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Abstract The mathematical modeling is very helpful

for non-invasive investigation of glucose-insulin inter-

action. In this paper a new mathematical model for

glucose-insulin endocrine metabolic regulatory feedback

system incorporating the β-cell dynamic and function

for regulating and maintaining bloodstream insulin level,

with time delay has been proposed. The model includes

the insulin degradation due to glucose interaction. The

dynamical behavior of the model is analyzed and two

dimensional bifurcation diagram is obtained. The re-

sults show that the time delay in insulin secretion in

response to blood glucose level, and the delay in glu-

cose drop due to increased insulin concentration can

easily induced rise to complex dynamics such as pe-

riodic oscillation consistent with the biological experi-

ments results and periodic doubling cascade and chaos
state which represent metabolic disorder may lead to

diabetes mellitus.
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1 Introduction

Diabetes mellitus (DM), which is commonly known as

diabetes is a syndrome of dysfunctional metabolism,

usually due to a combination of hereditary and envi-

ronmental causes, causing abnormal high blood plasma

sugar levels known as hyperglycemia. Glucose concen-

tration in the plasma of a normal subject lies in the

range of 80-110 [mg/dl] [1]. Plasma glucose level are

controlled by complex interactions of multiple hormones

and chemicals in the body, including the insulin pro-

duced in the pancreatic β-cells. Diabetes mellitus has
become an epidemic with considerable complications

such as nephropathy, retinopathy , peripheral neuropa-

thy and blindness [2]. The number of subjects with dia-

betes in the world is increasing continuously every year.

International Diabetes Federation estimates that 436

million people around the world live with diabetes cor-

responding to 1 to 11 of the 20-79 adult’s population.

The figure is expected to hit the 592 million people in

2035 [3].

Blood plasma glucose level is regulated by two nega-

tive feedback control loops. Where, hyperglycemia stim-

ulates a rapid increase in insulin charge from the pan-

creatic / β-cells. The associated increase in blood in-

sulin concentration causes increased glucose removal

and decrease glucose production by the liver leading

to a reduction in blood glucose [4,5]. From other side,

hyperglycemia contributes to a second negative feed-

back control loop by increasing the number of insulin

secreting β-cells, by changing the rates of β-cell repli-

cation and death [5]. An increased β-cell number rep-
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resents an increase capacity for insulin secretion which,

in turn, would lead to a decrease in blood glucose.

The mathematical modeling for studying the glu-

cose metabolism and insulin secretion or glucose-insulin

interaction have a longstanding history. The mathemat-

ical models continue to be more accurate and clinically

feasible. And evolve to be a useful resource for clinical

investigation; and play an important roll in understand-

ing the governing mechanisms of the glucose-insulin reg-

ulatory [6].

Due to the great complexity of the regulatory sys-

tem many mathematical models have been suggested

[7,8,9,10,11] to investigate the relationship between the

concentrations of plasma glucose and insulin in response

to glucose charge or increase. One of the pioneer work

was done by Ker R.B et al [12] in 1939 where they pro-

posed the first approach to measure the insulin sensi-

tivity in vivo. Mathematical models were used to es-

timate the glucose clearance and glucose-insulin dy-

namics in general. Bolie V.W. [13] in 1961 is also one

of the earliest in this field, formulating a simple or-

dinary differential equations system. Ackreman et al

[14] in 1979 proposed a simple linear model the glu-

cose tolerance test using two linear ordinary differential

equations. The real start of mathematical modeling of

glucose-insulin system is thought to be the so called

minimal model proposed by Bergman et al in 1979 [15].

This mathematical model is widely used in physiologi-

cal scientific research on the metabolism of the glucose.

In 1987 J. S. Bajaj suggested a nonlinear mathemat-

ical model incorporated the kinetic of the β-cell and

glucose-insulin regulatory system [9], which is based on

Turner et al [16] to incorporate the β-cell dynamics.

