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In this study, a trial exercise was performed for the first time to model the productivity of a
reservoir unit, using a GIS-based hybridization of Shannon�s entropy method and the
technique for order preference by similarity to an ideal solution (TOPSIS) approach. A case
study from the middle reservoir unit of Nahr Umr Formation in the Luhais oil field in
southern Iraq was used to demonstrate the benefits of the proposed methodology in
managing hydrocarbon reservoirs with cost-effective modeling techniques. The hetero-
geneity of the reservoir unit was firstly quantified using the Lorenz coefficient (Lk) and the
Dykstra–Parsons permeability variation (Vk). The average calculated Lk and Vk were 0.65
(heterogeneous) and 0.93 (very heterogeneous), respectively. This stage of the analysis
confirmed the heterogeneous nature of the reservoir unit. To overcome the problem
reservoir heterogeneity, the hydraulic flow unit (HFU) concept was used. Interactive
Petrophysics software was used to create HFUs, and the number of HFUs was optimized
using k-means clustering techniques. The estimated number of HFUs was 2. For each HFU,
seven petrophysical properties or factors, namely porosity (/), thickness, volume of shale
(Vsh), bulk volume of water (BVW), total water saturation (SWT), hydrocarbon saturation
(Sh), and bulk volume of hydrocarbons (BVH), were calculated for each well location based
on well logs and core data availability. The ordinary kriging technique was used to inter-
polate the seven petrophysical properties for each HFU over the study area. Shannon�s
entropy model was then used to assign factor weights for each HFU. In the case of HFU-1,
the calculated weights were 0.218, 0.190, 0.141, 0.132, 0.111, 0.107, and 0.103 for Sh, unit
thickness, BVH, BVW, /, SWT, and Vsh, respectively. For HFU-2, the calculated weights
were 0.179, 0.178, 0.170, 0.154, 0.146, 0.092, and 0.081, for Vsh, BVH, Sh, SWT, unit thick-
ness, BVW, and /, respectively. The TOPSIS algorithm was then implemented using R

statistical software, and ranked values from the TOPSIS were interpolated using the ordi-
nary kriging technique to reveal the spatial distribution of hydrocarbon productivity after
division into three productivity zones: low, moderate, and high. For HFU-1, these zones
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encompass 32, 22, and 45 km2 for the low-, moderate-, and high-productivity zones,
respectively. For HFU-2, these zones cover 30, 23, and 46 km2, respectively. The promising
high-productivity zone for HFU-1 was concentrated in the southern and northern parts of
the unit; for HFU-2, the high-productivity zone occupies a northeast–southeast-oriented
swath in the middle part of the unit. In general, the lower part of the middle Nahr Umr
Formation, represented by HFU-2, is more productive than the upper part, representing
HFU-1. The model results were validated using 42 productive well locations in the study
area, and results indicated that the developed models performed well with 76% and 88%
accuracy for HFU-1 and HFU-2, respectively. The hydrocarbon productivity maps produced
by the techniques developed herein can be used by reservoir managers, geologists, and
reservoir engineers as guides for drilling new, productive wells with minimum effort and
cost.

KEY WORDS: Flow units, Heterogeneity, Iraq, Nahr Umr formation, Spatial modeling.

INTRODUCTION

Spatial analysis (SA) is one of the most
important tools in geographic information systems
(GIS). Using this tool, information can be combined
from many independent and diverse sources, and
new information can be extracted by applying a
complex set of spatial operators (Goodchild 2005).
Through operators for SA, complex questions can be
answered concerning spatial relationships. It is also
possible to define the patterns of occurrence of dif-
ferent phenomena, in addition to analyzing layers
(thematic maps), to determine the suitability of a
place for a specific activity (Maguire et al. 2005).
Tools for SA also enable us to address critically
important questions and decisions that are beyond
the scope of simple visual analysis. The process of
integrating SA with advanced statistical techniques,
multi-criteria decision-making (MCDM), soft com-
puting, and machine learning models has opened
broad prospects for research around the world,
including the study landslide susceptibility (Chen
et al. 2018; Dou et al. 2019; Nohani et al. 2019), flood
susceptibility mapping (Al-Abadi and Al-Najar
2019; Janizadeh et al. 2019), gully erosion (Al-Abadi
and Al-Ali 2018; Arabameri et al. 2019; Azareh
et al. 2019), as well as groundwater potential and
spring potential mapping (Al-Abadi et al. 2019; Bui
et al. 2019; Kordestani et al. 2019). In the field of
petroleum geology and petroleum exploration,
many researchers have tried to use SA to analyze
hydrocarbon potential (Alshayef et al. 2019; Amiri
et al. 2015), discover new hydrocarbon sources (Gao
et al. 2000; Chen and Osadetz 2005; Bingham et al.
2012), and discern hydrocarbon migration pathways
(Liu et al. 2008; Rudini Matori et al. 2018).

