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Abstract

Mathematical modeling is very helpful for non-invasive investigation of glucose-insulin interaction. In this paper a
new time delay mathematical model for glucose-insulin endocrine metabolic regulatory feedback system incorpo-
rating the β-cell dynamic and function for regulating and maintaining bloodstream insulin level, has been proposed.
The proposed model includes the mathematical representation of an important biological fact that the moderate hy-
perglycemia leads to the growth of the β-cell number (negative feedback) while extreme hyperglycemia leads to the
reduction of the β-cell number (positive feedback). The dynamical behavior of the model is analyzed analytically
using Hopf bifurcation theorem and numerically such as two dimensional bifurcation diagrams with respect to two
essential parameters of the model are obtained. The results show that the time delay in insulin secretion in response to
blood glucose level, and the delay in glucose drop due to increased insulin concentration can give rise to complex dy-
namics, such as periodic oscillation consistent with the biological findings and periodic doubling cascade and chaotic
state which represent metabolic disorder that may lead to diabetes mellitus.
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1. Introduction

Diabetes mellitus (DM), which is a chronic dis-
ease, known commonly as diabetes is a syndrome of
metabolic system dysfunctions, usually due to a com-
bination of hereditary and environmental causes, caus-
ing abnormal high blood plasma sugar levels known as
hyperglycemia. Glucose concentration in the plasma
of a normal subject lies in the range of 80-110 [mg/dl]
[1]. Plasma glucose level is controlled by complex in-
teractions of multiple hormones and chemicals in the
body, including the insulin produced in the pancreatic β-
cells. Diabetes mellitus has become a disease with con-
siderable complications such as nephropathy, retinopa-
thy, peripheral neuropathy and blindness [2]. The num-
ber of subjects with diabetes in the world is increasing
continuously every year. International Diabetes Federa-
tion (IDF) estimates that 463 million people around the
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world live with diabetes corresponding to 1 to 11 of the
20-79 adult population. The figure is expected to hit the
700 million people in 2045 [3].
Blood plasma glucose level is regulated by two negative
feedback control loops where hyperglycemia stimulates
a rapid increase in insulin charge from the pancreatic β-
cells. The associated increase in plasma insulin concen-
tration causes increased glucose removal and decreased
its production by the liver which leads to a reduction in
plasma glucose [4, 5]. On the other side, hyperglycemia
contributes to a second negative feedback control loop
by increasing the number of insulin secreting β-cells,
by changing the rates of β-cell replication and death [5].
An increased β-cell number represents an increase ca-
pacity for insulin secretion which, in turn, would lead
to a decrease in blood glucose.

Mathematical modeling for studying the glucose
metabolism and insulin secretion or glucose-insulin in-
teraction have a longstanding history. Mathematical
models continue to become more and more accurate
and clinically feasible, and evolve to be a useful re-
source for clinical investigation; thus playing an impor-
tant role in understanding the governing mechanisms
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of the glucose-insulin regulatory [6]. Due to the great
complexity of the regulatory system many mathemat-
ical models have been suggested [7, 8, 9, 10, 11] to
investigate the relationship between the concentrations
of plasma glucose and insulin in response to glucose
charge or increase. One of the pioneer work was done in
1939 by Himsworth and his coworkers [12] where they
proposed the first approach to measure the insulin sen-
sitivity in vivo. Ackerman et al. [8] suggested a simple
linear model for representing glucose tolerance test us-
ing two linear ordinary differential equations. A funda-
mental milestone of mathematical modeling of glucose-
insulin system is thought to be the so called minimal
model proposed by Bergman and coworkers [13]. This
mathematical model is widely used in physiological sci-
entific research on the metabolism of the glucose.

