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Abstract. The qualitative information about the interaction between 2-{[p-

chlorophenylimino]methyl}phenol as attracting chelating Schiff base ligand (HL) with cobalt(II)  

and manganese(II) ions have been discussed by using the data of spectroscopy (IR, UV-Visible) 

and 1H NMR resonance techniques. The electrochemical properties of these species have been 

carried out by using cyclic voltammetry studies to see the differences in the potential and activity 

behavior during and after the electron transfer process. The cyclic voltammetry behavior of 

ligand exhibited an irreversible one-electron transfer and redox diffusion-controlled process due 

to the linearity relationship between redox peaks current and square root of scan rates. The cyclic 

sweep for CoL and CoL2 complexes appeared two irreversible oxidation peaks but with different 

values and positions, while the cyclic sweep of MnL and MnL2 complexes appeared several 

redox peaks, which related to the formation of various manganese redox species. All complexes 

had a deviation of current and potential to more anodic values when the cyclic sweep was applied 

at different scan rates. A positive shift was observed for CoL2 and MnL2 complexes may be to 

the electron-donating and electron-withdrawing properties of phenyl substituted group. 

Keywords. Schiff base, Bidentate salicylaldimine ligand, Neutral bidentate ligand, Cobalt (II) 

complex, Manganese (II) complex, Cyclic voltammetry 

1.  Introduction 

Schiff bases as attracting chelating ligands with various transition metal ions were widely developed in 

coordination chemistry for their easy synthesis, moderate stability, diverse oxidation-reduction 

conditions, biological activities and other extensive applications [1, 2, 3, 4, 5, 6, 7, 8], and due to their 

containing of donor atoms like nitrogen and oxygen, they have been used as specific catalysts for 

oxidation, reduction, and other electronic transformations process in different organic and inorganic 

reactions [9, 10, 11]. Schiff base complexes of cobalt and manganese ions have been reported as effective 

complexes in many electrocatalytic processes due to the ability of their metal center for reduction to 

different oxidation states [12, 13, 14]. Moreover, the possible reduction of the ligand is useful to reduce 

the catalyst or abandon it in certain cases [15]. 

In the present study, chloro-salicyliden aniline Schiff base and its complexes with Co(II) and Mn(II) 

have been synthesized and their structures were determined using the 1H NMR method and 

characterized with spectroscopic techniques. The ligands’ electrochemical and their complexes are being  
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by the cyclic voltammetry method by using DY 2300 series Potentiostat/ Bipotentiostat, which gave 

good information about the effect of electron-withdrawing and electron-donating groups on the electrical 

properties. The structures of Schiff base molecule and the prepared complexes are given in Scheme 1. 

                            
     HL ligand        ML complex, M=Co, Mn     ML2 complex, M=Co, Mn 

Scheme 1. The structures of Schiff base molecule and complexes. 

2.  Materials and Methods 

The used chemicals and solvents were of analytical reagent grade and were supplied by Merck and BDH 

companies and used without further purification. 

2.1.  Ligand preparation 

The Schiff base C13H10NOCl; HL ligand is prepared according to a previous procedure [16, 17], by 

dissolving 1.1 g; (1 mmol) of salicylaldehyde in 10 ml of ethanol and adding an equimolar quantity of 

p-chloroaniline to the ethanolic solution, magnetically stirring with adding of 2-3 drops of concentrated 

sulfuric acid, refluxing for 2 h and left overnight at room temperature. The product was filtered, washed 

with ethanol, recrystallized with hot ethanol, and dried at room temperature, yield: 82%. 

 
Scheme 2. 

2.2.  CoL and CoL2 complexes preparation 

The cobalt complexes were prepared according to a previous procedure [18], by drop-wise addition of 

a hot solution of 1mmol of Co(Ac)2
.4H2O in 10 ml of ethanol with stirring to a hot solution of 1and 2 

mmol of Schiff base ligand and refluxed on a water bath for 2 h. The product complexes were cooled, 

washed with ethanol and diethyl ether and dried overnight at 50 oC, yield: 66%, 56%, respectively. 

2.3.  MnL and MnL2 complexes preparation 

In the identical procedure [19], by drop-wise addition of a hot solution of 1 mmol of MnCl2
.H2O in 10 

ml of ethanol with stirring to a hot solution of (1 and 2 mmol) of Schiff base ligand. The mixture was 
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refluxed on a water bath for 2 h, then 2 mmol of sodium acetate was added and the reflux was continued 

for 2 h. The obtained MnL and MnL2 complexes were filtered, washed with ethanol and diethyl ether, 

and dried in vacuum at room temperature, yield: 52%, 49%, respectively. 

