability theory

The control objective is to design a fixed time synergetic algorithm
or system dynamics stabilization. The following required definitions
re given:

efinition 1 (Ni, Liu, Liu, Hu, & Li, 2016; Wang, Liu, Liu, & Liu, 2019).
Consider the following differential equation system with 𝑥 ∈ 𝑅 and the
nonlinear function 𝑓 (𝑥) ∈ 𝑅:

̇ = 𝑓 (𝑥), 𝑥(0) = 𝑥0. (3)

Assume the origin of (3) is an equilibrium point, then it is called a
fixed-time stable provided that it is stable with bounded convergence
time 𝑇 (𝑥0), that is ∃𝑇𝑚𝑎𝑥 > 0, such that: lim𝑥0→∞[𝑇 (𝑥0)] ≤ 𝑇𝑚𝑎𝑥.

Lemma 1 (Ni et al., 2016; Wang et al., 2019; Zuo & Tie, 2016). Consider
the following differential equation system with 𝑦 ∈ 𝑅:

�̇� = −𝛼𝑦𝑚∕𝑛 − 𝛽𝑦𝑞∕𝑝, 𝑦(0) = 𝑦0 (4)

where 𝛼 and 𝛽 are > 0, and all the parameters m, n, q, p are odd and
positive numbers, satisfying 𝑚∕𝑛 > 1, 0 < 𝑞∕𝑝 < 1. The convergence time
of (4) for stabilizing to the origin is set to be 𝑇 (𝑦 ), then 𝑦 will converge
0 s

4

to the origin within an upper bounded constant fixed-time 𝑇𝑚𝑎𝑥(𝑦), that is
lim𝑦0→∞[𝑇 (𝑦0)] ≤ 𝑇𝑚𝑎𝑥(𝑦), and

𝑚𝑎𝑥(𝑦) =
1
𝛼

𝑛
(𝑚 − 𝑛)

+ 1
𝛽

𝑝
(𝑝 − 𝑞)

(5)

Lemma 2 (Wang et al., 2019). Consider the following differential equation
system with 𝑉 is a positive definite function:

�̇� = −𝛼1𝑉 𝜁1 − 𝛽1𝑉 𝜁2 , 𝑉 (0) = 𝑉0 (6)

where 𝛼1, 𝛽1 are positive real numbers, 𝜁1 and 𝜁2 are positive numbers such
that satisfy 𝜁1 > 1, 0 < 𝜁2 < 1. The convergence time of 𝑉 to stabilize to the
origin is set to be 𝑇 (𝑉0), then 𝑉 will converge to the origin within an upper
ounded constant fixed-time 𝑇𝑚𝑎𝑥(𝑉 ), that is: lim𝑉0→+∞[𝑇 (𝑉0)] ≤ 𝑇𝑚𝑎𝑥(𝑉 )
nd

𝑚𝑎𝑥(𝑦) =
1
𝛼1

1
(𝜁1 − 1)

+ 1
𝛽1

1
(1 − 𝜁2)

(7)

Proof. The proof of Lemma 2 is presented in Appendix A. □

3.2. Synergetic control design for the glucose–insulin regulatory system

Consider the following nonlinear system:
{

�̇�𝑖 = 𝑥𝑖+1, 𝑖 = 1, 2,… , 𝑛 − 1
�̇�𝑛 = 𝑓𝑛(𝑥) + 𝑔𝑛(𝑥)𝑢

(8)

where 𝑥 ∈ 𝑅𝑛 is the state variable vector of the system, 𝑓𝑛(𝑥) ∈ 𝑅
epresents a smooth nonlinear function describing the system dynamics,
𝑛(𝑥) ≠ 0 is the control gain function, and 𝑢 ∈ 𝑅 is the input control.

In practice, the control vector, 𝑢 necessary to be found based on
ynergetic control theory which ensures system dynamics movement
rom any initial state to invariant manifold and then toward the system
8) origin. The control designed is a function of special macro variable

which is called aggregated variables. These macro variables 𝜓 are
efined as a function of state variables of the dynamical system and
hould be chosen properly by designer and satisfy (Kolesnikov, 2014;
ondratiev, Santi, & Dougal, 2008):

�̇� + 𝜃(𝜓) = 0 (9)

here 𝑇 is a design parameter that specifies the convergence rate of
he macro variable 𝜓 to the invariant manifold 𝜓(𝑥, 𝑡) = 0, and 𝜃(𝜓) is a
mooth differentiable function of 𝜓 that is chosen such that Kondratiev
t al. (2008):

(1) invertible and differentiable;
(2) 𝜃(0) = 0;
(3) 𝜃(𝜓)𝜓 > 0,∀𝜓 ≠ 0.

emma 3 (Wang et al., 2019). If the function 𝜃(𝜓) is selected in the form
f (10), then the 𝜃(𝜓) is satisfying previous conditions.