At the level of petroleum reservoir units, no
studies using SA are yet available for predicting the
best places for high hydrocarbon production, except
by seismic surveys, well logging, and the drilling of
exploration boreholes, which are very costly in terms
of money, effort and time. The problem facing re-
searchers in using SA for hydrocarbon prospecting is
the heterogeneous nature of formations penetrated
by wells and thus the difficulty of averaging the
various petrophysical parameters of the reservoir
units, such as porosity and permeability. It is well
known that formation characteristics change later-
ally and with depth, and hence, the use of averaging
for quantifying reservoir characteristics will give
incorrect results and an incorrect evaluation of
hydrocarbon potential for a given reservoir unit. To
overcome this problem, the current research sug-
gests using the concept of hydraulic flow unit
(HFU), which is a mappable part of the reservoir
wherein the geological and petrophysical properties
influencing fluid flow are consistent and consistently
distinct from those of other reservoir rock units
(Ebanks 1987). Therefore, in this study, we propose
to map hydrocarbon productivity through integra-
tion of SA, MCDM, and the concept of HFU.
Hence, the objective is to predict which portion of a
reservoir will be the most productive in terms of
spatial distribution in order to drill new, successful
wells without expending more money and effort
using only available core and well log data.

MCDM is a subdiscipline of operations research
that explicitly evaluates multiple conflicting criteria
in decision-making problems. It is a popular tool in
the decision-making world, because it improves the
ability of decision-makers to make decisions by
considering all the criteria and objectives simulta-
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neously (Al-Abadi et al. 2018). Despite its use in
many scientific, engineering, social, and economic
fields, the use of MCDM in petroleum-related
problems is still very limited. Many MCDM tech-
niques have been developed in the past few decades,
and they can be classified according to the type of
decision model that is applied to the situation (Po-
latidis et al. 2006). Of all the MCDM techniques
available today, the analytical hierarchy process
(AHP) and the technique for order preference by
similarity to an ideal solution (TOPSIS) are the most
applied methods in the earth sciences and natural
hazard assessment. Thomas L. Saaty created AHP in
the 1970 s as a systematic framework for organizing
and evaluating complex decisions, and AHP pro-
vides an adaptable, low-cost and understandable
output for complex decision-making (Wind and
Saaty 1980). Given its versatility and ease of
implementation and interpretation, AHP largely
relies on an expert�s opinion of the weighting of
criteria, which is the major source of uncertainty
(Al-Abadi et al. 2018). To avoid this subjectivity in
assessing the relative weights of attributes, this study
proposes to use Shannon�s entropy concept (Shan-
non 1948). Entropy is utilized for measuring the
degree of disorder in a system (Yue 2017). The en-
tropy concept in information theory can be under-
stood as a measure of the degree of uncertainty
expressed by a discrete probability distribution
(Hafezalkotob and Hafezalkotob 2016). The en-
tropy concept can be used efficiently in the decision-
making process because it tests existing contrasts
between datasets and explains the average intrinsic
knowledge transmitted to decision-makers. On the
other hand, TOPSIS is a powerful method for testing
alternatives, which was originally proposed by
Hwang and Yoon (1981). TOPSIS chooses alterna-
tives that have the shortest geometric distance from
the positive ideal solution and the longest geometric
distance from the negative ideal solution (Assari and
Assari 2012).

The current research aims mainly to present a
new methodology for managing reservoir units and
determining the best places to drill productive
hydrocarbon wells by integrating SA, TOPSIS, en-
tropy, and the concept of HFU. The middle reser-
voir unit of Nahr Umr Formation in Luhias oil field
in southeastern Iraq (Fig. 1) was chosen as a case
study to demonstrate the potential of these tech-
niques in solving some difficult issues in the field of
hydrocarbon reservoir management.

STUDY AREA

The Luhias oil field is located in the Basra
Governorate, close to the administrative borders of
Nasiriyah Governorate, 105 km west of the Basra
Governorate center and 100 km southwest of the
giant North Rumaila oil field. The field is 20 km long
and 5 km wide in the northern part of the field and
10 km wide in the southern part (van Bellen et al.
1959). The shape of the structure appears to be
amebic as no specific axis is apparent for the struc-
ture (Fig. 1). From a tectonic point of view, the field
is located in a formerly unstable shelf zone, the
Zubair subzone (Idan et al. 2019), which is consid-
ered to be the southern part of the Mesopotamian
zone, a Cenozoic foreland basin formed between the
colliding Arabian and Iranian plates (Jassim and
Goff 2006; Fouad 2010; Darweesh et al. 2017). The
Zubair subzone is bordered on the north by the
transverse (NE–SW) Takhadid-Qurna fault and on
the south by the transverse (NE–SW) Al-Batin fault
in the Basra district (Darweesh et al. 2017). The
region was probably uplifted during the Hercynian
deformation, which took place from Late Devonian
through Middle Permian time, but subsequently
subsided through Late Permian time (Jassim and
Goff 2006). Most of the oil fields in southern Iraq
(including Luhais oil field) were formed as a result
of the impact of the Arabian Plate with parts of the
Iranian plate to the north and east during Oligocene
time. The resulting compression affected the form of
depositional layers in the basins along the north-
eastern edge of the Arabian Plate, including the
Mesopotamian foreland basin, resulting in broad
folds that later became large oil traps (Abdullah
et al. 1997). It is also believed that the Luhais
structure formed along lineation developed during
the eruption of the Neoproterozoic–Cambrian (In-
fracambrian) Hormuz Salt Formation (Husseini
1988; Rad et al. 2008), which continued through
Jurassic time. The collision of Arabian and Iranian
plates contributed to the final form of the field in
Miocene–Pliocene time (Aqrawi et al. 2010).

