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A B S T R A C T

Total organic carbon (TOC) is an important parameter for assessing the hydrocarbon potential of source rocks.
The standard method for analysis of TOC is the Rock-Eval pyrolysis on cutting and core samples. The coring
process is always expensive and time consuming. Therefore, researchers around the world focused on developing
techniques to estimate TOC and other organic parameters from readily available well logs data that are almost
available in all wells. In this study, we evaluated the use of three machine learning models namely, random
forest (RF), rotation forest (rF), k nearest neighbors (KNN) to estimate TOC based on conventional well logs data.
The well logs involved gamma ray, acoustic, density, neutron, and deep resistivity. The efficacy of the models
was tested against the most widely used backpropagation artificial neutral network (BPANN) and support vector
regression (SVR) models. North Rumaila oilfield in southern Iraq was taken as a case study. The models were
trained and tested using data from two wells in the field, namely R-167 and R-172. The number of TOC mea-
surements used for training and testing were 40 (R-167) and 18 (R-172), respectively. The efficacy of the used
algorithms was evaluated using mean absolute error (MAE), root mean squared error (RMSE), and correlation of
determination (R2). The models are also visually compared using Taylor diagram and violin plot to distinguish
the best performance model. Results indicated the KNN was the best followed by RF and then rF. The worst
performance models were BPANN and SVR models. This study confirmed the ability of machine learning models
for building efficient model for estimating TOC from readily available borehole logs data without the need for
very expensive coring process.

1. Introduction

TOC is a measure of the organic richness of a rock, that is, the
amount of organic carbon in a rock sample (both kerogen and bitumen)
(Jarvie, 1991; Peters and Cassa, 1994). This parameter is best measured
on cutting and core dependent samples using Rock-Eval pyrolysis ap-
paratuses. The process of obtaining core samples is expensive and time-
consuming. In addition, results are incomplete, as a few exploration
wells deliberately penetrate the source rock horizons so that a limited
number of samples can be collected for laboratory analysis. Therefore,
different mathematical relationships and empirical formulas are de-
veloped to predict TOC from readily available well logs data that are
almost available in all wells (Passey et al., 1990; Huang and
Williamson, 1996; Kamali and Mirshady, 2004). Due to the complexity
of the relationship between the logs response and the geochemical data,

most of the developed linear relationships are fail to attain appropriate
accuracy (Wang et al., 2019). With recognition of its potential, artificial
intelligent (AI) and machine learning (ML) techniques have been re-
cently applied to model the relationship between TOC and well logs
data with highly promising results (Abdizadeh et al., 2017; Bolandi
et al., 2017; Farzi and Bolandi, 2016; Kadkhodaie-Ilkhchi et al., 2009;
Ouadfeul and Aliouane, 2015; Sfidari et al., 2012; Wang et al., 2019).
ML is a specific branch of AI that enables systems to learn from ex-
perience and improve from experience without explicit programming.
The aim is to allow computers to learn automatically without human
assistance to adjust subsequent actions accordingly (Bishop, 2006).
Despite its great success in many applications in the fields of en-
gineering, science, marketing, environment, and geospatial models, its
use in prediction of TOC from well log data is still faltering, especially
since many relatively new algorithms such as rotation forest (rF),
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random forest (RF), k-nearest neighbors (kNN), boosted regression trees
(BRT), classification and regression trees (CART), M5P, etc. have not
been tested.
In this study, three ML techniques (rF, RF, and KNN) were used for

predicting TOC (target variable) from a suite of conventional well logs
data (gamma ray, resistivity, density, acoustic, and neutron) as re-
gressors. The rF was chosen for its scarce use despite its efficiency and
superiority to many other ML algorithms. The RF was chosen as the
most algorithm used in the scientific and engineering fields that proved
its efficiency in the fields of classification and regression. The KNN was
selected for its simplicity and to compare its results with the most ad-
vantageous techniques (rF and RF). North Rumaila (NR) oilfield in
southern Iraq was taken as case study. A comparison was also made
with backpropagation artificial natural network (ANN) and support
vector regression with radial basis function (SVR-radial) models to
show the best technique to predict TOC.

