ANTIFERTILITY EFFECTS OF ETHANOLIC EXTRACT OF
ANETHUM GRAVEOLENS IN MALE RABBITS

M. Kadhem¹, A. Al-rikaby¹ & H. Khassaf¹

Department of physiology, pharmacology and Biochemistry, Faculty of Veterinary Medicine, University of Basra, Basra, Iraq

Summary

Gonadectomy is the most commonly utilized method for permanent contraception in small animals. But some negative side effects can be noticed after surgical castration, therefore finding safe and effective contraceptive substances can be so useful, medicinal plants have a long history of use in traditional medicine. The sperm cell count, motility, live/dead sperm cell ratio, morphology, LH, FSH and Testosterone level were used in this study to evaluate the effect of prolonged administration of ethanolic extract of Anethum graveolens on male reproductive system in male rabbits. Twelve healthy adult male rabbit were randomly divided in to two groups. The rabbits in group 1 (control group) were administered normal saline (3ml), while rabbits in group 2 were administered ethanolic extract of Anethum graveolens at dose 0.5 gm./kg B.W for 30 days. The treatment with extract caused significant decrease in sperm motility, live/ dead, sperm count, sperm LH, FSH and testosterone level with significant increase(P≤0.05) of abnormal sperm. Histological study showed many pathological changes in testes. On the other hand, Prolonged administration of the extract could be a good source of drug for birth control.

Key words: Anethum graveolens, sperm, LH, FSH and testosterone.

INTRODUCTION

Gonadectomy is the very commonly used method for permanent contraception in small animals. But several negative side effects can be observed after surgical castration, therefore finding safe and effective contraceptive materials can be very useful, medicinal herbs have a long history of use in traditional medicine.

Anethum graveolens L commonly known as dill belonging to the family Umbelliferae, the generic name Anethum is derived from the Greek word anethon and the common name dill comes from the Norse word dylla or dilla which probably means to soothe (Singh & Panda, 2005).Dill an annual herb growing in the Mediterranean region, Europe, central, southern Asia. The plant is used both medicinally and as an aromatic herb and spice and cookery. dill has been used traditionally for gastrointestinal ailments such as flatulence, indigestion, stomachache colic and to tract intestinal gas (Hosseinzadeh et al., 2002). it is used anticonvulsant, antiemetic, anticramp (in children) remedy and also recommended topically as a wound healers (Naseri et al., 2012), antispasmodic (Fleming, 2000), antimicrobial (Delaquis et al., 2002), cardioprotective (Hajhashemi & Abbasi, 2008), antihyperlipidemic
The aim of the present study is to evaluating the effect of ethanolic extract of *Anethum graveolens* on fertility in male rabbits.

MATERIALS AND METHODS

Collection of plant materials and extraction:

Fresh plant of dill was purchased from the local market at Basra-Iraq. The shade dried plant was finely powdered in chemical mixer, 50gm of powder were put in the round bottle flask, 200ml of ethanol (70%) were added to flask and extracted for 12 hours at 70 °C. the extract was filtered by using whatmann filter paper, then the extract were put in the petri dish and left at room temperature under the shade, the collection extracts were kept in tight closed container and stored till using (Itarbone, 1998).

experimental animals:

Twelve healthy adult male rabbit weighting 1000-1500 gm. were used, the animals kept in suitable cages in the animal house of veterinary medicine college / Basra university, rabbits were acclimated to holding facilities for two weeks prior to the experiment, and were fed standard diet and water *ad libitum.*

The animals were divided into two groups, each group containing 6 animals as follow:

Group 1: rabbits received oral administration of normal saline (3ml) for 30 days (served as control group).

Group 2: rabbits received oral administration of ethanolic extract of *Anethum graveolens* at dose 0.5 gm./kg B.W for 30 days.

blood samples

At the end of experimental period, blood samples were withdrawn from all animals through cardiac puncture, then the blood samples were put in a screw tube without anticoagulant then centrifuged at 5000 rpm for 15 minutes to get serum for hormonal assay.

hormonal assay

Serum samples were assayed for testosterone, using the enzyme- linked immunosorbent assay (ELISA) technique using the Fortress kit.