The Nahr Umr Formation, the target of this
study, is a sandstone reservoir initially defined by
Glynn Jones in 1948 from the Nahr Umr structure in
southern Iraq (Abid et al. 2015). In its type area in
southern Iraq, it comprises black shale interbedded
with medium- to fine-grained sandstones with lignite,
amber, and pyrite (Owen and Nasr 1958). The sand-
stone is locally sealed by shales beneath theMauddud
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Fig. 1. Location of the study area in southeastern Iraq.
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Formation (Al-Naqib 1967). According to Dunning-
ton et al. (1959), a carbonate unit occurs locally in the
upper part of Nahr Umr Formation in southern Iraq,
pinching out to the west and south. The formation is
Late Aptian–Albian in age, and depositional envi-
ronments include alluvial to lower coastal plain to
deltaic deposits with shallow marine and eolian
influences (Ibrahim 1983). According to the general
division and the definition given by van Bellen et al.
(1959), the lower boundary of the formation in the
type area is harmonious and gradual, and the surface
of disconformity also appears in the Dujaila area and
was accepted by (Ditmar and Team 1972), who found
that the top boundary was also conformable. The
Mauddud Formation constituted the upper boundary
of the Nahr Umr in a conformable and gradual
manner. The Dolomite Limestone may rise in the
Mauddud Formation base of the top of sandstone or
layers of shale to the Nahr Umr Formation. The for-
mation of the bottom is a non-conformable surface
with Shuaiba Formation, which represents layers of
foliate dark black shale to the base Nahr Umr For-
mation or at the top of the layers of yellow Dolomite
or pale gray for Shuaiba Formation (Qaradaghi et al.
2008). The Nahr Umr Formation is equivalent to the
upper part of the Sarmord Formation in northern Iraq
(Al-Naqib 1967). It is equivalent Burgan Formation
in Kuwait, which is located in southeastern Iraq
(Owen and Nasr 1958). It is also equivalent to Khafji
and Safaniya Formations in northern Saudi Arabia
(Powers 1968). It is also equivalent to the Lower
Kadhmi Formation in southern of Iran (James and
Wynd 1965). The formation in the Luhais oil field in
southern Iraq has been divided into two members: a
shale member and a sand member. The thickness of
the formation is more than 360 m in the southern part
of the Salman andMesopotamian zone. The thickness
of the formation in Iraq and Kuwait reaches up to
about 400 m, while in the south of Baghdad and
northwestern of Iraq it is down to 160 m (Jassim and
Goff 2006).

Based on the qualitative and quantitative
interpretation of conventional well log data, the
Nahr Umr Formation can be divided into three
reservoir units of sandstone with smaller amounts of
interbedded shale, separated by two prominent shale
layers, thereby dividing the formation into the up-
per, middle, and lower reservoir units (Fig. 2). The
middle reservoir unit is the target of this study, be-
cause it represents the most promising reservoir in

the Nahr Umr Formation. This unit is predomi-
nantly composed of porous sandstone layers with
interbedded shale layers. The average thickness of
this unit is � 45 m.

MATERIALS AND METHODS

Mapping of hydrocarbon productivity, the
objective of this study, was accomplished in the
following six steps (Fig. 3). (1) Available data were
gathered from core and well logs for the considered
reservoir unit. (2) Using porosity and permeability
acquired from the core data for seven wells (Lu-2,
Lu-3, Lu-4, Lu-5, Lu-7, Lu-8, and Lu-39), the degree
of heterogeneity for the given reservoir unit was
quantified using the Lorenz coefficient Lk and the
Dykstra–Parsons permeability variation Vk. (3)
Based on the results of step 2, a decision was made
to use or not to use the HFU to overcome hetero-
geneity problems. (4) The factors affecting hydro-
carbon productivity were determined from the
interpretation of logs and core data for each HFU
identified in step 3 and include average porosity (/),
thickness, volume of shale (Vsh), bulk volume of
water (BVW), total water saturation (SWT),
hydrocarbon saturation (Sh), and bulk volume of
hydrocarbons (BVh). (5) The hydrocarbon potential
of each HFU was then quantified using a hybrid
MCDM and Shannon�s entropy method to reveal
potential sites for drilling productive wells. Finally,
(6) model results were validated by direct compar-
ison with the current productive wells.