2. Geological setting

2.1. Structural and tectonic

NR oilfield locates at Basrah Governorate, south of Iraq and en-
compasses an area of 1600 km2 (Fig. 1). NR is the northern portion of
the Rumaila supergiant oilfield, the largest producing field in Iraq since
1953. From the structural point of view, Rumaila oilfield is a doubly
plunging simple and asymmetric anticline with N-E trend in the long
axis. This system has two domes, North Rumaila (NR) and South Ru-
maila (SR). The length of this structure is 83 km and its width is 12 km
(Handhal et al., 2019). The NR dome is an asymmetrical elongated
anticline with a North-South trend. The dip on the flank is about 3°. It
plunges gently towards the south to form a saddle separating it from the
dome of SR. Given Iraq's tectonic divisions, NR is situated in the Zubair
subzone of the Mesopotamian zone. It is located in the sagged basin of
the Mesopotamian zone a part of the Arabian plate quasiplatform
foreland. The Takadid Quarna and Basrah-Zubair faults have bounded
this zone from north and south, respectively.

2.2. Stratigraphy

The stratigraphic column in NR comprises entirely of sedimentary
rocks from the Jurassic to the Recent. The lithostratigraphic column
consists of cycles of clastic, carbonate, and evaporite rocks. From the
bottom to top, the stratigraphic column comprises Sargelu, Naokelekan,
Najimah, Gotnia, Sulay, Yamama, Ratwai, Zubair, Shuaiba, Nahr Umr,
Muddud, Ahamdi, Rumaila, Mishrif, Khasib, Tanuma, Saadi, Hardha,
Shiranish, Tayarat, Umm Er-Radhuma, Rus, Dammam, Ghar, Lower
Fars, Dibdibba, and Hammar formations (Fig. 2). The main reservoirs
include Zubair and Mishrif formations, the source rocks are Sargelu,
Sulaiy, Yamam, and Ratawi, and the cap rocks are Gotania, Tanuma,
Shiranish, and Rus. The Zubair Formation is the most important for-
mation of the Lower Cretaceous cycle in Iraq (Al-Sayyab, 1989). It is

composed of fluvio-delatic and marine sandstone (Aqrawi et al., 2010)
with an average thickness of 425 m. The age of the formation is Hau-
terivian until early Aptian (Bellen et al., 1959). Mishrif Formation, on
the other hand, represents a heterogenous formation originally de-
scribed as organic detrital limestone with beds of algal, rudist, and
coral-reef limestones (Bellen et al., 1959). The age of formation is late
Cenomanian. The Mishrif Formation succession indicates general shal-
lowing from open-shelf to fore-reef slope, then reef flat and finally
inner-shelf conditions (Aqrawi et al., 1998). Sargelu Formation in its
type section (northern Iraq) comprises 115 m of thin-bedded, black,
bituminous and dolomitic limestones, and black papery shales with
streaks of thin black chert (Jassim and Goff, 2006). The depositional
environment of this formation is the basinal euxinic marine environ-
ment. The age is of Bajocian-Bathonian. Sulaiy Formation, on other
hands, is composed of limestone with some shale streaks at its base with
an average thickness of 245 m. The age of the formation is late Titho-
nian-early cretaceous. It regarded as the best source rocks in southern
Iraq, Kuwait, and Saudi Arabia (Al-Ameri et al., 1999). The depositional
environment of this formation is offshore marine-shelf (Al-Ameri et al.,
2011). Yamama Formation mainly comprises 12 m of specular and
brown detrital limestone with thin shale beds overlain by 191 m of
micritic limestone and oolitic limestone (Jassim and Goff, 2006). The
formation is of Berriasian-Valanginian age (Bellen et al., 1959). The
depositional environment was alternating oolitic shoal and deep inner
shelf, probably controlled by subtle structural highs within a carbonate
ramp (Sadooni, 1993). Gotania.
Formation comprises anhydride with subordinate beds of brown

calcareous shales, thin black bituminous. The Tanuma Formation
comprises 30 m of black, fissile shale with streaks of grey, macro-
crystalline, argillaceous and detrital limestones with an oolitic lime-
stone layer at the top (Jassim and Goff, 2006). The Tanuma Formation
was deposited in a restricted shallow basin, in a partly euxinic en-
vironment. The age formation is Late Senonian (Bellen et al., 1959).
The Shiranish Formation, in its type area, comprises thin-bedded ar-
gillaceous limestones overlain by blue pelagic marls (Owen and Nasr,
1958). The age is Late Campanian-Maastrichtian. The Rus Formation, in
its type area, consists predominantly of anhydride with some un-
fossiliferous limestone, blue shale, and marl. The age of the formation is
Early Eocene (Ypresian) (Al-Naqib, 1967). The formation was deposited
in a lagoonal-sebkha environment on the stable shelf.