(𝜓) = 𝜓 (𝑝1∕𝑞1) + 𝜓 (𝑞1∕𝑝1) (10)

here the parameters 𝑞1 and 𝑝1 are odd number such that 𝑞1 > 0 and 𝑝1 > 0,
nd 0 < 𝑞1∕𝑝1 < 1.

roof. The proof of Lemma 3 is presented in Appendix B. □

Then according to Lemma 3, the aggregated macro variable dynam-
cs can be written as follows:

�̇� + 𝜓 (𝑝1∕𝑞1) + 𝜓 (𝑞1∕𝑝1) = 0 (11)

herefore, according to Lemma 1 and (11) the macro variable 𝜓
onverges in a fixed-time toward the invariant manifold 𝜓(𝑥, 𝑡) = 0 and
tays forever.
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The convergence time, according to Lemma 1, is given by 𝑇 (𝜓0) and
upper bounded by a constant, lim𝜓0→∞[𝑇 (𝜓0)] ≤ 𝑇𝑚𝑎𝑥(𝜓) such that:

𝑇𝑚𝑎𝑥(𝜓) = 𝑇
(𝑝1 + 𝑞1)
(𝑝1 − 𝑞1)

. (12)

where 𝑝1, 𝑞1 and 𝑇 are all design parameters selected such that the
aggregated macro variable attracted to the invariant manifold as fast as
required. From the viewpoint of the synergetic control theory, these pa-
rameters proportional to actions done by the forces of self-organization.
Where the required self-organization speed can be obtained by appro-
priate selection for these parameters.

The object of the controller is to restore the state variables of the
endocrine regulatory system (1) from a chaotic state to an equilib-
rium state and stabilize the system whole dynamics. This is will be
implemented through controlling the insulin consecration as the manip-
ulated variable, then the controlled system dynamics can be written as
follows:

⎧

⎪

⎨

⎪

⎩

�̇�(𝑡) = 𝑓1 + 𝑢(𝑡)
�̇�(𝑡) = 𝑓2
�̇�(𝑡) = 𝑓3.

(13)

where

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑓1 = −𝑎1𝑥 + 𝑎2𝑥𝑦 + 𝑎3𝑦2 + 𝑎4𝑦3 + 𝑎5𝑧 + 𝑎6𝑧2

+𝑎7𝑧3 + 𝑎20
𝑓2 = −𝑎8𝑥𝑦 − 𝑎9𝑥2 − 𝑎10𝑥3 + 𝑎11𝑦(1 − 𝑦) − 𝑎12𝑧

−𝑎13𝑧2 − 𝑎14𝑧3 + 𝑎21
𝑓3 = 𝑎15𝑦 + 𝑎16𝑦2 + 𝑎17𝑦3 − 𝑎18𝑧 − 𝑎19𝑦𝑧.

and 𝑢(𝑡) is the injected insulin rate, with reference to the insulin basal
level. let 𝑥1 = 𝑦 − 𝑦𝑑 , where 𝑦 is the glucose consecration level that
represents the output variable of the controlled system, and 𝑦𝑑 is the
required glucose level, then the glucose dynamics can be written as
follows:
{

�̇�1(𝑡) = 𝑥2
�̇�2(𝑡) = 𝑓4 + 𝑚1𝑢(𝑡)

(14)

where

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓4 = 𝑚1𝑓1 + 𝑚2𝑓2 + 𝑚3𝑓3
𝑚1 = −𝑎8𝑦 − 2𝑎9𝑥 − 3𝑎10𝑥2

𝑚2 = −𝑎8𝑥 + 𝑎11 − 2𝑎11𝑦
𝑚3 = −𝑎12 − 2𝑎13𝑧 − 3𝑎14𝑧2

Noting that the glucose concentration variable 𝑦(𝑡) has a relative degree
of two with respect to control input 𝑢(𝑡), as can be observed in (14).