In 1987 Bajaj suggested a nonlinear mathemati-
cal model incorporating the kinetic of the β-cell and
glucose-insulin regulatory system [9], which is based
on Turner et al. [14] to incorporate the β-cell dynam-
ics. The analysis of the dynamical model of Bajaj was
shown that only damped oscillation can occur in re-
sponse to glucose charge. However, several researches
have shown persistent oscillation pattern in the blood
glucose level and insulin concentration [14, 15]. Topp
[4] developed a novel mathematical model incorporat-
ing the β-cell dynamics, insulin, and glucose kinetics,
where the dynamics of the glucose and insulin are con-
sidered relatively fast compared to β-cell mass dynam-
ics. Whole body glucose regulation mechanism was
described using various mathematical models proposed
for glucose regulation in the human body, which also
show the difficulty and limitation in reproducing real
processes of glucose regulation [16].

A new approach to deal with the glucose-insulin sys-
tem complexities is the use of time-delay in the differ-
ential equations. The lags or simply the delays can lump
complicated biological processes together [17] repre-
senting only the time required for these processes to
occur. Time-delay models become more common and
widely used in many biological modeling branches [18].
Time-delay models have appeared in theory of chemo-
stat model [19], epidemiology [20] circadian rhythms
[21], neural networks [22, 23] and genetic regulatory
networks [24]. The inclusion of time delay in the
glucose-insulin feedback system appeared in research
work [25, 26, 27, 28]. Chuedoung et al. [29] ex-
pressed the glucose and insulin dynamic system as a
one-compartment model to study the oscillatory behav-
ior of the system. They considered the existence of two
explicit time-delays, the first is the glucose triggered in-
sulin production lag τg and the second time-delay is the

hepatic glucose response lag τi. They proposed that the
combined effect of the two time-delays influenced the
dynamics of the glucose-insulin regulatory mechanism,
but not each individual delay. They concluded that there
was a critical composite delay τ affects the oscillatory
behavior of the glucose-insulin homeostasis. They re-
vealed two dynamical states related to the regulatory
system, where below the critical composite time-delay
the system is asymptotically stable toward fixed points
and have oscillatory behavior otherwise.

In this paper, we proposed a nonlinear mathemati-
cal model for the endocrine glucose-insulin metabolic
regulatory feedback system consisting of delay differ-
ential equations modified from the model studied by
Chuedoung [29]. The new model considers the repre-
sentation of an important biological fact not included in
the model before, which is related to the hyperglycemia
or high glucose concentration level that triggers and in-
creases the death rate of the β-cell. The nonlinear model
is then analyzed analytically using Hopf bifurcation the-
orem to capture different dynamical behaviors, includ-
ing the stable dynamics, the existence of periodic so-
lutions and sustained oscillations, and derived the ap-
propriate conditions for the system to undergo these be-
haviors. Moreover, we investigated the inherent chaotic
state and hidden pattern dynamics which are not pre-
sented in the work of [29]. These dynamics have an im-
portant biological implications and attracted many sci-
entific researches to investigate behavior complexity of
the biological systems [30, 31, 32].
This paper is organized as follows. In Sec. 2, we de-
scribe the proposed glucose-insulin metabolic regula-
tory system. Sec. 3, includes the mathematical system
analysis and appropriate conditions for Hopf bifurcation
are given. In Sec. 4, we present numerical simulation.
Then a discussion of the results are given in Sec. 5.

2. Proposed Model

Nonlinear models of the glucose-insulin regulatory
system consider that the relationship between com-
ponents is not always linear and it could depend on
plasma glucose initial level; moreover, they showed
the fact that the patients profiles statistical properties
could alter substantially [33]. The interactions between
different components of the glucose-insulin regulatory
system are responsible for the comprehensive behavior
of the system dynamics, making this biological regu-
latory system a complex one. We propose a nonlinear
mathematical model for endocrine glucose-insulin
regulatory feedback system which starts from the
model of [29], and modified to model the fact that
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Figure 1: A scheme of the dynamics of glucose, insulin and β-cell.