3. Methodology

The steps follow to achieve the objective of this study are presented
in a flow chart (Fig. 3) and consists of: (1) collecting data concerning
TOC (Rock-Eval pyrolysis of core samples) and conventional well logs
data (2) test the relevance of well logs in predicting TOC using Pearson
correlation coefficient method (3) Building ML models using R statis-
tical software (4) Compare the performance of the models used via
correlation of determination (R2), root mean squared error (RMSE), and
mean absolute error (MAE) in training and testing stages, and (5)

Nomenclature

AC Acoustic log
BPANN Backpropagation artificial neural network
BRT Boosted regression trees
Bk1 WEKA kNN package
CART Classification and regression trees
DN Density log
DT Decision trees
GR Gamma ray log
kNN k-nearest neighbor
MAE Mean absolute error

ML Machine learning
NCL Neutron log
NR North Rumaila
PCA Principle component analysis
r Pearson's correlation coefficient
R2 Correlation of determination
RF Random forest
rF rotation forest
RMSE root mean squared error
RT Resistivity log
SVR Support vector regression
TOC Total organic carbon
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compare across visualization the best of ML models using Taylor dia-
gram and violin plot to select the best ML model.

3.1. TOC data

In this study, 58 core samples from two wells (R-167 and R-172) in
NR oilfield were taken for Rock-Eval pyrolysis. The Rock-Eval analysis
was conducted in the Geology Department of South Oil Company (SOC)
Iraq following the method described by (Espitalie et al., 1977) and
(Langford and Blanc-Valleron, 1990). The core samples were taken for
the depth intervals (3200–4510 m) and (3036–4110 m) for the R-167
and R-172 wells, respectively. Forty (40) core samples were taken from

Zubair, Ratawi, Yamama, and Suliay formations for the R-167. For the
R-172, 18 core samples were taken from Zubair, Ratawi, and Yamama.
The rock samples were first pulverized and then, 70 mg of each sample
was weighted and placed in a clean crucible based on the depth of the
samples (Rahmani et al., 2019). After that, the samples had been de-
contaminated to avoid device contamination. The Rock-Eval was run
with a temperature schedule of 25 °C min−1, where the final tem-
perature in the pyrolysis oven exceeds 800 °C, and in the oxidation oven
850 °C. The Rock-Eval pyrolsis was designed to provide the following
main parameters: TOC (wt. %), volatile hydrocarbon (S1 in mg HC
(hydrocarbon)/g rock), hydrocarbon derived from kerogen pyrolsis (S2
in mg HC/g rock), the temperature at the highest yield of S2 (Tmax in

Fig. 1. Location of the study area.
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°C). A more detail on how this apparatus work and the derived para-
meters can be found in (Espitalie et al., 1977; Langford and Blanc-
Valleron, 1990; Peters and Cassa, 1994). Table (1) showed the derived
TOC for the study area's core samples.

3.2. Logs data

Previous studies have shown that the most sensitive logs for the
presence of organic matter in the rocks are gamma ray (GR), deep re-
sistivity (RT), density (DN), acoustic (AC), and neutron (NCL). The
higher the organic content of rocks, the greater the anomalies in the
response of these logs (Wang et al., 2019). Organic matter as a com-
ponent of sedimentary rocks, has a relatively low density, slow velocity,
and is high in hydrogen content, and often exhibits abnormally high
uranium levels. The GR log is a record of a formation's radioactivity.
The radiation emanates from uranium, thorium, and potassium which
occur naturally (Rider, 2002). Rocks with a high content of organic
matter have high concentrations of radioactive elements and thus in-
crease the GR response (Bolandi et al., 2017). Resistivity logs are re-
cording a formation's resistivity. They can be used to infer porosity,
water saturation, and the presence of hydrocarbon (Evenick, 2008). RT
is a resistivity log that measures the true formation resistivity and
mainly used for estimating water saturation. The relationship between