The analysis of the dynamical model of Bajaj shown

that only damped oscillation can occur in response to

glucose charge. However, several research have shown

persistent oscillation pattern in the blood glucose level

and insulin concentration [16,17]. Brain et al [18] de-

veloped a novel mathematical model incorporating the

β-cell dynamics, insulin, and glucose kinetics, where

the dynamics of the glucose and insulin are considered

relatively fast compared to β-cell mass dynamics. The

model has two stable fixed points representing patho-

logical and physiological steady states, separated by a

saddle point on a slow manifold.The importance of un-

derstanding the whole-body glucose regulation mecha-

nism, was described using various mathematical models

proposed for glucose regulation in the human body, and

discuss the difficulty and limitation in reproducing real

processes of glucose regulation in [19]. A review of some

of mathematical models proposed in the literature for

use in the glucose-insulin feedback system related to

diabetes is given in [20], enhanced with a survey on

available software.

The usage of ordinary or partial differential equa-

tions to model biological systems has a long history,

beginning from Mathus, Verhulst, Lotka and Voltera

[21]. Due to the complexity of these phenomena it is be-

coming clear that these model cannot show the rich dy-

namics existed in the natural systems. so, there is a new

approach to deal with these complexities one of them is

the use of time delay parts in the differential equations.

The lags or simply the delays can simply lump com-

plicated biological processes together [22] representing

only for the time required for these processes to occur.

Delay model become more common and widely used in

many biological modeling branches. Delay model have

appeared in studying of chemostat model [23], epidemi-

ology [24] circadian rhythms [25], tumor growth [26,27],

neural network [28,29] and genetic regulatory networks

model [30].

The inclusion of time delay in the glucose-insulin

feedback system appeared in research work [31,32,33,

34]. Two significant time lags are considered the first

is the glucose triggered insulin production lag τg and

the second is the hepatic glucose response lag τi. Based

on Lenbury model suggested in [11], Sarika [34] and

Chuedoung [35] proposed mathematical models which

are incorporating the two time lags τg and τi. These

models tried to give a qualitative framework [35] to

understand the delayed responsive mechanism due to

glucose stimulation and the secreted insulin requires a

certain amount of time before increasing in the plasma.

In this paper, we study a nonlinear mathematical

model for the glucose-insulin regulatory feedback con-

trol system consisting of delay-differential equations mod-

ified from model studied by Chuedoung [35]. The new

model system is consider the addition of new part rep-

resenting the insulin degradation term. The nonlinear

model is then analyzed to capture different dynamic be-

havior including the existence of of periodic solutions

and sustained oscillation, and investigate the inherent

chaotic behavior and dynamics which is attracted many

scientific researches and great effort in studying biolog-

ical systems and phenomena [36,37,38].

2 Mathematical Model

Besides the paramount and distinctive importance of

experimental researches for developing effective treat-

ment protocols, studying and developing mathematical

models of glucose-insulin bilateral interplay have had

an essential role in accelerating the research processes

and making breakthroughs in this field by saving both

money and time. Conventionally, it was believed that
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Fig. 1: A scheme of the dynamics of glucose, insulin and β-cell

a linear relationship defines the mechanism of glucose-

insulin negative feedback system. A linear model for

diabetes assumes that the relationship between glucose

and insulin concentration could be studied in isolation

from other components. In contrast, nonlinear models

proposed in previous studies assume that the relation-

ship between components is not always linear and it

could depend on initial blood glucose level; moreover,

they revealed the fact that statistical properties of the

profile in some patients could alter substantially [39]. In

glucose-insulin regulatory system, interactions between

its components are responsible for the overall behavior

of the system, which makes this regulatory system a

complex one.

In the current brief, we proposed a nonlinear math-

ematical model for glucose-insulin regulatory feedback

system by incorporating the enhanced delay differen-

tial equations embracing β-cells proposed by the model

presented by [35]. The dynamics scheme is presented in

Fig. 1, and formulated by the following delay differen-

tial equations system as follow:

.
x(t) = r1z(t− τg)y(t− τg)− r2x− r3xy + c1z(t− τg)
.
y(t) = R3N/z −R4x(t− τi) + c2
.
z(t) = R5(y − ŷ)(T − z) +R6z(T − z)−R7z