Data Used

Data available from the Basrah Oil Company
(BOC) for the middle reservoir unit of the Nahr
Umr Formation were used to complete the study.
The available data included the / and permeability
(k) measured from core data for seven wells (Lu-2,
Lu-3, Lu-4, Lu-5, Lu-7, Lu-8, and Lu-39). The total
number of cores available was 313. Table 1 provides
a statistical summary of the available / and k, from
which it can be concluded that both parameters are
skewed (Fig. 4). The values of / (CV = 0.3) show
more variation than the values of k (CV = 1.55). The
/ ranged from 0.025 to 0.292 with an average 0.194,
while k ranged from 0 to 6522 md with an average
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540 md. The available data also included the well log
data from twenty wells (Lu-5, Lu-6, Lu-7, Lu-39, Lu-
18, Lu-29, Lu-30, Lu-32, Lu-33, Lu-36, Lu-37, Lu-38,
Lu-40, Lu-41, Lu-42, Lu-43, Lu-44, Lu-45, Lu-46,
and Lu-47). The available well log types included
gamma-ray, resistivity, sonic, density, and neutron.
The following parameters were deduced from well
log data: /, reservoir unit thickness, Vsh, BVW,
SWT, Sh, and BVh. A detailed description of these
factors and how they can be calculated is found in
Ellis and Singer (2007) and Liu (2017).

Techniques Used

Reservoir Heterogeneity

Reservoir heterogeneity (RH) is a term used to
characterize a reservoir�s geological complexity and
the relationship of its complexity to the contained
fluids (Handhal 2016). Variations in various geo-
logical processes like erosion, deposition, lithifica-
tion, folding, and faulting dictate the heterogeneity
and non-uniformity of the reservoir rocks (Tiab and

Fig. 2. Computer-processed interpretation (CPI) of LU- 005 in the Luhais oil field (Nahr Umr Formation).
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Donaldson 2015). A quantitative evaluation of RH
is important for predicting reservoir performance
during waterflooding, designing an efficient injection
production system, maximizing hydrocarbon pro-
duction, and understanding the salient conditions
that are homogenous in the petroleum reservoirs. In

general, the two widely used statistical measures to
quantify the degree of RH are the Lorenz coefficient
Lk and the Dykstra–Parsons permeability variation
Vk (Tiab and Donaldson 2015). Lk is a measure of
heterogeneity that takes into account the statistical
nature of the porosity and permeability in a strati-

Fig. 3. Steps followed in this study.
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fied reservoir and is calculated by plotting the pro-
duct of average permeability and reservoir unit
thickness (cumulative flow capacity) on the y-axis
versus the product of average porosity and thickness
for the same reservoir unit (cumulative storage
capacity) on the x-axis. The value of Lk ranges from
0 to 1. A reservoir is said to be homogenous if Lk

approaches 0, and it is extremely heterogeneous if
Lk approaches 1. Vk, on the other hand, is a
dimensionless measure of sample variability or dis-
persion (Jensen et al. 2000). Vk is obtained by plot-
ting permeability values on a log probability curve to

obtain the values at certain probabilities and then
placing those values into the following equation:

Vk ¼ k50 � k84:1

k50
ð1Þ

where k50 is the permeability value at 50% proba-
bility and k84.1 is the permeability value at 84.1%
probability of occurrence in the cumulative sample.
The range of Vk is from 0 to 1. A reservoir is said to
be homogeneous, slightly heterogeneous, heteroge-
neous, very heterogeneous, extremely heteroge-
neous, and perfectly heterogeneous if its Vk is 0, 0–

Table 1. Statistical summary of porosity (fraction) and permeability (md) derived from core data

Well no. Statistical measures

Parameter Core No. Min. Max. Mean Sd CV Skewness

Lu-2 / (fraction) 79 0.030 0.276 0.204 0.063 30.75 � 1.48 (HS)

k (md) 79 0.000 6522 919 1264 137.63 2.09 (HS)

Lu-3 / (fraction) 82 0.025 0.256 0.196 0.051 26.29 � 1.88 (HS)

k (md) 82 0.200 1355 290.4 297.9 102.59 1.60 (HS)

Lu-4 / (fraction) 34 0.0790 0.273 0.187 0.067 35.81 � 0.33 (S)

k (md) 34 0.000 2210 401 616 153.71 1.98 (HS)

Lu-5 / (fraction) 24 0.045 0.239 0.175 0.048 27.79 � 1.57 (HS)

k (md) 24 0.000 2800 331 605 182.68 3.31 (HS)

Lu-7 / (fraction) 47 0.043 0.264 0.186 0.055 30.08 � 0.73 (HS)

k (md) 47 0.2 1869 367 408.9 111.32 1.37 (HS)

Lu-8 / (fraction) 34 0.062 0.292 0.205 0.062 30.25 � 1.00 (S)

k (md) 34 0.000 2329 615 594 96.52 0.97 (S)

Lu-39 / (fraction) 13 0.094 0.262 0.179 0.060 33.53 � 0.10 (S)

k (md) 13 0.000 4950 994 1455 146.37 1.87 (HS)

All core data / (fraction) 313 0.025 0.292 0.194 0.058 30.13 � 1.07 (S)

k (md) 313 0.000 6522 540 540 155.46 3.19 (HS)

Sd: standard deviation; Cv: coefficient of variation; HS: highly skewed; S: skewed
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0.25, 0.25–0.5, 0.5–0.75, 0.75–0.99, and 1, respec-
tively.