There are different methods to select the aggregated macro variable
𝜓 , such that it guarantees the control objective of making the state
variable of the controlled system (14) converge asymptotically to the
origin, after entering the invariant manifold 𝜓(𝑥, 𝑡) = 0. However, for
the simplest method, consider the aggregated macro variable as a linear
combination of the controlled system (14) states 𝑥1 and 𝑥2 as follows:

𝜓 = 𝑘𝑥1 + 𝑥2 (15)

where 𝑘 is a positive parameter, obtains the convergence rate of the
state variable of (14) to the origin. By substituting (15) into (11) and
solve for the control input 𝑢(𝑡), it can be written in the following
form:

𝑢(𝑡) = − 1
𝑚1

(𝑓4 + 𝑘𝑥2 +
1
𝑇
(𝜓𝑞1∕𝑝1 + 𝜓𝑝1∕𝑞1 )) (16)

Theorem 1. For the system (14), if the control input is given by (16),
then the selected aggregated variable (15) reaches the invariant manifold
𝜓(𝑥, 𝑡) = 0 within a fixed-time.
5

Proof. Consider the following Lyapunov candidate function 𝑉 that is
defined as follow:

𝑉 = 1
2
𝜓2 (17)

Then the time derivative of Lyapunov function 𝑉 , can be obtained
as follows:

�̇� = 𝜓�̇� = − 1
𝑇

(

𝜓 (𝑞1∕𝑝1+1) + 𝜓 (𝑝1∕𝑞1+1)
)

= − 1
𝑇

⎛

⎜

⎜

⎝

(2𝑉 )(
𝑝1+𝑞1
𝑝1
2 ) + (2𝑉 )(

𝑝1+𝑞1
𝑞1
2 )

⎞

⎟

⎟

⎠

(18)

Let 𝑊 = 2𝑉 , then (18) can be written as follows:

�̇� = − 2
𝑇

(

𝑊
( 𝑝1+𝑞12𝑝1

)
+𝑊

( 𝑝1+𝑞12𝑞1
)
)

= − 2
𝑇

(𝑊 𝛾1 +𝑊 𝛾2 )
(19)

here 𝛾1 =
𝑝1+𝑞1
2𝑝1

and 𝛾2 =
𝑝1+𝑞1
2𝑞1

.
According to Lemma 2, and since 𝛾1 > 1 and 0 < 𝛾2 < 1 in (19),

then the functions 𝑊 and 𝑉 converge within fixed-time to zero, which
forces the defined macro variable 𝜓 to reach the invariant manifold
𝜓(𝑥, 𝑡) = 0 within a fixed-time. The proof is completed. □

4. Simulation results

To illustrate the effectiveness of the designed controller, four sce-
narios have been presented. The controller parameters can be tuned
using different optimization algorithms such as GA, PSO and many
other methods. In this paper, the trial-and-error methodology is used
to select the controller parameters, which is typically adopted by many
scientific researchers. The parameters are tuned to achieve the best
transient response and to satisfy the design objectives. The selected
parameters are as follows 𝑘 = 5.7, 𝑇 = 0.51, 𝑝1 = 9 and 𝑞1 = 7. In
the first scenario, the controller has been applied at the beginning of
the simulation to stabilize the system dynamics as shown in Fig. 4,
it is clear that the system dynamics move toward and settle down to
the equilibrium point with good response time, the controller quickly
steer the state variables movement to the invariant manifold in finite-
time. Fig. 5, shows the time series of the insulin, glucose and 𝛽-cell,
with proper transient response. The controller output is presented in
Fig. 6 and it is chattering free and smooth signal. The glucose error is
illustrated in Fig. 7. It is clear that the system reached the equilibrium
in a sophisticated timing manner. The auxiliary variables 𝑥1 and 𝑥2
converge to the origin in a short time as shown in Fig. 8, consequently
this forces the macro variable dynamics to reach the invariant manifold
as it required.

The results demonstrate that even using the injected insulin as the
only manipulated variable, the proposed synergetic controller success-
fully stabilizes the glucoregulatory system dynamics, compared to other
type of controller as in Shabestari, Rajagopal, Safarbali, Jafari and
Duraisamy (2018), where sliding mode controller based on integral
sliding mode surface has been used to control the glucose–insulin
system, the provided controller has three manipulated variables which
are the insulin, glucose and the 𝛽-cells. This fact hinders the controller
practical applicability and feasibility using single hormone artificial
pancreas (SH-AP). On the other side, the proposed control strategy in
this paper use one manipulated variable for regulating the glucose level
to the normal range. This render the proposed controller more feasible
to be implemented by the SH-AP for clinical applications.

In the second scenario, the system in the beginning behaves chaot-
ically then the controller is applied at an arbitrary time point, the
results of the system dynamics show that the trajectory leaves the chaos
attractor and stabilizes to the equilibrium point as indicated in the red
line in Fig. 9. So, even that the type 1 diabetic patient is suffering
an uncontrolled glucose level which is difficult for common treatment
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Fig. 4. System (1) phase portrait with control in action at 𝑡 = 0.