β-cell replication and death rates vary nonlinearly
with glucose concentration level according to in vitro
studies [34, 35] which demonstrate that the β-cells
amount subjected to replication varies as a nonlinear
function of glucose level concentration in the medium.
The rate of replication of β-cells increases when the
glucose levels increasing; however, at high glucose
level or extreme hyperglycemia, β-cell replication may
be reduced [34, 35]. This modification is rendering the
new proposed model more biologically realistic. The
model equations then become time delay differential
equations model, the dynamics scheme showing the
main elements and components is presented in Fig. 1
and then formulated by the following delay differential
equations system:

.
x(t) = r1z(t − τg)y(t − τg) − r2x(t) + c1z(t − τg)

.
y(t) = R3N/z(t) − R4x(t − τi) + c2

.
z(t) = R5(y(t) − ŷ)(T − z(t)) + R6z(t)(T − z(t))−

R7z(t) − R8y2(t)z(t)

(1)

where x(t) is the insulin concentration above its basal
level, y(t) is the glucose concentration above its basal
level and z(t) is β-cells number according to Bajaj [9]
definition, and ŷ stands for the difference between glu-
cose basal level and glucose fasting level. τg is the time
delay of insulin secretion stimulated by plasma glucose
level change, and τi is the time-delay in glucose reduc-
tion caused by insulin concentration increase. The term
r1y(t − τg)z(t − τg) represents the insulin concentration
increase in response to previous increase in plasma glu-
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cose at time-delay τg.
Since insulin is a hormone, it has to be degraded like

any other hormone. Apart from its degradation as it
helps in the conversion of the excess glucose to glyco-
gen, it is being used for other activities and these activi-
ties degrade it. r2x is the decreasing rate of insulin inde-
pendent of glucose, c1z(t − τg) is the increase of plasma
insulin level secreted by β-cells and it is independent
from the remaining components.

System (1) embraces two time delays included in
the glucose-insulin regulatory system; therefore, it is
more realistic and more representative of behavior of
the glucose-insulin biological regulatory system in dif-
ferent time delays. Previous mathematical models can-
not show the rich dynamics of the aforementioned bio-
logical system with respect to time delays. According to
the model proposed by Molnar et al. [7], if there is a de-
crease in insulin secretion due to a reduction to 1/N of
the normal number, n, of β-cells, the basal plasma glu-
cose increases until nearly normal basal insulin levels
are obtained [9]. So, the plasma glucose concentration
is a function of the β-cells capacity N/n.

R4x(t − τi) is the reduction rate of glucose concentra-
tion in response to insulin secretion with the time delay
τi. T parameter in the model represents the total density
of β-cells, and the term R5(y − ŷ)(T − z) represents the
increase of dividing β-cells due to the interplay between
blood glucose above the fasting level and the nondivid-
ing β-cells. The term R6z(T − z) represents the rate of
increase of z caused by bilateral interaction between di-
viding and nondividing β-cells, and the term R7z rep-
resents the reduction in z due to β-cell current level. β-
cells can be formed by the replication of existing β-cells,
neogenesis (replication and differentiation) from stem
cells, and transdifferentiation of other cells. Presently,
it is not possible to quantify rates of neogenesis and
transdifferentiation. However, calculations suggest indi-
rectly that they make a negligible contribution to β-cell
mass dynamics except during development and in re-
sponse to extreme physiological or chemically induced
trauma [36, 37, 38]. In vitro studies demonstrate that the
amount of β-cells undergoing replication varies nonlin-
early with glucose level concentration in the medium.
Rate of β-cell mass replication increases with glucose

level elevation. However, at excessive hyperglycemia,
β-cells replication may be reduced [34, 35]. Moreover,
β-cells can be lost by apoptosis (regulated cell death),
necrosis (unregulated cell death). In vitro, β-cells death
has been shown to vary as a nonlinear function of glu-
cose concentration level. Increasing the blood glucose
concentration from 0 to about 11 mM in medium sur-
rounding cultured β-cells, reduced the rate of β-cells
death. When the glucose level above 11 [mM], the death
rate of β-cells either remained low or increased [39, 40].
We have modeled this behavior with term R8y2(t)z(t),
changing the existed growth rate of the β-cells to be in
logistic form. This is rendering the model to be more
consistent with the biological studies. The above model
then can somewhat abstractly be written as a system of
three differential equation in the following form:

.
x(t) = r1zτg yτg − r2x + c1zτg

.
y(t) = R3N/z − R4xτi + c2

.
z(t) = R5(y − ŷ)(T − z) + R6z(T − z) − R7z − R8y2z

(2)
where

xτi ≡ x(t − τi)
yτg ≡ y(t − τg)
zτg ≡ z(t − τg)

(3)

3. Dynamical Analysis

In order to study the effect of the two time delays
and the existence of periodic and chaotic dynamics in
the proposed model, assume that the system steady state
point is (xs, ys, zs). Letting X = x − xs, Y = y − ys and
Z = z − zs, so this will lead to the following linearized
model of the proposed system (1):

.
X
.

Y
.
Z

 = J

 X
Y
Z

 (4)

where J is the Jacobian matrix evaluated at the steady
state point (xs, ys, zs) and can be written as in (5).
Then, the corresponding transcendental polynomial
characteristic equation of J can be written as in (6).

J =


−r2 r1zse−λτg (r1ys + c1)e−λτg

−R4e−λτi 0 −
R3

z2
s

N

0 R5(T − zs) − 2R8yszs −R5(ys − ŷ) + R6(T − 2zs) − R7 − R8y2
s

 (5)
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F(λ) = λ3 + a1λ
2 + a2λ + [a3 + a4λ]e−λτ − a5 (6)

where
τ = τi + τg

a1 = A6 − A5,
a2 = −A1A3 − A5A6,
a3 = A1A4 + A5A7,
a4 = A7,
a5 = A1A2,

with
A1 = R5(T − zs) − 2R8YsZs,

A2 = −
r2R3

z2
s

N,

A3 = −
R3

z2
s

N,

A4 = R4(r1ys + c1),
A5 = −R5(ys − ŷ) + R6(T − 2zs) − R7 − R8y2

s ,
A6 = r2,
A7 = R4r1zs.

An important approach to gain preliminarily insight
into the properties and behavior of a dynamic system is
to carry a bifurcation analysis. To find the appropriate
conditions on the model (1) that ensure the occurrence
of Hopf bifurcation, assume λ(τ) = σ(τ) + jµ(τ) where
σ(τ) and µ(τ) both depend on the time delay, and sub-
stitute into (6), get:

(σ(τ) + jµ(τ))3 + a1(σ(τ) + jµ(τ))2 + a2(σ(τ) + jµ(τ))
+ exp(−στ)(cos(µτ) − jsin(µτ))(a3 + a4(σ(τ) + jµ(τ)))
+a5 = 0

(7)
Now suppose that σ(τc) = 0 for some τc > 0 and σ(τ) <
0 for vaules of 0 < τ < τc. Then the equilibrium point of
the system (1) may lose its stability at τc, where λ(τ) =

jµ(τc). However, jµ(τc) is a solution of (6) if and only
if

− jµ3 − a1µ2 + ja2µ + (a3 + a4 jµ)(cos(µτ) − jsin(µτ))
+a5 = 0

(8)
Equating to zero, both the real part and imaginary part
in (8), yields:

a1µ
2 − a5 = a3cos(µτ) + a4µsin(µτ), (9)

− µ3 + a2µ = −a4µcos(µτ) + a3sin(µτ). (10)

Squaring and adding (9) and (10), we obtain:

(a1µ
2 − a5)2 + (a2µ − µ

3)2 = a2
3 + a2

4µ
2 (11)

µ6+(a2
1−2a2)µ4+(a2

2−2a1a5−a2
4)µ2+(a2

5−a2
3) = 0 (12)

Letting θ = µ2 in (12) we obtain:

F(θ) ≡ θ3 + b1θ
2 + b2θ + b3 = 0 (13)

where b1, b2 and b3 are defined as follows:
b1 = a2

1 − 2a2,
b2 = a2

2 − 2a1a5 − a2
4,

b3 = a2
5 − a2

3.
For such polynomial (13), the following lemma is appli-
cable based on [41, 42].

Lemma 1. Let θ∗ =
−b1 +

√
b2

1 − 3b2

3
. If b2 < 0 and

F(θ∗) < 0, then (13) has at least one positive solution.