TOC content and the response of the RT log is not well understood;
however, the recorded resistivity values against mature source rocks are
high (Schmoker and Hester, 1989). The RT response in a source rock is
influenced by the type of fluid and the maturity level of organic matter
(Khoshnoodkia et al., 2011). When the immature formation has brine,
the RT records low resistivity values; in contrast, when the matured
source rocks are filled with hydrocarbon, the RT log measures high
resistivity (Nixon, 1973). The DEN log measures the porosity of a for-
mation based on the assumed density of the formation and drill fluid
(Evenick, 2008). Formation bulk density is a function of matrix density,
porosity, and fluids contained in the pore space. In general, the organic
material has a density near 1.0 g/cm3, while the average of shale mi-
neral density is 2.7 g/cm3. Therefore, this difference in density between
the rock matrix and contained organic material causes significant
changes in formation density and response of DEN log. Based on this
fact, the organic content can be computed directly from DEN log if
variations from other causes are taken into consideration (Schmoker,
1979). AC log, on the other hand, is a tool used to measure the travel
time of elastic water through the formation. The AC records are mainly
a function of lithology, porosity, and type of fluids. According to
(Dellenbach et al., 1983), the AC is higher in immature source rock than
the mature interval and therefore, the AC log offers an indirect method
to quantify TOC content. Finally, NCL measures the number of neutrons

Fig. 2. Stratigraphic column of southern Iraq.
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scattered from the formation after it is exposed to a neutron source. It is
mainly used for estimating formation porosity. As the organic matter
has a direct relationship with hydrogen atoms and porosity of the rock,
the NCL curve increase against the organic-rich intervals.

3.3. The used techniques

3.3.1. Feature selection using pearson correlation coefficient
Feature selection (FS) is the process by which the irrelevant and

redundant features are identified and removed from a training data set.
This process reduces the dimensionality of the data and may enable ML
algorithms to work more efficiently. FS decreases the complexity of an

ML model and increases the efficiency of the features (Al-Abadi et al.,
2019). Selecting only a minimum set of informative and relevant fea-
tures could improve the robustness of models for learning parameters,
classifying samples, or predicting response from a large amount of data
(Saethang et al., 2008). The Pearson's correlation coefficient (r) was
used in this study to test the relevance of the attributes (factors) for
estimating the TOC. r is a measure of the linear correlation between two
variables x and y. r is the covariance of the two variables divided by
their standard deviations. It is calculated as:

=r cov x y( , )
x y

x y
,

(1)

Fig. 3. Steps adopted in this study to predict TOC from well logs data.

Table 1
TOC data of Well R-167 and R-172 in NR oilfield.

Well Formation No. of Samples Depth range (m) Average TOC (%) Source Rock generating potential Percentage of Samples have < 1% TOC content

R-167 Zubair 11 3388–3775 1.01 Good 50
Ratawi 2 3854–3360 0.89 Fair 50
Yamama 11 3896–4210 1.23 Good 70
Sulaiy 16 4220–4510 2.90 Very Good 70

R-172 Zubair 4 3100–3301 1.08 Good 50
Ratawi 2 3400–3450 1.05 Good 50
Yamama 12 3700–4110 3.16 Very Good 70
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Where cov is the covariance, x is the standard deviation of x, y is the
standard deviation of y.

3.3.2. rF algorithm
rF is an ensemble method, originally developed for classification

problems. It is based on constructing each classifier with features ob-
tained by rotating subspaces of the original dataset (Al-Abadi, 2018).
The feature set is randomly divided into k subset to create the training
data for a base classifier. The principal component analysis (PCA) is
then applied to each subset. All principal components (PC) are main-
tained to keep the variability information in the data (Rodriguez et al.,
2006). To create new features for a base classifier, the k is rotated to
prompt both individualism and diversity within the ensemble. Diversity
is achieved by using PCA to extract features for each base classifier,
while accuracy is prompted by taking all the PC components and using
all the datasets to train each base classifier (Zhang et al., 2008). Suc-
cessful application of rF is dependent on the rotation matrix generated
by the methods of transformation and the base classifiers chosen (Xia
et al., 2017).