The concentration of FSH and LH were measured by Enzyme Linked Immuno Assay (ELISA) technique according to kit (Monobind Inc. lake forest CA 92630 USA).

Semen collection

the testes were removed along with the epididymis. The caudal epididymis were separated from the testes, blotted with filter papers and lacerated to collect the semen.
Semen analysis

Progressive sperm motility: this was done immediately after the semen collection. Semen was squeezed from the caudal epididymis onto pre-warmed microscope slide 37°C and two drops of warm 2.9 % sodium citrate was added, the slide was then covered with a warm cover slide and examined under the microscope. The percentage of motile sperms was defined as the number of motile sperms divided by the total number of counted sperms (Mohammad et al., 2005).

Sperm viability

Eosin and Negrosine stain was used to identify the live and dead sperms. The dead sperm stained with the eosin, while the live sperm did not. The stained and unstained sperms were counted and the percentages was calculate (Wyrobook & Bruce, 1975).

Viability= No. of live sperm / No. of sperm count x100

Sperm abnormality

sperm suspension 50 µl was put on one end of the clean and warm slide, then a drop of Eosin-Negrosine stain was added, mixed by using glass rod and spreaded all over the slide by another slide. The smear was left to dry and examined under oil immersion. The abnormal sperms were calculated in each slide by examining 200 sperms (Meistrich et al., 1973).

%Abnormal sperms = No. of abnormal / No. of total sperm x100

Sperm count

This was done by removing the caudal epididymis from the right testes and blotted with filter paper. The caudal epididymis was immersed in 5ml formal saline in a graduated test-tube and the volume of fluid displaced was taken as the volume of the epididymis. The caudal epididymis and the 5ml formal saline were then poured into a mortar and homogenized into a suspension from which the sperm count was carried out using the improved Neubauer haemocytometer under the microscope (Sakamoto & Hashimoto, 1986).

Histological examination:

After removing the testes, they immediately fixed in Bouin’s fluid for 12 hours and the Bouin’s fixative washed from samples with 70% alcohol. the tissues were dehydrated progressively in ascending ethanol concentration then treated with xylene and embedded in paraffin. Five microns thick section of paraffin embedded tissues were mounted on glass slide and stained with heamatoxylin and eosin stain. Sections were examined by mean of light microscope. The sections were made from the middle portion of the testis and the component and functional changes for tissue of testis slide were examined by using light microscope (Luna, 1993).
Statistical analysis:

The mean and standard deviation (mean ± SD) were calculated for all values. Comparison between the control and the treated group were done using the student's t-test. Difference were considered statistically significant at (P ≤0.05) (SPSS , 2001).

RESULTS

Effect of ethanolic extract of Anethum graveolens on motility, live-dead sperm ratio and Sperm abnormalities in male rabbits

The obtained results in (Table 1) revealed a significant low (P≤0.05) in motility and live-dead sperm ratio in semen of male rabbits treated with ethanolic extract of *Anethum graveolens* compared with control group. Moreover, there is a significant increase (P≤0.05) in abnormal sperm morphology of treated group as compared with control group.

Table 1. Effect of alcoholic extract of *Anethum graveolens* on motility and live-dead sperm and sperm abnormalities in male rabbits

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control group</th>
<th>Treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td>motility % Sperm</td>
<td>90.33±1.032 a</td>
<td>54.83±0.752 b</td>
</tr>
<tr>
<td>Live-dead sperm ratio</td>
<td>84.50±0.836 a</td>
<td>21.00±1.264 b</td>
</tr>
<tr>
<td>Sperm abnormalities %</td>
<td>2.581±16.33 b</td>
<td>28.83±1.471 a</td>
</tr>
</tbody>
</table>

Values are expressed as mean± SD of 6 rabbit in each group. Means bearing different letters differ significantly (P≤0.05).