Proof. Since b3 > 0, F(0) = b3 > 0. By equating the
derivative of F(θ) to 0, the critical points of F(θ) can be
obtained as follows:

3θ2 + 2b1θ
2 + b2 = 0

whose roots are

θ1,2 =
−b1 ±

√
b2

1 − 3b2

3
.

If b2 < 0, then we have

θ∗ =
−b1 +

√
b2

1 − 3b2

3
> 0

But F(θ∗) < 0 and F(θ∗)→ ∞ as θ → ∞. This shows
that at least the plot of F(θ) is crossing the right hand
side horizontal axis at least once. Then F(θ) has one
positive solution at least. �

It is clear that if the conditions presented in Lemma
(1) hold, then polynomial (13) has one positive solu-
tion at least. Depending on the coefficients values of the
polynomial (13) bi where , i = 1, 2, 3, (13) can have up
to three positive solutions. Without loss of generality,
the positive solutions of equation (13) may be denoted
by θ1, θ2, and θ3. Then, writing µi =

√
θi, i = 1, 2, 3 and

substituting µ = µi in equations (9) and (10), we obtain

a1µ
2
i − a5 = a3cos(µiτ) + a4µisin(µiτ)

µ3
i − a2µi = −a4µicos(µiτ) + a3sin(µiτ)

Solving for τ,

a1µ
2
i − a5

−µ3
i + a2µi

=
a3cos(µiτ) + a4µisin(µiτ)
−a4µicos(µiτ) + a3sin(µiτ)

,
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which yields

tan(µiτ) =
(a1µ

2
i − a5)a4µi − a3(µ3

i + a2µi)

(a1µ
2
i − a5)a3 + a4µi(µ3

i − a2µi)
, i = 1, 2, 3

Therefore

τ(n)
i =

1
µi

tan−1
 (a1µ

2
i − a5)a4µi − a3(µ3

i + a2µi)

(a1µ
2
i − a5)a3 + a4µi(µ3

i − a2µi)


+

2π(n − 1)
µi

(14)

where i = 1, 2, 3 and n = 1, 2, 3, ....
Let τc > 0 denotes the smallest of such τ, namely

τc = min
{
τ(n)

i > 0, 1 < i < 3, n >= 1
}
,

Denote the value of µ at τc as µc. To prove that the
model exhibit Hopf bifurcation, the following condition
should be satisfied:

d(Reλ)
dτ

∣∣∣∣∣
τ=τc

, 0 (15)

For the purpose of abstraction and convenience, define
the parameters as follows:

φ1 = a2 − 3µ2
c − a4µcτcsin(µcτc) + (a4 − a3τc)cos(µcτc),

φ2 = 2a1µc − a4µcτccos(µcτc) − (a4 − a3τc)sin(µcτc),
φ3 = a3µc,

φ4 = a4µ
2
c ,

(16)
ψ1 = φ1φ3 + φ2φ4,
ψ2 = φ2φ3 − φ1φ4,

(17)

Theorem 2. Suppose that the conditions in Lemma (1)
hold at the critical time delay τc and the associated µc.
Moreover, let the following conditions are satisfied:

i. φ1 , 0;

ii. φ2 , 0;

iii. ψ1sin(µcτc) + ψ2cos(µcτc) , 0.

Then (15) holds, and the model dynamics exhibit a
Hopf bifurcation as τ passed through a critical value
τc.