3.3.3. Random forest (RF)
RF is also an ensemble learning algorithm designed for handling

both regression and classification problems with the use of multiple
decision trees (DT) and a bootstrap aggregation (bagging) technique.
Bagging builds multiple DT from resampled data and combined the
predicted values through averaging and voting. Approximately, 2/3 of
the learning samples are used for training, while the remaining 1/3 is
used for validation (the out-of-bag OOB) (Al-Abadi and Shahid, 2016).
The RF algorithm has the inherent ability to estimate a feature's im-
portance by evaluating how much the prediction error increases when
OOB is permuted for the feature while all others remain unchanged
(Catani et al., 2013). RF is also capable to handle the missing values and
maintains accuracy at the same time. It also resistance to the overfitting
problem, and easily handle large dataset with higher dimensionality.
Two hyperparameters need to be tune in the RF to get the best results:
the number of regression trees (ntree; the default value is 500 trees) and
the number of input features per node (mtry: the default value is 1/3 of
the total number of features).

3.3.4. K-nearest neighbor (KNN)
KNN is an algorithm that is non-parametrically supervised and can

be used for classification and regression problems. The KNN predicts a
new sample from the training set using the K-closest samples (Kuhn and
Johnson, 2013). To classify or predict a new case, the KNN relies on
finding “similar” cases in the training data (Shmueli et al., 2016). These
“neighbors” are then utilized to predict the new case by voting (for
classification) or averaging (for prediction). The KNN is robust to noisy
training data and is quite successful when a large training dataset is
given (Mitchell, 1997). The main advantage of KNN is its simplicity and
lack of parametric assumptions (Shmueli et al., 2016).

3.3.5. Artificial neural networks (ANNs)
ANN is a computing system composed of many simple computation

elements integrated across a weighted connection (Isiyaka et al., 2019).
ANN is a mimic of how data is synthesized by the biological nervous
system. These systems “learn” to perform tasks by looking at examples,
usually without programming the task-specific rules. The architecture
of ANN is based on a collection of connected units (nodes) named ar-
tificial neurons that model the neurons in a biological brain. Each
connection can convey a signal to other neurons, like the synapses in a
biological brain. It is then processed by an artificial neuron that re-
ceives a signal and may signal associated neurons. In ANN applications,
the “signal” at a connection is a real number, and some non-linear input

sum function calculates the output of each neuron. Neurons and con-
nections have a weight that adjusts as learning progresses. To train
ANN, network architecture, weights, learning rate, and proper training
algorithm should be carefully chosen and initialize (Wang et al., 2016).
In this work, we used the Backpropagation neural network (BPANN) to
estimate TOC. BP algorithms are a family of techniques utilized to train
ANNs effectively following a gradient-based optimization algorithm. BP
fine-tuning the weights of a neural net based on the error rate get in the
previous iteration (epoch). Proper weight tuning leads to lower error
rates and thus renders the model more effective by increasing its gen-
eralization.

3.3.6. Support vector regression (SVR)
Support vector machine (SVM) is a group of supervised kernel-based

ML algorithm that can be applied to classification or regression pro-
blems. SVM is based on the statistical learning theory (SLT) and the
Vapnik-Chervonenkis dimension (Vapnik and Chervonenkis, 1974). The
SVM aims to form a hyperplane that gives the optimal separation within
linearly separable classes in the space of decision boundary (Pal and
Mather, 2005). SVM uses two concepts to optimize a solution: optimal
hyperplane classification and kernel function (Handhal et al., 2019; Yao
et al., 2008). The SVR is an SVM conversion for regression analysis.
There are three conversions of SVM for regression problems: epsilon
regression (ε-svr), nu regression (nu-svr), and bound-constraint SVM
regression (eps-bsvr). In this work, ε-svr and nu-svr with radial basis
function (RBF) kernel were used to estimate TOC. Three hyperpara-
meters must be defined and optimized to optimize these algorithms
using RBF kernel functions, namely the cost of constraint violation (C),
epsilon (ε), and gamma (γ). The C specifies the trade-off between de-
cision rule complexity and error rate (Cortes and Vapnik, 1995). A
small value for C increases the number of training errors, while a large
C results in similar behavior to that of a hard-margin SVM (Joachims,
2002). Epsilon (ε) has an effect on the smoothness of the SVM's and thus
the complexity and generalization capability of the network (Horvath,
2003). On the other hand, γ is related to overfitting and underfitting
problems (Rashidi et al., 2016).