Hydraulic Flow Units

A HFU is characterized as a stratigraphically
continuous interval of similar reservoir operation,
which honors the geological structure and retains the
rock-type characteristics (Gunter et al. 1997). Hearn
et al. (1984) introduced the concept of HFU to
determine the distribution of rock types that most
strongly control fluid flow. They defined a HFU as
reservoir zone, which is continuous both laterally
and vertically and has similar permeability, porosity,
and bedding characteristics. Amaefule et al. (1993)
developed a HFU identification technique based on
microscopic measurements of core rock samples that
provide parameters for use in the modified Kozeny–
Carman equation (Eq. 2) and in the hydraulic mean
radius concept (Tiab and Donaldson 2015; Tiab and
Donaldson 2015); thus,

k ¼ 1

KTs2Vgr

 !
/3

e

1� /eð Þ2

 !
ð2Þ

where k is permeability in lm2, /e is effective
porosity, sVgr

is specific area per unit grain volume,

KT is effective zoning factor, and s is tortuosity of
the flow path. By dividing both sides of Eq. (2) by k
and taking the square root, we get:ffiffiffiffi

k

/

s
¼ 1

SVgr

ffiffiffiffiffiffiffi
KT

p /
1� /

� �
ð3Þ

If k and / are expressed in md and fraction,
respectively, the left-hand side of Eq. (3) becomes:

RQI ¼ 0:0314

ffiffiffiffi
k

/

s
; ð4Þ

where RQI is reservoir quality index and is mea-
sured in lm. The flow zone indicator (FZI) is de-
fined as:

FZI ¼ 1

SVgr

ffiffiffiffiffiffiffi
KT

p ð5Þ

Therefore, Eq. (2) can be rewritten as:

RQI ¼ FZI /z

� �
ð6Þ

where /z ¼ /
1�/. Taking the logarithm of both sides

of Eq. (6) yields:

log RQIð Þ ¼ log /z

� �
þ log FZIð Þ ð7Þ

A log–log plot of RQI versus /z gives a straight
line with a slope. The value of FZI is determined as
the intercept of the slope at /z ¼ 1 (Orodu et al.
2016). Samples on the same straight line have similar
pore throat characteristics and therefore form an
HFU.

Calculation of Factor Weight Based on Shannon�s
Entropy Concept

To determine objectively the weight of factors
used for mapping hydrocarbon productivity by the
entropy approach, the following steps were fol-
lowed.

(1) Formulate a decision matrix, which consists
of factors affecting the hydrocarbon pro-
ductivity of the reservoir unit, such as,
among others, porosity, permeability, and
volume of shale.

X ¼

x11 x21 : x1n

x21 x22 : x2n

: : : :
xm1 xm2 : xmn

2
664

3
775 ð8Þ

where m is number of factors (criteria) used, and n
is number of instances (alternatives) per factor.

(2) Standardize the decision matrix X using the
following equations:

yi ¼
ximax � xi

ximax � ximin
for efficiency typeð Þ ð9Þ

yi ¼
xi�ximin

ximax � ximin
for cost typeð Þ ð10Þ

where xi; ximin; ximax are original, minimum, and
maximum i values, respectively. The standardized
matrix Y is then written as:

Y ¼

y11 y21 : y1n

y21 y22 : y2n

: : : :
ym1 ym2 : ymn

2
664

3
775 ð11Þ

(3) Normalize Y to obtain the project outcomes
(Pij) as:
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Pij ¼
yijPm
i¼1 yij

ð12Þ

(4) Compute the entropy measure of project
outcomes via:

ej ¼ �k
Xm

i¼1

PijlnPij ð13Þ

where k ¼ 1= lnm:
(5) Calculate the entropy weight (wj) as:

wj ¼
1� ejPn

i¼1 1� ej

� � : ð14Þ

TOPSIS

TOPSIS is a compensatory aggregation ap-
proach based on the concept that the best alterna-
tive should have the shortest distance from the
positive ideal solution (PIS) and the farthest dis-
tance from the negative ideal solution (NIS)
(Hwang and Yoon 1981). PIS is the sum of all the
best values that can be accomplished for each at-
tribute, whereas NIS comprises all the worst values
achieved for each attribute (Siahaan et al. 2018).
The steps involved to compute ranked values using
TOPSIS are as follows.

(1) The decision matrix (Eq. 8) is first normal-
ized using formula 1

rij ¼
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x2
ij

q ;

where i ¼ 1; 2; . . . ; mand j ¼ 1; 2; . . . ; n;

ð15Þ

(2) Create a normalized decision matrix by
multiplication the criteria weights wi and rij

vij ¼ wirij; ð16Þ

(3) Calculate PIS and NIS using the following
equations

NIS ¼ minvijjj 2 Ĵ
� �

; maxvijjj 2 J
^

� �
ð17Þ

where Ĵ and J
^

are the benefit and cost criteria,
respectively;

(4) Compute the separations of each alterna-
tive from PIS and NIS using Euclidean
distance; thus,

Sþ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

vij � vþ
i

� �2s
j ¼ 1; 2; . . . ; n ð18Þ

S�
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

vij � v�
i

� �2s
j ¼ 1; 2; . . . ; n; ð19Þ

(5) Compute the relative closeness coefficient
to the ideal solution via

Cj ¼
S�

j

Sþ
j þ S�

j

j ¼ 1; 2; . . . ; n; and ð20Þ

(6) Finally, rank the alternatives according to
Cj, considering that the best alternative is

the one that has the highest Cj.