(1)

where x(t) is the insulin concentration above its basal

level, y(t) is the glucose concentration above its basal

level and z(t) is the number of β-cells according to Ba-

jaj [9] definition, and ŷ is the difference between glucose

basal level and its fasting level. τg is the delay in insulin

secretion in response to blood glucose level, and τi is the

delay in glucose drop due to increased insulin concen-

tration. The term r1y(t−τg)z(t−τg) shows the increase

in insulin concentration in response to previous blood

glucose increase at the time delay τg.
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Since insulin is a hormone, it has to be degraded

like any other hormone. Apart from its degradation

as it helps in the conversion of the excess glucose to

glycogen, it is being used for other activities and these

activities degrade it. It has been shown that the level

of degradation of insulin vary from person to person

and from male to female. Even in women, pregnant

women degrades insulin more than the non-pregnant

ones.In general, insulin degradation occurs in two ways:

reduction and proteolytic. The reduction process is en-

countered when insulin takes part in reaction or used

up by cells as they act as enzymes in reactions in the

body [40]. This activity therefore reduces the amount

of the insulin available for further reactions. Also cer-

tain enzymes in the body inactivate the biological activ-

ity of insulin. Such enzymes are called ‘insulinase’ and

they are considered to be proteolytic in nature. An ex-

ample of such enzyme is ‘protein-disulphide-reductase

(glucathione)’. It inactivates insulin by catalysing the

reduction of the disulphate bonds of insulin and thus

splitting of the insulin molecules [41]. This glucathione

also inactivates proinsulin and at the same time the re-

activation of reduced and randomly oxidised proinsulin

[42]. However, excess inactivation of the insulin is con-

trolled by another enzyme called the glucagon. Other

growth hormones also contribute in the control of in-

sulin degradation. These enzymes help in the adjust-

ment in the rate of insulin degradation to changing rate

of insulin secretion and requirements. r2x is the rate of

insulin decrease independent of glucose, and r3xy will

represent the insulin degradation related to the glucose

current concentration level including this will enhance

the model to be more biologically realistic and feasible

and c1z(t − τg) is the increase of insulin level secreted

by β-cells and is independent from other components.

System (3) considers two time lags in insulin-glucose

regulatory system; therefore, it is more realistic and is

capable of showing the behavior of insulin-glucose regu-

latory system in different time delays. Previous models

cannot display the behavior of aforementioned biolog-

ical system with respect to time delays. According to

the model presented by Molnar et al. [43], if insulin

secretion decreases to 1/N of the number of β-cells,

designated increases until insulin levels are restored to

nearly normal standards. So the plasma glucose concen-

tration is a function of the β-cells capacity N/n. N is

the normal number of β-cells. R4x(t)− τi is the rate of

glucose reduction in response to insulin secretion with

the time delay τi. T is the total density of β-cells, and

the term R5(y− ŷ)(T − z) represents the increase in di-

viding β-cells caused by the interaction between blood

glucose above the fasting level and the nondividing β-

cells. The term R6z(T − z) represents the increase in
z due to interaction between dividing and nondividing

β-cells, and the term R7z represents the reduction in z

due to its current level. The above model can then be

written for simplicity as a system of three differential

equation in the form:

.
x(t) = f
.
y(t) = g
.
z(t) = h

(2)

where

f = r1zτgyτg − r2x− r3xy + c1zτg
g = R3N/z −R4xτi + c2
h = R5(y − ŷ)(T − z) +R6z(T − z)−R7z

(3)

with

xτi ≡ x(t− τi)
yτg ≡ y(t− τg)
zτg ≡ z(t− τg)

(4)

2.1 Dynamical Analysis

In order to investigate the effect of the two delays on

the possibility of periodic and chaotic dynamics in the

proposed model, assume that the system steady state

point is (xs, ys, zs). Letting X = x−xs, Y = y−ys and

Z = z − zs, so this will lead to the following linearized

model of the proposed system (1):
.

X
.

Y
.

Z

 = J

XY
Z

 (5)

where J is the Jacobian matrix evaluated at the steady

state point (xs, ys, zs) = (3.1394, 1.6477, 0.9610) and

can be written as in 6. Then, the corresponding char-

acteristic equation of J can be written as in 7.

The proposed model dynamics stability behavior

can be determined by finding the eigenvalues of the

Jacobian matrix J at the equilibrium point. The equi-

librium point for the given system parameters in Table

1 is evaluated, and the eigenvalues for different values of

lags are calculated and given in Table 2.