3.3.7. Data normalization and model evaluation criteria
Data normalization is the process of organizing data to reduce re-

dundancy and improve data integrity. There are various types of stan-
dardization methods such as min-max, decimal scaling and standard
method of deviation. Choosing a normalization method depends on the
application and the algorithm in which the normalized data will be
used. In this study, data were normalized in the range [0, 1] using min-
max scaling function according to the following equation:

=x x x
x xnorm

min

max min (2)

where xnorm, x ,min xmax are the normalized, minimum, and maximum of
input data, respectively.
To evaluate the performance of the model used, three statistical

measures were used: the mean absolute error (MAE), the root mean
squared error (RMSE), and the correlation of determination coefficient
(R2). The measures are given by:

= = y x
n

MAE i
n

i i1
(3)

= = y x
n

RMSE
( )i

n
i i1

2

(4)
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where xi and yi are the measured and estimated values of TOC, and x
and y are their arithmetic mean; n is the total number of measured TOC
data.
To visually compare the performance of models used in this study,

Taylor diagrams and violin plots were used. The Taylor diagram is a
polar plot used to summarize multiple aspects of model performance in
a single diagram (Taylor, 2001). It uses three statistics to evaluate the
degree of correspondence between the estimated and measured values:
the r, RMSE, and the standard deviation (σ). A violin plot is a plot si-
milar to a boxplot with the addition of a rotated kernel density on each
side (Hintze and Nelson, 1998).

3.3.8. Software used
The feature selection and the ML algorithms used in this study were

implemented using WEKA 3.8 software. WEKA is an open source ML
software that can be accessed through a graphical user interface,
standard terminal applications, or a Java API. It is commonly used in
education, research, and industrial applications and include a variety of
advanced methods for standard ML tasks.

4. Results and discussion

4.1. TOC data

The derived TOC values in Table (1) indicated that more than 50%
of the samples taken from Zubair Formation have TOC content less than
1%, representing a poor source rock according to the Peter's classifi-
cation (Peters, 1986). Although this formation is a main clastic re-
servoir in the study are, it acts as a source rocks because the abundance
of shale layers between the main sand units. In contrast, more than 70%
of the samples taken from Yamama and Sulaiy formations have TOC
content greater than 1% representing good source rocks according to
Peters (1986).

4.2. Feature selection

WEKA supports correlation-based feature selection with the
CorrelationAttributeEval technique that requires the use of a Ranker
search method. Running this in our dataset suggested that all regressors
used have average merits ≠ 0 (Table 2 and Fig. 4); therefore, they all
have impacts on the estimating TOC. The GR with average merit (AM)
equals to 0.431 was the most important feature in the analysis of TOC,
followed by DN (AM = 0.379), NCL (AM = −0.276), and RT
(AM = 0.250). The AC log with AM equal to −0.053 (very close to
zero) confirmed that this log may play a minor role in determining TOC
in the study area. Therefore, all factors were used in further analysis.

4.3. Applying the models

The ML models were constructed using the training dataset (well R-
167) and validated by the testing dataset (well R-172) using WEKA 3.8
software. The rF was constructed using the rotation forest package and
the base classifier used is RF. The default parameters of the algorithm
was changed using trial and error procedure to get the best performance
with minimal error. The final obtained results were gotten with
maxGroup and minGroup equal to 3, the number of iteration equal to
20, and seed equals to 1. The obtained results of rF algorithm were
shown in Table (3) for both training and testing phases It can be con-
cluded from Table (3) that rF was a very good performance model
because of the high obtained R2 and relatively small values of MAE and
RMSE.
The RF algorithm was fitted using the Random Forest package in