RESULTS AND DISCUSSION

Heterogeneity Test

Table 2 shows the results of heterogeneity cal-
culations for the current study. It is clear that both Lk

and Vk measures proved that the studied reservoir
unit is heterogeneous. The averages of calculated Lk

and Vk were 0.65 (heterogeneous) and 0.93 (very
heterogeneous), respectively. Based on these results,
the average reservoir unit characteristics cannot be
used to complete the spatial productivity analysis. For
this reason, the HFU was used in a later section to try
to reduce the vertical variation in reservoir properties
in order to build accurate spatial models.

HFU Identification and Factor Preparation

To identify HFUs for the reservoir unit under
consideration, Interactive Petrophysics (IP) soft-

Table 2. Heterogeneity tests

Well no. Lk Evaluation Vk Evaluation

Lu-2 0.58 Heterogeneous 0.88 Very heterogeneous

Lu-3 0.55 Heterogeneous 0.91 Very heterogeneous

Lu-4 0.76 Heterogeneous 0.94 Very heterogeneous

Lu-5 0.70 Heterogeneous 0.92 Very heterogeneous

Lu-7 0.69 Heterogeneous 0.90 Very heterogeneous

Lu-8 0.54 Heterogeneous 0.96 Very heterogeneous

Lu-39 0.73 Heterogeneous 0.99 Very heterogeneous

Average 0.65 0.93
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ware was used in this study. To optimize the num-
ber of HFUs, the k-means clustering technique was
used. K-means is one of the most frequently used
unsupervised ML algorithms for partitioning a gi-
ven set of data into a set of k groups (k clusters),
where k represents the number of groups pre-
specified by the analyzer (MacQueen 1967).
Determining the optimal number for k in a dataset
is a crucial issue in the successful application of the
k-means technique. Different automatic algorithms
were developed to specify the optimal number for
k, including direct methods such as Elbow and
Silhouette and statistical testing methods such as
the Gap statistic. Besides these methods, more than
30 other indices and methods have been developed
to identify the optimum number for k using ‘‘ma-
jority rule’’ by implementing in the NBClust ()
function of the R statistical software (Charrad et al.
2012). The fviz_nbclust () function in the R package
was used to execute Elbow, Silhouhette and Gap
statistical methods. The results are shown in Fig. 5.
The determined optimal number for k using Elbow,
Silhouhette, Gap, and NBClut () functions were 4,
2, 3, and 2, respectively. Therefore, the optimal
number for k was taken to be 2. The HFUs iden-
tified in this study using two classes are shown in
Fig. 6. For each HFU, the average reservoir char-
acteristics (/, reservoir unit thickness, Vsh, BVW,
SWT, Sh, and BVH) for each well were calculated.
For those wells having only well logs, depths of the
wells having core data close to these wells were
used as guides to determine the reservoir interval.
The average reservoir characteristics for the all
wells (having core or having only logs) for each
HFU were then interpolated using the ordinary
kriging (OK) technique to get the surfaces of the
factors (Fig. 7). Kriging is a family of estimators
used to interpolate spatial data. This family in-
cludes ordinary kriging, universal kriging, indicator
kriging, probability, disjunctive, and co-kriging
(Lefohn et al. 2005). Ordinary kriging is a well-
known estimation method that minimizes the error
of variance and provides an uncertainty measure as
well (Yamamoto 2005). From Fig. 7a, the thickness
of HFU-1 ranged from 7 to � 40 m. The HFU-1
thickness increases from west to east, and the
maximum thickness (22 m) appears in the east side
of the study area. In contrast, the thickness of
UFU-2 ranged from 11 to 32 m and it is distributed
unevenly throughout the study area. The average
thicknesses of HFU-1 and HFU-2 were 21 and
24 m, respectively. The minimum, maximum, and