Proof. By equating to zero the real and imaginary parts
of (7), we get:

σ3 − 3σµ2 + a1σ
2 − a1µ

2 + a5 + a2σ + exp(−στ)(a4µ
sin(µτ) + (a3 + a4σ)cos(µτ)) = 0,

(18)

3σ2µ − µ3 + 2a1σµ + a2µ + exp(−στ)(a4µsin(µτ)
+(a3 + a4σ)cos(µτ)) = 0,

(19)
where the coefficients ai, i = 1, 2, ..., 5, are defined as
before. Differentiating (18) with respect to τ and evalu-
ating at τ = τc, we obtain

(a2 − 3µ2
c)

dσ
dτ

∣∣∣∣∣
τ=τc

− 2a1µc
dµ

dτ

∣∣∣∣∣
τ=τc

=

[(a4µcτc)sin(µcτc) − (a4 − a3τc)cos(µcτc)]
dσ
dτ

∣∣∣∣∣
τ=τc

− [(a4µcτc)cos(µcτc) − (a4 − a3τc)sin(µcτc)]
dµ

dτ

∣∣∣∣∣
τ=τc

+ [a3µcsin((µcτc) − a4µ
2
ccos((µcτc)]. (20)

or equivalently:

φ1
dσ
dτ

∣∣∣∣∣
τ=τc

−φ2
dµ

dτ

∣∣∣∣∣
τ=τc

= φ3sin(µcτc)−φ4cos(µcτc).

(21)

Similarly, from (19) we have

(a2 − 3µ2
c)

dµ

dτ

∣∣∣∣∣
τ=τc

+ 2a1µc
dσ
dτ

∣∣∣∣∣
τ=τc

=

[(a4µcτc)sin(µcτc) − (a4 − a3τc)cos(µcτc)]
dµ

dτ

∣∣∣∣∣
τ=τc

+ [(a4µcτc)cos(µcτc) + (a4 − a3τc)sin(µcτc)]
dσ
dτ

∣∣∣∣∣
τ=τc

+ [a3µccos((µcτc) − a4µ
2
c sin(µcτc)]. (22)

or equivalently

φ1
dµ

dτ

∣∣∣∣∣
τ=τc

−φ2
dσ
dτ

∣∣∣∣∣
τ=τc

= φ4sin(µcτc)−φ3cos(µcτc).

(23)

by solving (21) and (23) to obtain dσ
dτ

∣∣∣
τ=τc

, we get

(φ2
1 + φ2

2)
dσ
dτ

∣∣∣∣∣
τ=τc

= (φ1φ3 + φ2φ4)sin(µcτc) + (φ2φ3−

φ1φ4)cos(µcτc).

Therefore using (17) we have

dσ
dτ

∣∣∣∣∣
τ=τc

=
ψ1sin(µcτc) + ψ2cos(µcτc)

(φ2
1 + φ2

2)
. (24)

Thus according to conditions (i)-(iii), it is clear that
dσ
dτ

∣∣∣
τ=τc
, 0. Therefore, a Hopf bifurcation occurs in the

dynamics when time lag τ passes through the critical
time delay τc, and this end the proof. �
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Table 1: Coefficients of the proposed model.

Paramters r1 r2 R3 R4 R5 R6 R7 R8 c1 c2 ŷ T N

Value 0.472 0.25 0.82 0.6 0.45 0.3 0.3 0.0123 0.1 0.8 1.42 1.5 1.27

Table 2: Eigenvalues at τi = 0.05 for several values of τg

τg λ1 λ2 λ3 . . .