WEKA software and the obtained results of RF for training and testing
were presented in Table (3). A key hyperparameter for RF is the mtry
(the number of attributes to consider in each split point). In WEKA, this
hyperparameter can be governed by the number Features attribute,
which is 0 by default, which automatically chooses the value based on a
thumb rule. The other important hyperparameter is mtry (numItera-
tions in WEKA, the default value is 100). The parameter is changed
manually (Table 4) to judge the best value according to the error sta-
tistics used. The best performance model was with 1000 mtry. The high
R2 and low AEM and RMSE indicated that RF is a very good choice for
modeling TOC. Investigate the importance of attributes (logs) based on
average impurity decrease (Fig. 5) revealed that the most important
attribute was GR, followed by DN, RT, NCL, and AC. This result con-
firmed the importance of GR, DN, and RT as powerful regressores in
estimating TOC.
The kNN algorithm was implemented using IBk package. To con-

figure IBk, two hyperparameters were tuned. These were the number of
neighbors to query to make a prediction (k) and the distance metric (the
way in which the neighbors are determined). Results of chaning k with
kept distance matric on LinearNNSearch algorithm were shown in Table
(5). It is obvious that the kNN performance dramatically getting worse
with changing k from 1 to 3 and then to 7. When the k is 1, the kNN
model was almost perfect in both training and testing stages (Table 4)
which indicated that advanced ML models are not always the best. The
algorithm may be simple, but it can yield results far superior to those of
more complex (in our experiment, rF, RF, ANN, and SVM).
ANN model was fitted using Multi-Layer Perceptron algorithm after

configured it to get the best performance. For the best model, the
number of the hidden layer was set to be 2, the learning rate was 0.1,
and the momentum was 0.3. The final architecture of the BPANN was 5:
3: 1. After successful the training of the network, the test dataset was
passed to the network and the results were shown in Table 4. Overall,
the performance of this model was somewhat poor (especially in the
testing stage) due to the low R2 and the high MAE and RMSE. The
reason may be the small number of the training samples used (only 40
values) and associated overfitting problems.
To fit SVR, LibSVM library was used. The optimized performance of

the ε-svr was obtained using 4 degrees of the RBF kernel, 0.001 for ε,
2.0 for γ, and 0.1 for the loss function (Table 4). In general, the per-
formance of this model was better than the ANN, but it is less efficient
than the rF, RF, and kNN models in terms of statistical error used. For
the other version of the SVR algorithm, nu-svr, the recommended va-
lues for the best performance were 3 degrees of the RBF kernel, 0.001
for ε, 0.0 for γ, and 0.5 for nu. The results of implementing this version
of SVR (Table 4) were better than ε-svr, but the SVR still low perfor-
mance model if compare with other used ML algorithms.

Table 2
Feature selection using r (10-fold cross validation).

Feature AM σ Rank

GR 0.431 ±0.021 1
DN 0.379 ±0.028 2
RT 0.250 ±0.079 4
AC −0.053 ±0.034 5
NCL −0.276 ±0.033 3

AM: Average merit; σ: Standard deviation.
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4.4. Visual comparison of models used

A direct comparison of the model results in the testing stage was
shown in Fig. (6). It is clear that TOC was predicted by kNN model with
highest accuracy compared to other models used. RF and rF comes
second, followed by the BPANN and SVR models. The viusal check of
Fig. (6) confirms a high accuracy of the third ML models (kNN, RF, and
rF) in estimating the TOC.
Comparing the performance of the ML model used using Taylor

Diagram (Fig. 7) showed that the kNN was the best of all models used
for high R2 and low value of RMSE. The RF and rF models were almost
similar in performance while the worst model was BPANN and ε-svr
models. Using standard deviation (σ) for comparing the models, results
showed that kNN, RF, and rF were more in agreement than the others
and closer to the observed values. All remaining models have a lower
standard deviation than the ones observed, and thus, have no ability to
predict the observed data very well. The worst models were nu-svr and
ε-svr.