Fig. 5. Time series response of the system states with control in action at 𝑡 = 0.

ethods to administrate proper insulin dose and overcome this biolog-
cal disorder, the designed synergetic controller can successfully treat
he disorder and confine the glucose level within a proper limit. The
ime series of the system variables are given in Fig. 10. The smooth
utput of the controller is shown in Fig. 11. The glucose error and
he auxiliary variables 𝑥1 and 𝑥2 for the second scenario are illustrated
n Figs. 12 and 13 respectively, the results reveal that the aggregated
acro variable converge to the invariant manifold ultimately as fast as

equired. Moreover, the controller is applied on different realizations
f the glucose–insulin chaotic system, to prove that the proposed
pproach performs well for various degrees of chaotic systems as shown
n Figs. 14 and 15.

In the third scenario, to confirm the robustness of the proposed
ontrol algorithm against disturbances, the T1D patient is subjected to a
hree unannounced meals scenario with one unit, and one and half unit
f carbohydrate (CHO). Unannounced meal mode is closer to the daily
ife style of the patient, and naturally, the controller synthesis for it also
eeds more concerns and challenges. This mismatched disturbance, can
e modeled by a decaying exponential function in the following form
(𝑡) = 𝐴 exp (−𝐵𝑡), 𝐵 > 0 (Fisher, 1991). 𝐷(𝑡) represents the rate at
hich glucose is absorbed to the blood from the intestine, following

ood intake. The diabetic subject profile is shown in Fig. 16, where
he meals glucose disturbances are given at time 𝑡 = 50, 𝑡 = 100

and 𝑡 = 150. The figure shows the glucose concentration level and
the control output. The results reveal the robustness of the proposed
6

Fig. 6. The controller output signal with control in action at 𝑡 = 0.

Fig. 7. Glucose error time series with control in action at 𝑡 = 0.

fixed time synergetic control algorithm against disturbances, where the
blood glucose level returned to the required level within an acceptable
time.

In the fourth scenario, when stressed or at emergency situation, the
human body prepares itself by ensuring that enough sugar or energy
is readily available. Epinephrine (commonly known as adrenaline)
levels rise and more glucose is released from the liver, so that quickly
increases the concentration of glucose in the blood (Kwach, Ongati,
& Simwa, 2011). So, assume that the epinephrine released into the
blood stream due to excitement, trauma and/or stress and let 𝐺𝑒 be
the amount of glucose production from the breakdown of glycogen due
to epinephrine secretion. Then 𝐺𝑒 increases the glucose concentration
in the blood stream (Mohammed, Adamu, & Barka, 2019). 𝐺𝑒 can be
written as 𝐺𝑒(𝑡) = 0.3 ⋅ [𝜀(𝑡 − 80) − 𝜀(𝑡 − 120)], where 𝜀 is the unit step
function. The patient profile at this situation under the proposed control
algorithm is shown in Fig. 17, it is obvious that the proposed control
approach successfully responds to the emergency situation effects and
regulate the glucose level to the normal range.

To show the ability of the designed controller to vary the nature of
the response oscillatory behavior and the convergence rate adjustment.
The controller has been applied with different values for the parameter
𝑇 , the results are given in Fig. 18. From Fig. 18 it is easy to find that
the parameter 𝑇 has opposite effect on the convergence speed and the
oscillatory behavior. If 𝑇 is big, the oscillator behavior be more evident.
If 𝑇 is small, the convergence speed can be accelerated.
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Fig. 8. The auxiliary variables time series with control in action at 𝑡 = 0.

Fig. 9. System (1) phase portrait with control in action at 𝑡 = 99. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 10. Time series response of the system states with control in action at 𝑡 = 99,
where 𝑎15 = 0.30.

5. Conclusions

Chaotic oscillation suppression in the endocrine glucose–insulin
regulatory system is an interesting research field for artificial pancreas
7

Fig. 11. The controller output signal with control in action at 𝑡 = 99.

Fig. 12. Glucose error time series with control in action at 𝑡 = 99.

Fig. 13. The auxiliary variables time series with control in action at 𝑡 = 99.

evelopment and diabetes therapy. Most of the current research works
ocus only on some simple endocrine regulatory models. This paper
resents the investigation of the chaotic state and chaos control in
complex dynamics predatory–prey based glucose–insulin regulatory

ystem model. Fixed-time stability theory has been exploited with the
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Fig. 14. Time series response of the system states with control in action at t = 99,
here 𝑎15 = 0.31.