2.4.  Cyclic voltammetry 

The electrochemical behavior of ligand and metal complexes was investigated by cyclic voltammetry 

for 10-3 M of a compound in acetonitrile containing 0.1 M of tetrabutylammonium tetrafluoroborate 

(TBATFB) as a supporting electrolyte at room temperature using Ag/AgCl as a reference electrode in a 

potential range of -1 to +2 V and a scan rate of 0.05 to 0.5 Vs-1. 

3.  Result and Discussion 

3.1.  FT-IR spectra 

FT-IR spectroscopy is a powerful tool for assigning geometry to the coordination chemistry. the 

operational classes and their FT-IR frequencies of Schiff base ligand and its Co(II)  and Mn(II) 

complexes are listed in Table 1, Figures 1,2 and 3. They were recorded in wave number 4000-400 cm-1 

by KBr pellets by using FT-IR 8400s Spectrophotometer model 2000 from Shimadzu, Japan. 

The FT-IR spectrum of the ligand shows a high-intensity band at 1610 cm-1 assigned to ν (C=N) 

indicating the formation of azomethine group in the ligand [18]. This band was shifted to the longer 

frequency in the spectra of Co(II) and Mn(II) complexes, respectively, a suggestion the coordination of 

the metal ions with Schiff base ligand. The absence of phenolic –OH stretching frequency, at 3448 cm-

1 of the ligand and appearance of new bands at (538-500) cm-1 in the spectra of the prepared complexes 

are assigned to ν (M-N) and ν (M-O), respectively [14] indicating the coordination of Schiff base through 

nitrogen atom of azomethine group and oxygen atom of the phenolic group [20]. The strong and sharp 

bands at 727-839 cm-1 confirm the presence of H2O molecules in the coordination sphere of the 

complexes [21, 22]. 

 
Figure 1. FT-IR spectrum of the Schiff base ligand. 
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Figure 2. FT-IR spectrum of CoL complex. 

 
Figure 3. FT-IR spectrum of CoL2 complex. 

 

Table 1. Selected FT-IR bands (cm-1) of ligand and its complexes. 

Compound ν Ar-CH ν CH=N ν C-O ν C=C 

HL 3050 1610 1273 1568 

CoL 3016 1604 1248 1489 

CoL2 3075 1610 1273 1487 

MnL 2978 1612 1230 1531 

MnL2 3059 1612 1273 1566 

3.2.  Electronic spectra 

The electronic spectrum of Schiff base ligand; HL shows three main bands (Fig. 4). The first absorption 

band at 272 nm attributed to π-π* transition for the aromatic system, while the second absorption band 

attributed to π-π* transition of imine group which appeared at 322 nm [23]. This band was not 
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significantly affected by chelating. The third absorption band showed at 344 nm assigned to n-π* 

transition which was shifted to a shorter wavelength (blue shift) upon formation of the complex [24]. 

This shift may be attributed to the donation of lone pairs of O/N (p orbital)→ metal ion charge transfer 

(LMCT) suggesting the coordination of Co(II) and Mn(II) ions by the donor atoms of the ligand [25]. 
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Figure 4. The electronic spectra of Schiff base ligand and MnL2 complex, respectively. 

3.3.  Electrochemical studies 

The cyclic voltammetry behavior of HL exhibited three irreversible redox peaks of one-electron transfer 

which may be to the formation of anions and cations species due to a reduction and oxidation process 

corresponding to an irreversible electron transfer [31, 32, 33]. By using different scan rates, the deviation 

in current was observed and various potential anodic values were measured which may be related to the 

increase of the scan rates, see Fig. 7. The linearity relationship as shown in Fig. 8, derived from redox 

peaks current with the square root of scan rates illustrates that the redox is a diffusion-controlled process 

[34]. The electrochemical data of the ligand and prepared complexes are summarized in Table 2. 

 
Figure 5. The cyclic voltammograms of the Schiff base ligand at different scan rates; a (0.05 Vs-1), b 

(0.1 vs-1), c (0.2 Vs-1) and d (0.5 Vs-1). 
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Figure 6. The plot of peak current against square root of scan rate of ligand. 