average values of / for HFU-1 were 0.038, 0.29, and
0.168, respectively. The northern, middle, and
southern parts of the study area had high values,
whereas the eastern and western parts had the
lowest values (Fig. 7b, upper figure). With respect
to HFU-2, the / values ranged from 0.09 to 0.28
with average of 0.185. The / of HFU-2 was gen-
erally high in the middle of the unit and it de-
creased toward western and northern portions
(Fig. 7b, lower figure). The minimum, maximum,
and average BVW values for HFU-1 were 0.024,
0.086, and 0.048, respectively; for HFU-2, they were
0.012, 0.099, and 0.043, respectively. Spatially, the
BVW for HFU-1 was high in the northern part and
low in the southern part (Fig. 7c, upper figure);
also, it was high in middle of the unit from east to
west and low in the remaining parts (Fig. 7c, lower
figure). In the case of SWT, the minimum, maxi-
mum, and average values were 0.103, 0.930, and
0.443, respectively; for HFU-1, they were 0.074,
0.816, and 0.423, respectively. The low values of the
SWT were essentially distributed in the middle part
of the study area from south to north in both units,
whereas the high values appeared at the eastern
and western edges (Fig. 7d). For the Vsh, the values
of minimum, maximum, and average were 0.0172,
0.755, and 0.288, respectively, for HFU-1 and 0.119,
0.387 and 0.255, respectively, for HFU-2. The spa-
tial distribution of this factor in the two units was
different; in HFU-1, the high values appeared in
the central and western parts (Fig. 7e, upper fig-
ure), whereas in HFU-2, the high values concen-
trated in the northeastern and southwestern parts
of the study area (Fig. 7e, lower plot). In the case of
Sh, the high values were distributed approximately
with the same pattern in both units in the middle of
the study area and with a northwest–southeast
trend (Fig. 7f). The minimum, maximum, and
average values of Sh for both units were 0.174,
0.820, and 0.557, respectively, for HFU-1, and
0.182, 0.924, and 0.576, respectively, for HFU-2.
For the last factor, BVH, high values occurred in
the northern and southern parts of the study area
and low values encompassed the middle parts of
HFU-1 (Fig. 7g, upper figure). In contrast, the high
values were distributed through the middle of
HFU-2 in the south–north direction (Fig. 7g, lower
figure), whereas the low values occupied the
remaining parts. The maximum, minimum, and
average values of BVH for HFU-1 were 0.007,
0.225, and 0.119, respectively, and 0.041, 0.003, and
0.131, respectively, for HFU-2. In general, the

Spatial Modeling of Hydrocarbon Productivity in the Nahr Umr Formation

Author's personal copy



petrophysical properties that enhanced hydrocar-
bon productivity (unit thickness, /, Sh, and BVH)
in HFU-2 were much better than in HFU-1.

Therefore, it should be expected that this unit
would be more productive. In addition, high values
for these properties were distributed across the

Fig. 5. Number of optimal k using (a) Elbow (b) Silhouette (c) Gap statistic method, (d) NBClust function using majority

rule of 30 indices.
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middle of the study area in the north–south direc-
tion, suggesting that the most promising and pro-
ductive parts in the middle part of the Nahr Umr
Formation run in that direction.

The layers for each factor were prepared as
rasters with a 10 9 10 m spatial resolution. The total
number of pixels for each factor was 1,440,976, and
the number of rows and columns was 904 and 1594,
respectively.

Factor Weight Determination

To derive weights using Shannon�s entropy
model, Eqs. (8)–(14) were used. To standardize
factors, the efficiency type (smaller the better),
Eq. (9), was used for the Vsh, BVW, and SWT. In
contrast, the cost type (larger the better), Eq. (10),
was used for unit thickness, /, Sh, and BVH. The
results of the factor weight calculations using the

Fig. 5. continued.
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entropy approach are presented in Table 3 for both
HFU-1 and HFU-2. In the case of HFU-1, the higher
weights would be allocated in descending order for
the Sh (0.218), unit thickness (0.190), BVH (0.141),
and BVW (0.132) factors. The Vsh has the lowest

weight (0.103), followed by SWT (0.107), and then /
(0.111). For HFU-2, the Vsh has the highest weight
(0.179), followed by BVH (0.092), Sh (0.170), and
SWT (0.154). The lowest weights were allocated for
/ (0.081), BVW (0.092), and unit thickness (0.146).

Fig. 6 Flow units 

Fig. 6. Flow units.
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TOPSIS RESULTS

To simplify the calculation of rates using the
TOPSIS approach, 100 randomly distributed points
covering the study area were generated in ArcGIS
10.5 software. Using the ‘‘Extract multi-values to the
points’’ command, the factor values were extracted
for each point and organized in a .csv file. The .csv
file, including the factor weights determined in the
previous section, was then utilized for rate calcula-
tion using the TOPSIS approach by running the
‘‘topsis’’ package in the R statistical software. The
normalized weighted matrix was prepared using
Eq. (16), while Eq. (17) was used to define the PIS
and NIS, respectively. The distance to PIS and NIS
was determined using Eqs. (18) and (19), and the
relative closeness coefficient to the ideal solution of
each alternative was obtained using Eq. (20). The Cj

calculated through TOPSIS modeling varied from
0.22 to 0.83 for HFU-1 and from 0.12 to 0.89 for
HUF-2. These values were used as indices of
hydrocarbon productivity, were exported to ArcGIS
10.5, and were interpolated using OK interpolation
to reveal the spatial distribution of hydrocarbon
productivity in the middle reservoir unit of the Nahr
Umr Formation in the Luhais oil field. The inter-
polated values for hydrocarbon productivity were
categorized into three productivity levels using the
Jenks natural break (NB) classification
scheme (Jenks 1967) (Figs. 8 and 9): low produc-
tivity, moderate productivity, and high productivity.
With NB, groups were based on the data inherent in
the natural groupings. Class breaks were generated
in such a way that similar values were better