0.300 -0.019+j0.666 -0.019+j0.666 -0.525
0.441 0.000+j0.657 0.000-j0.657 -0.532
0.600 0.019+j0.645 0.019-j0.645 -0.541

Figure 2: Hopf Bifurcation of system (1)

4. Simulation Results

By opting the composite time delay τ as a bifurcation
parameter, and fixing the system (1) other parameters as
given in Table 1 adapted from Cheudoung et al. [29], the
periodic solutions in phase plane are plotted for different
values of τ as shown in Fig. 2. The first part of the plot
show steady state solution then the periodic solution is
bifurcate at τc, the radius of the limit cycle is changing
with τ. Moreover, the stability behavior of the equilib-
rium point can be shown by finding the eigenvalues of
the Jacobian matrix J. Here, we fix the parameters of
the model (1) as in Table 1, and considering different
values for the time-delay τg. the results are given in Ta-
ble 2. It is worth noting that the equilibrium stability
depends on both τi and τg. Although other choices of
the parameters are possible to obtain chaotic dynamics,
here we focus on the different dynamical behavior in-
duced by the time-delays.

To reveal the behavior of the proposed mathematical

 1  2  3 4 5 

g

5

4

3

2

1

i

P1 P2 P3 P4 P8 Quasiperiodicity and Chaos

Figure 3: 2D Bifurcation Diagram of system (1) where the color code
represents the system periodicity.

model and obtain the bifurcation structure when the two
time delays are varied, the two-dimensional bifurcation
diagram is plotted in Fig. 3, based on the system param-
eter in Table 1. The 2D-bifurcation diagram is color-
coded depending on the periodicity of the attractor [43].
The diagram is produced by varying the two time de-
lays (τi, τg), then one-dimensional bifurcation diagrams
are consequently obtained fixing one delay and chang-
ing the second. The final state of the model is feed as
initial value for the next iteration.

To show the effect of individual time-delay on the
system behavior and to provide more information about
the dependence of the system dynamics on a certain pa-
rameters, one-dimensional bifurcation diagram is good
tool that used usually to reveal the attractor type, to
which the system dynamics finally settle down after
transient phase. So, one-dimensional bifurcation dia-
gram is evaluated for chosen values of time delay from
Fig. 3. By increasing the insulin secretion time-delay
(τg), the system becomes chaotic. The chaotic behav-
ior arises through a period-doubling route-to-chaos, fol-
lowed by a crisis and a second cascade of period dou-
bling leading to a second region of chaotic behavior
as it can be observed in Fig. 4 for different values of
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Figure 4: One-dimensional bifurcation diagram of system (1) for τi=0.05 and different values of insulin secretion time τg.
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Figure 5: Periodic behavior in system (1): (a) Time series of insulin, glucose and β-cell respectively; (b) Corresponding attractor in the phase plane.

(τg). It is clear that due to the increase in the delay, the
insulin cannot track the blood plasma glucose change
which results in a metabolic disorder. Fig. 5, shows the
corresponding time evolution of the insulin concentra-
tion above its basal level x(t) and glucose concentration
above its basal level y(t) and β-cells number at τi = 0.05
and τg = 0.46. For these parameters a periodic solution
is obtained. This parallel the periodic behavior for the
biological variables of insulin and glucose that has been
experimentally reported for normal endocrine metabolic

system in various researches as [15, 27, 7] and many
others. The tight coupling between glucose and insulin
oscillations suggest that these oscillations represent a
dynamic property of the insulin-glucose feedback loop
and that periodically modulated signals are more effec-
tive than constant, stochastic or chaotic stimuli in pro-
ducing a sustained physiological response in the target
cells.
Fig. 6, shows the time series of system (1) where the
system behavior is chaotic for the given parameters as
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Figure 6: Chaotic behavior in system (1) : (a) Time series of insulin, glucose and β-cell respectively, (b) Corresponding attractor in the phase plane.