Table 2. The oxidation and reduction potential values of the ligand and its complexes at scan rate 0.2 

Vs-1. 

Reduction steps Oxidation steps Comp. 

Epc5(V) Epc4(V) Epc3(V) Epc2(V) Epc1(V) Epa5(V) Epa4(V) Epa3(V) Epa2(V) Epa1(V)  

--- --- 1 0.01 -0.25 --- --- 1.9 1.42 0.3 HL 

--- --- --- --- --- --- --- --- 1.25 0.25 CoL 

--- --- --- --- --- --- --- 1.8 1.4 0.4 CoL2 

--- -0.28 0 1 1.37 --- 1.84 1.37 1.125 0.25 MnL 

-0.25 0.03 1.04 1.37 1.75 1.87 1.62 1.375 1.125 0.27 MnL2 

 

The cyclic sweep for CoL and CoL2 complexes appeared two irreversible oxidation peaks, but with 

different values and positions as shown in Figure 9, caused by one-electron transfer, the first peak 

attributed to the formation of Co(II) π cation radical and the second for Co(III) [35]. Another weak 

oxidation peak for CoL2 complex was noticed clearly at 1.8 V with a scan rate 0.1 and 0.2 Vs-1, maybe 

due to the presence of the phenolic hydroxyl group of the ligand excess, which acts as a proton donor 

[36]. Moreover, the same deviation of current and potential to more anodic values for ligand were 

observed when the cyclic sweep was done for CoL and CoL2 complexes at the different scan rates 

(Figure 10). 

 

 
Figure 7. The cyclic voltammograms of CoL and CoL2 complexes, respectively at different scan rates; 

a (0.05 Vs-1), b (0.1 Vs-1), c (0.2 Vs-1) and d (0.5 Vs-1). 
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Figure 8. The plot of peak current against square root of scan rate of CoL and CoL2, respectively. 

The cyclic sweep for MnL and MnL2 complexes appeared several redox peaks, which related to the 

formation of various manganese redox species [37] as shown in Figure 11. Two peaks are reversible 

redox couples Ipa/Ipc= 0.9-1.0 A, the first redox peaks couple are assumed to the Mn(III)/Mn(II), while 

the second is assumed to the Mn(IV)/Mn(III) with the one-electron transfer. Moreover, the scan for 

MnL2 gave another reduction and oxidation peaks, related to the presence of an additional phenolic 

hydroxyl group of the ligand which acts as a proton donor [36]. Both MnL and MnL2 complexes had a 

deviation of current and potential to more anodic values when the cyclic sweep was done at different 

scan rates as shown in Figures 12, 13, respectively. 

By comparing the potential values for prepared complexes which summarized in Table 2, a positive 

shift was observed for CoL2 and MnL2 may be due to the electron-donating and electron-withdrawing 

properties of phenyl substituted group [38]. 

 
Figure 9. The cyclic voltammograms of the MnL and MnL2 complexes, respectively at different scan 

rates; a (0.05 Vs-1), b (0.1 Vs-1), c (0.2 Vs-1) and d (0.5 Vs-1). 

 
Figure 10. The peak current against the square root of scan rate of MnL complex. 
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Figure 11. The plot of peak current against square root of scan rate MnL2 complex. 

4.  Conclusion 

The characteristic chelating properties of 2-{[p-chlorophenylimino]methyl}phenol ligand (HL) with 

cobalt(II) and manganese(II) ions have been investigated by spectroscopic techniques and cyclic 

voltammetry studies. The infrared data conforming that, the coordination of metal ions with Schiff base 

ligand introduced via the nitrogen atom of azomethane and oxygen atom of the phenolic group. The 

electronic spectra observed that the coordination takes place via the donation of lone pairs of O/N (p-

orbital)→metal ion charge transfer (LMCT). While the differences in the number of peaks and 1H NMR 

chemical shift of the free ligand and its complexes confirm that the bonding between them occurs. The 

cyclic voltammetric behavior of the prepared complexes was studied during and after the electron 

transfer process. The ligand exhibited an irreversible one-electron transfer and redox diffusion-

controlled process, the Co(II) complexes appeared two irreversible oxidation peaks but with different 

values and positions and Mn(II) complexes appeared many redox peaks, which related to the formation 

of various manganese redox species. All complexes had a deviation of current and potential to more 

anodic values when the cyclic sweep was done at different scan rates. 
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