J =


(−r3ys − r2) (−r3xs + r1zse

−λτg ) (r1ys + c1)e−λτg

−R4e
−λτi 0 −R3

z2s
N

0 R5(T − zs)
R5(y − ŷ)T −R6z

2
s

zs

 (6)
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Table 1: Coefficients of the proposed model

Paramters r1 r2 r3 R3 R4 R5 R6 R7 c1 c2 ŷ T N

Value 0.472 0.2275 0.025 0.82 0.6 0.3 0.3 0.2 0.1 0.8 1.42 1.5 1.27

Table 2: Eigenvalues at τi = 0.05

τg λ1 λ2 λ3 . . .

0.40 -0.008-0.638i -0.008+0.638i -0.532
0.46 0.000-0.634i 0.000+0.634i -0.535
0.60 0.017-0.624i 0.017+0.624i -0.541

F (λ) = λ3 + a1λ
2 + [λ+ 1]a2e

−λτi − [a3λ+ a3 − a4]e−λτ

− a5λ− a6
(7)

where

τ = τi + τg
a1 = A6 −A5,

a2 = A5A2,

a3 = A5A7,

a4 = A1A4,

a5 = A1A3 +A5A6,

a6 = A1A3A6,

with

A1 = R5(T − zs),
A2 = R4(−r3xs),

A3 = −R3

z2s
N ,

A4 = R4(r1ys + c1),

A5 =
R5(y − ŷ)T −R6z

2
s

zs
,

A6 = −r3ys − r2,

A7 = R4r1zs,

2.2 Bifurcation Diagram

To reveal the behavior of the proposed mathematical

model and obtain the bifurcation structure when the

two time delays are varied, the two-dimensional bifur-

cation diagram is plotted in Fig. 2, based on the system

parameter in Table 1. The 2D-bifurcation diagram is

color-coded depending on the periodicity of the attrac-

tor [44]. The diagram is produced by varying the two

time delays (τi,τg), then one-dimensional bifurcation di-

agrams are consequently obtained fixing one delay and

changing the second. The final state of the model feed

as initial value for the second iteration.

To further investigate the system dynamic the bi-

furcation diagram is evaluated for chosen values of time

 0.5  1 1.5  2 2.5  3 3.5 4 4.5 5 

g

4

3

2 

1

i

P1 P2 P3 P4 P8 Quasiperiodic and Chaos

Fig. 2: 2D Bifurcation Diagram

delay from Fig. 2. By increasing the glucose delay re-

sponse time caused by insulin secretion (τi), the sys-

tem behaves chaotically as shown in Fig. 3a for differ-

ent values of (τi). Fig. 3b show the bifurcation diagram

when increasing the insulin secretion delay (τg) from

the β-cell. and it is clear that the increase in the delay
make the insulin cannot track the blood plasma glucose

change which result in a metabolic disorder.

3 Simulation Results

The numerical simulation of the proposed regulatory

system mathematical model 1 is implemented for the

given parameters values in Table 1. Fig. 4 show the

corresponding time courses of the insulin concentra-

tion above its basal level (x(t)) and glucose concentra-

tion above its basal level (y(t)) and β-cells number at

τi = 0.05 and τg = 0.46. where the solution trajectory

tending toward limit cycle behavior and the dynamic

profile of both biological variable the insulin and glucose

exhibit periodic behavior which have been experimen-

tally reported for normal endocrine metabolic system in

various researches as [17,33,43] and many other litera-

tures. The tight coupling between glucose and insulin

oscillations suggest that these oscillations represent a
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(a)

(b)

Fig. 3: The bifurcation diagram of system 1 based on

different values of parameters: (a) Glucose response

time, (b) Insulin secretion time.

dynamic property of the insulin-glucose feedback loop

and that periodically modulated signals are more effec-

tive than constant, stochastic or chaotic stimuli in pro-

ducing a sustained physiological response in the target

cells.