in Table 1 and τi = 3.5 and τg = 3.5. The results are
in line with literature in the field revealing that a chaotic
behavior in the system is a sign of an existing disorder
in the biological system [30, 31, 32]. Molnar’s [7] and
Kroll’s [44] showing experiments reporting the chaotic
behavior in glucose-insulin waveforms. So, due to the
chaotic behavior, stabilizing blood glucose level for di-
abetic subjects is a challenge, the patient continues to
avoid hypoglycemia and hyperglycemia. Generally, the
analysis of plasma glucose concentration measurements
is one of the most crucial tasks in order to support the
glucose metabolic control. As a consequence, the blood
glucose evolution level of diabetic subjects, possibly,
can be predicted with a range of confidence. Out of this
range the process is chaotic, where, according to chaos
theory, the system is deterministic but long-term unpre-
dictable due to sensitive to initial conditions. The sen-
sitivity to initial conditions has been numerically con-
firmed by calculating the largest Lyapunov exponent
with the algorithm discussed in Appendix A, the value
obtained is LLE = 0.009. The algorithm is applied to
mathematical model (1), with the parameters as in Ta-
ble 1 selecting a time delay in the chaotic region such as
τi = τg = 3.5. The value of the LLE is found positive,
which is clearly the signature of a chaotic behavior.

5. Conclusion

Glucose-insulin models start from simple linear or-
dinary differential equation and keep evolving toward
more realistic and feasible models. The time delay dif-

ferential equation model is providing a good tool to em-
ulate the complex metabolic system by inclusion of the
time delay terms in some part of the model. In this paper
a crucial biological fact related to the β-cell nonlinear
rate of growth and death have been taken into account,
rendering the new model more realistic, accurate and
more biologically feasible.
The new model has been analyzed analytically by Hopf
bifurcation theorem and investigated numerically. In the
proposed model, we observed a periodic behavior under
normal metabolic conditions when a small time delay
and chaotic behavior under faulty status or long time
delay in the metabolic system. The time evolution of
both the glucose and insulin reveal oscillatory behav-
ior with a period of proximately 8 [min] which is in
the accepted range 5 - 15 [min] consistent with the re-
sults reported in the biological experiments [45]. Also,
the model exhibits chaos which is a measure of disor-
der in the biological system for other values of the pa-
rameters. The extension principle and lower bounded
error are used to prove the chaotic state of the model at
specific time delay range. The time delay required for
the model to show chaotic behavior is about 3.5 [min],
making the new system consistent with the literature
[46, 47]. As direction for future work, we note that fur-
ther parameters can be considered such as influence of
trauma, excitement and stress and also the effect of the
epinephrine in suppressing the insulin secretion and in-
ducing the glucose increase which affects the glucose-
insulin homeostasis and may lead to diabetes in human.

9



Appendex A

The calculation of the Largest Lyapunov Exponent
LLE has been considered as one of the best method to
the problem of detecting the presence of chaos in dy-
namical system. Lyapunov exponents measure the av-
erage divergence or convergence of nearby trajectories
along certain directions in state space. In order to evalu-
ate the Largest Lyapunov Exponent in this paper the al-
gorithm proposed firstly by Mendes [48] is used, which
is based on the concept of the lower bound error LBE in-
troduced in [49]. This method conserve the dimension-
ality of the delay differential system which facilitates
the calculation of the LLE, On the contrary other meth-
ods convert the DDE to high dimensional ODE system
such as [50, 51]. To calculate the LLE according to
this method, the system is simulated using two differ-
ent interval extensions defined according to [48] as fol-
lows: An interval extension of f is an interval-valued
function F of an interval variable X, with the property
F(x) = f (x) for real arguments, where by an interval
it is meant to be a closed set of real numbers x ∈ R
such that X = [X, X] = {X ≤ x ≤ X}. This concept
is the foundation used to calculate the lower bound er-
ror. Then, the Largest Lyapunov Exponent is evaluated
by least square fit to the line of the logarithm of lower
bound error. The procedure is adopted from [48] and
explained as follows:

1. Select two interval extensions of the mathematical
model under investigation.

2. Fix exactly the same initial conditions, discretiza-
tion scheme and step size, simulate the two interval
extensions and get the two pseudo-orbits.

3. Use the method of least squares to find the best
line fit to the slope of the logarithm curve of the
absolute value of the lower bound error LBE. The
slope of the line is the LLE.
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