Effect of ethanolic extract of Anethum graveolens on LH, FSH, Testosterone level in semen male rabbits:

The mean values of LH, FSH, Testosterone concentration as presented in (Table2), the results indicated a significant (P≤0.05) decline in serum above hormones of treated group with ethanolic extract of *Anethum graveolens* compared with control group.

Table 2. Effect of alcoholic extract of *Anethum graveolens* on LH, FSH and testosterone level in male rabbits.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH (m IU/ml)</td>
<td>2.90±0.24 a</td>
<td>1.63±0.17 b</td>
</tr>
<tr>
<td></td>
<td>Mean ± SD</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>FSH (m IU/ml)</td>
<td>1.73±0.15 a</td>
<td>0.71±0.16 b</td>
</tr>
<tr>
<td>Testosterone (ng/ml)</td>
<td>2.53±0.16 a</td>
<td>1.70±0.14 b</td>
</tr>
</tbody>
</table>

Values are expressed as mean± SD of 6 rabbit in each group. Means bearing different letters differ significantly (P≤0.05).

Sperm examination

In the control group the sperm was normal (Fig.1,a), but sperms of rabbit treated with ethanolic extract of *Anethum graveolens* showing large number of dead, and large number of different types of abnormal sperms were observed, coiled tail fig.(1,b), big head fig.(1,c) headless tail fig.(1,d) and tailless head fig.(1,e).

Fig.1. (a) normal sperm in control group, various sperm defects (b - e) were observed. b: coiled tail, c: big head, d: headless tail and e: tailless head in treated group with ethanolic extract of *Anethum graveolens*.

Histological examination

Section of testis of rabbit in control group showing normal seminiferous tubules and spermatogenesis(fig.2), while section of testis of rabbit treated with ethanolic extract of *Anethum graveolens* showing vacuolation of epithelial cells lining of seminiferous tubules(sertoli cells) with suppression of spermatogenesis, congested blood vessels, thickening in capsules, odema and fibrosis in interstitial tissue with inflammatory cells, degeneration of basement membrane and fragment of nucleolus cells(fig.3).
DISCUSSION

In this study, Male rabbits administered ethanolic extract of *Anethum graveolens* has significant decrease (P≤ 0.05) in sperm motility, live/ dead and total sperm count when compared to the control group, which could be due to the effect of this extract on the cell cycle, cell division and expression of genes necessary for the spermatogenesis. It is also possible that these changes might be as a result of changes in the microenvironment of epididymis and creation of a toxic microenvironment presence in extract, thus influencing sperm count and motility (Parisa *et al.*, 2014).

In our study showed a significant decrease in the level of FSH and LH and testosterone concentrations in rabbits treated with ethanolic extract of *Anethum graveolens* as compared with control group, this indicates that the active ingredients of the extract may alter the pituitary gonadotropins hormones like FSH and LH (Kusemiju *et al.*, 2010). low levels of these hormones decrease endogenous testosterone secretion from the testis depriving developing sperm of the signal required for normal maturation and also it suppress testicular steroidogenesis and spermatogenesis (Kusemiju *et al.*, 2010)since the pituitary-testicular axis is a central regulatory conduit for testicular function that culminates in the production of spermatozoa (Cheng *et al.*, 2010).

Alteration of sperm cell morphology caused by *Anethum graveolens* in our study, as a result of a fundamental problem with the process of maturation where abnormal sperm cells are matured from damaged seminiferous tubules (Thomas & Thomas, 2001). Prolonged administration of the extract can be inferred to have harmful effects on the seminiferous tubules which is reflected in this study the high sperm cell abnormalities observed. this observation is supported by histopathological findings of the testes whereby rabbits administered with *Anethum graveolens* exhibit varying degrees of lesions of the seminiferous tubules theses alterations might be caused by cytotoxicity of extract. This study demonstrated that the ethanolic extract of *Anethum graveolens* have antifertility effect on testis of rabbits.
and could be further investigated for possibility of developing a cheap, acceptable and easy available male contraceptive.

REFERENCES

SPSS statistical packages for the social sciences. (2001). Statistical software for windows version 13.0 Microsoft. SPSS. Chicago. IL. USA.