Fig. 15. Time series response of the system states with control in action at t = 99,
here 𝑎15 = 0.33.

Fig. 16. The applied meals disturbances with the glucose level and the control output.

robust synergetic control method. The design of the aggregated macro
variable is achieved to steer the controlled model dynamics toward the
invariant manifold within a fixed-time. The convergence time is upper
bounded by a constant, and not depends on the initial condition values
of the system states. The convergence time can be determined by a
proper selection of control parameters and can effectively accelerate
8

Fig. 17. Glucose production due to epinephrine secretion with the blood glucose level
and the control output.

Fig. 18. Time series response of the insulin concentration with the variation of the
controller parameter 𝑇 and control in action at 𝑡 = 0.

controlled system state variables convergence rate and modulate the
controller aggressiveness. Four simulation scenarios have been pre-
sented to illustrate the effectiveness, superiority and robustness of the
designed controller. Future work may be directed to investigate the
practical implementation of the controller using artificial pancreas,
and further development of the control algorithm to use bi-hormonal
insulin and glucagon synthesis to tackle the problem of glucose–insulin
hemostat.
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Appendix A. Proof of Lemma 2

Proof. from (6), one can obtains that:

𝑉 −𝜁2 �̇� = −𝛼𝑉 𝜁1−𝜁2 − 𝛽1. (20)

Let 𝑟 = 𝑉 1−𝜁2 , then (20) can be changed to (21) as:

�̇� = (1 − 𝜁2)
(

−𝛼1𝑟
1+ 𝜁1−1

1−𝜁2 − 𝛽1

)

(21)
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The dynamic system (21) is converging from initial state 𝑟0 to zero
state in finite time 𝑇 (𝑟0). By integrating (21) as follows:

1
(1 − 𝜁2) ∫

0

𝑟0

𝑑𝑟
𝛼1𝑟1+𝜇 + 𝛽1

= −∫

𝑇 (𝑟0)

0
𝑑𝑡 = −𝑇 (𝑟0). (22)

where 𝜇 = 𝜁1−1
1−𝜁2

and then from (22), get:

lim
𝑉0→∞

[𝑇 (𝑉0)]

= lim
𝑟0→∞

[𝑇 (𝑟0)]

= 1
(1 − 𝜁2)

lim
𝑟0→∞

[

∫

𝑟0

0

𝑑𝑟
𝛼1𝑟1+𝜇 + 𝛽1

]

.

= 1
(1 − 𝜁2)

[

∫

1

0

𝑑𝑟
𝛼1𝑟1+𝜇 + 𝛽1

+ ∫

∞

1

𝑑𝑟
𝛼1𝑟1+𝜇 + 𝛽1

]

≤ 1
(1 − 𝜁2)

[

∫

1

0

𝑑𝑟
𝛽1

+ ∫

∞

1

𝑑𝑟
𝛼1𝑟1+𝜇

]

= 1
𝛼1

1
(𝜁1 − 1)

+ 1
𝛽1

1
(𝜁1 − 2)

= 𝑇𝑚𝑎𝑥(𝑉 )

he proof is completed. □

ppendix B. Proof of Lemma 3

roof. (a) using (10), the derivative of 𝜃(𝜓) can be written as follows:

̇ (𝜓) =
𝑝1
𝑞1
𝜓 (𝑝1−𝑞1)∕𝑞1 +

𝑞1
𝑝1

1
𝜓 (𝑝1−𝑞1)∕𝑞1

(23)

Since 𝑞1 and 𝑝1 are odd numbers, then (𝑝1 − 𝑞1) is even, therefore
�̇�(𝜓) > 0, and then 𝜃(𝜓) in (10) is a monotone function. Therefore,
𝜃(𝜓) satisfies invertibility since it is monotonic function, which meets
the first condition requirements.
(b) It is clear that 𝜃(0) = 0 according to (10), and this is enough to
prove the second condition.
(c) Using (10), the term 𝜃(𝜓)𝜓 can given as follows:

𝜃(𝜓)𝜓 = 𝜓
𝑝1+𝑞1
𝑞1 + 𝜓

𝑝1+𝑞1
𝑝1 (24)

ince 𝑞1 and 𝑝1 are odd numbers, then their sum (𝑝1 + 𝑞1) is even
umber, therefore:

(𝜓)𝜓 > 0, ∀𝜓 ≠ 0,

nd this is meeting the requirements of the last condition.
The proof is completed. □
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