grouped together and the discrepancies between
classes were maximized (De Smith et al. 2007). The
areas occupied by these three levels for HFU-1 were
as follows: 32 km2, 22 km2, and 45 km2 for the low-,
moderate-, and high-productivity zones, respec-
tively. In the case of HFU-2, the areas occupied by
these same zones were 30 km2, 23 km2, and 46 km2,
respectively. The total areas encompassed by the
moderate and high levels were 67% and 69%,
respectively, of the whole area (99.42 km2), reflect-
ing the high-productivity conditions of the Nahr
Umr middle reservoir unit. In terms of the spatial
distribution of the hydrocarbon productivity zones,
the promising high-productivity zone for HFU-1
occurs in the southern and northern parts of the
study area, whereas low-productivity areas are con-
centrated in the western and eastern parts of the unit
and as a narrow strip in the upper middle part
(Fig. 8). In contrast, the high-productivity zone for
HFU-2 covers an area running in a northeast–
southwest direction across the study area, and the
remaining parts encompass a low-productivity zone
(Fig. 9). Comparing Figs. 8 and 9 clearly shows that
the lower part of the middle Nahr Umr Formation
(HFU-2) is more productive than the upper part
(HFU-1).

Validation of Results

To validate the maps produced in this study for
modeling the spatial productivity of the Nahr Umr
middle reservoir unit, the geographic locations of
the 41 productive wells in the study area were used

Fig. 6. continued.
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Fig. 7. Factors used in mapping hydrocarbon productivity: (a) unit thickness in m; (b) porosity (fraction); (c) BVW (d) SWT (e) Vsh (f)

Sh, (g) BVH.
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Fig. 7. continued.
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as a guide. Direct comparison of the well locations
with the derived hydrocarbon productivity zones for
HFU-1 and HFU-2 is presented in Fig. 10, from
which it is apparent that both models performed
well in predicting hydrocarbon productivity zones;
the mean accuracy of the models was 76% and 88%
for HFU-1 and HFU-2, respectively. The HFU-1
model was successful in predicting hydrocarbon
productive zones in 32 well locations (moderate- and
high-productivity zones), but failed in nine cases.
Similarly, the HFU-2 model predicted the hydro-
carbon productivity in 37 well locations, but failed in
only four locations. In general, the HFU-2 model
was more accurate than the model for the HFU-1.

CONCLUSIONS AND FINAL REMARKS

Despite its widespread use in most sciences and
engineering applications, techniques for SA remain
almost unknown in the exploration, evaluation, and

management of oil and gas reservoirs. This situation
is due to the difficulty in carrying out such analyses
because of the heterogeneous nature of rock for-
mations in which hydrocarbons occur. To overcome
the heterogeneity problem, this study suggests using
the HFU concept. As an example, a geospatial
model-based hybridization of Shannon�s entropy
and the TOPSIS algorithm was developed for map-

Fig. 7. continued.

Table 3. Factor weight calculations using entropy method

Factor Standardization formula Calculated weights

HFU-1 HFU-2

Unit thickness Cost 0.190 0.146

/ Cost 0.111 0.081

Sh Cost 0.218 0.170

BVH Cost 0.141 0.177

Vsh Efficiency 0.103 0.179

BVW Efficiency 0.132 0.092

SWT Efficiency 0.107 0.154
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ping hydrocarbon productivity in the middle reser-
voir unit of the Nahr Umr Formation in the Luhais
oil field, southern Iraq. The objective of the exercise
was to delineate which portion of the reservoir unit
was highly productive in order to imitate a drilling
exploration program. The main results were as fol-
lows. (1) The middle part of the Nahr Umr reservoir

unit is heterogeneous. (The average calculated Lk

and Vk were 0.65 and 0.93, respectively.) (2) The
reservoir unit can be characterized by two HFUs
based on the results of the k-means clustering
technique. (3) The ranked values using the TOPSIS
approach were classified into three hydrocarbon
productivity zones using the geometric classification

Fig. 8. HFU-1 productivity map (middle Nahr Umr Formation).
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scheme of low-, moderate-, and high-productivity
zones. These zones occupy 32, 22, and 45 km2 for the
low-, moderate-, and high-productivity zones,
respectively, in the case of HFU-1; In contrast, the
productivity zones extend over 30, 23, and 46 km2 of
the study area, respectively, for HFU-2. (4) The
moderate- to high-productivity zones for HFU-1 and

HFU-2 encompass 77% and 70% of the study area,
respectively, indicating that the middle reservoir
unit is promising in terms of hydrocarbon produc-
tivity. (5) In the case of the spatial distribution of the
productivity zones, the high-productivity hydrocar-
bon zone occurs in the southern and northern parts
of HUF-1 and in a northeast–southeast swath across

Fig. 9. HFU-2 productivity map (middle Nahr Umr Formation).
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middle part of HFU-2. (6) The lower part of the
Nahr Umr reservoir unit is more productive than the
upper one. (7) Comparing the already productive
wells in the field with the deduced productivity
zones indicates that the developed TOPSIS models
performed well with 76% and 88% for the HUF-1
TOPSIS and HFU-2 TOPSIS models, respectively.
(8) It is clear that the productivity maps developed
in this study can be used for efficient management of
reservoirs and as guides for drilling new, highly
productive wells with minimum effort and cost.

Finally, it is important to note that the accuracy
of the developed models can be enhanced in the
future by incorporating more petrophysical factors,
like permeability, if data were available, and more
advanced techniques, such as soft computing and
machine learning techniques, can be used for
building even more accurate models.
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