Fig. 5 shows the time series of the system 1 and

the visualization of the chaotic attractor for the given

parameters in Table 1 and time delay τi = 3.5 and

τg = 3.5. The results are in line with literatures in

the field reveling that a chaotic behavior in the sys-

tem is a sign of an existing disorder in the biological

system [36,37,38]. Molnar’s [43] and Kroll’s [45] exper-

iments reported the chaotic behavior in glucose-insulin
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Fig. 4: The system 1 response (a) Time series of insulin,

glucose and β-cell respectively, (b) corresponding phase

portrait.

time courses. So, due to the chaotic behavior; stabiliz-

ing blood glucose level for diabetic patients is a con-

tinuous challenge, the patient tries always to avoid hy-

perglycemia and hypoglycemia. In fact, the analysis of

blood glucose measurements is one of the most impor-

tant tasks in order to assess the glucose metabolic con-

trol. And as a consequence, it is possible to define a

range of confidence in which we may predict the blood

glucose evolution level of diabetic patients. Out of this

range the process is chaotic. Where, according to chaos

theory deals with strictly deterministic dynamical sys-

tems, but have a fundamental instability phenomenon

called “sensitivity to initial conditions” which modulo

an additional property of recurrence, makes them un-
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predictable in long term [46]. It has been proven in the

next sections the existence of the chaotic state in the

proposed model.

3.1 Largest Lyapunov Exponent

The calculation of the Largest Lyapunov Exponent LLE

has been considered as one of the best method to the

problem of detecting the presence of chaos in dynam-

ical system. Lyapunov exponent measure the average

divergence or convergence of nearby trajectories along

certain directions in state space. In order to evaluate

the LLE in this paper the algorithm proposed firstly by

Mendes [47] will be used, which is based on the concept
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Fig. 6: Derived from two interval extensions: (a) Two

insulin pseudo-orbits, (b) Two glucose pseudo-orbits.

of the lower bound error LBE introduced in [48]. To

calculate the LLE, the system, is simulated using two

different interval extensions defined as:

Definition 1 An interval extension of f is an interval-

valued function F of an interval variable X, with the

property F (x) = f(x) for real arguments, where by an

interval it is meant to be a closed set of real numbers

x ∈ R such that X = [X,X] = {X ≤ x ≤ X}

This concept is the foundations used to calculate the

lower bound error. Then, the largest lyapunouv expo-

nent is evaluated by least square fit to the line of the log-

arithm of lower bound error. The procedure is adopted

from [47] and explained as follow:

1. Choose two interval extensions of the system under

investigation.



8 Abdul-Basset A. Al-Hussein et al.

0 200 400 600 800 1000

Time(min)

-40

-35

-30

-25

-20

-15

-10

-5

0

Fig. 7: The lower bound error LBE for the system 1.

The red line is the least squares fit. In the figure, the

equation of the line is also shown, where the first value

is the estimate of the LLE.

2. With exactly the same initial conditions, step size

and discretization scheme, simulate the two interval

extensions.

3. Use the least squares method to fit a line to the

slope of the logarithm curve of the absolute value of

the lower bound error LBE. The slope of the line is

the LLE.

The above procedure is applied to mathematical model

1, with same parameters in Table 1 selecting a time

delay in the chaotic region such as τi = τg = 3.5.

Two interval extension chosen properly and the re-

sults of the simulation of the system are shown in Fig.

6a for the insulin time course while Fig. 6b shows the

glucose dynamic it clear that the time courses are co-

incides at the beginning then begin to converge due to

the trajectories expansion. Then the lower error bound

is plotted in Fig. 7 and the LLE is evaluated form it.

The value of the LLE is found positive and equal to the

slope of the line LLE=0.011, that which is the signature

of a chaotic behavior.

4 Conclusion

The mathematical modeling is an important tool to

study the biological system and provide a good ap-

proach to understand the complex metabolic system.

The glucose-insulin models start from simple linear or-

dinary differential equation and keep evolving toward

more realistic and feasible model. The time delay dif-

ferential equation model is providing a good tool to

emulate the complex metabolic system by inclusion of

the time delay term in some part of the model. New

factor representing the insulin degradation due to inter-

action with glucose has been added, the new model has

been analyzed from the stability point of view by check-

ing the steady state point and it eigenvalues related to

time delay. The bifurcation diagram and space param-

eter used to discover the system dynamics and reveal

the oscillatory behavior with a period of proximately

8 min which is in the range 5-15 min consistent with

the results reported in the biological experiments and

prove the chaos existences which is a measure of dis-

order in the biological system. The extension principle

and lower bounded error are used to prove the chaotic

state of the model at specific time delay range. More pa-

rameter can be considered such as influence of trauma,

excitement and stress also the effect of the epinephrine

in suppressing the insulin secretion and inducing the

glucose increase which affect the glucose-insulin home-

ostasis and may lead to diabetes in human.
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