Fig. 4. The relationship between TOC, well logs data, and lithology.
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Comparing the model by the violin plot (Fig. 8) indicated the high
performance of kNN, RF, and rF (perfect fit of kNN and very good fits
for RF and rF) in contrast to the BPANN and SVM models. The median
(white points in violin plot) was very well predicted by kNN (Fig. 8),
while the 5th and 95th percentiles (thin black lines in the plot) and the
25th (first quartiles Q1) and 75th (third quartiles Q3) percentiles (thick
lines in the plot) in kNN model gave the highest perfect fit than the
other used models. RF and rF models were similar in performance and
they approached the kNN model in all statistical measures positions
used. The BPANN overestimated the 5th and underestimated 95th
percentiles, ranges of TOC respectively, while SVR models under-
estimate 5th percentile. In terms of the shape of the violin plot (the
probability density function (PDF)), the PDF of the kNN model gave the
closest fit to measurements TOC data, followed by RF and rF. The PDF
of BPANN, ε-svr, and nu-svr models are totally different from the ob-
served PDF of measurements TOC data. Therefore, these models have
the worst fit with the measured TOC data.
Although the ANN and SVR models have been successfully utilized

to predict TOC in the previous studies (Khoshnoodkia et al., 2011;
Wang et al., 2019), This study showed that in estimating TOC, the kNN
and ensemble ML algorithms (RF and rF) were superior to the BPANN
and SVR models. Therefore, these undiscovered yet powerful algo-
rithms in the oil industry can be important tools in TOC modeling. It
was clear in this study that BPANN and SVR did not well capture the
behavior of the measured TOC data as accurately as the kNN, RF, and rF
models. The present study also indicated that nu-svm technique was
slightly better than ε-svm and BPANN model. However, the nature of
the problem and input data are the main criterion that determines
which algorithm is the best (Al-Abadi et al., 2019).

5. Conclusions

In this study, five ML algorithms, specifically, rF, RF, kNN, BPANN,
and SVR with radial kernel function were developed to estimate TOC
(target variable) using five conventional logs namely, GR, RT, DN, AC,
and NCL (regressors). The ML models were trained and tested using
data from two wells in the field, namely R-167 and R-172. The per-
formance of the developed models was compared using three error
statistics criteria: MAE, RMSE, and R2 and visually using Taylor and
violin plots. Feature selection was firstly used for data screening using
the Pearson correlation coefficient and, this stage of the analysis in-
dicated that all logs used were relevant. The application of the models

Table 3
ML models performances in training and testing stages.

SEMs ML models

rF RF KNN BPANN ε-svm nu-svm

training testing Training testing training testing training testing training testing training testing

MAE 0.313 0.367 0.336 0.407 0.000 0.001 0.833 0.807 0.631 0.617 0.848 0.902
RMSE 0.416 0.533 0.426 0.564 0.000 0.002 0.966 1.101 0.905 1.145 0.944 1.179
R2 0.946 0.939 0.954 0.948 1.000 0.996 0.724 0.632 0.832 0.788 0.916 0.814

SEMs: statistical error measures.

Table 4
Effect of changing mtry on RF performance (training stage).

SEMs mtry
100 500 1000 1500

MAE 0.375 0.358 0.336 0.351
RMSE 0.474 0.456 0.426 0.446
R2 0.925 0.945 0.954 0.951

Fig. 5. Attribute importance based on the average impurity decrease.

Table 5
Effect of changing k on kNN performance (training stage).

SEMs k

1 3 7

MAE 0 0.864 0.909
RMSE 0 1.008 1.282
R2 1.0 0.536 0.465
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showed that kNN was the best model, followed by RF, and rF in terms of
the error measures used. The low predictive ability models were BPANN
and SVR. The applications of different ML generally result in models
differing in their response as predictions depend on the nature of the
data used and availability of the different methods and computing
power. The reason behind why kNN, a simple ML algorithm, gave the
best results than other models may be attributed to: (1) simplicity and

lack of parametric assumptions (2) robust to noise (3) easily handle all
types of data (categorical and continuous). This study indicated that
advanced ML models are not always the best. The algorithm may be
simple, but it can yield results far superior to those of more complex
This study also confirmed the efficacy of machine learning models for
building efficient models for estimating TOC from readily available
borehole logs data without the need for very expensive coring process.

Fig. 6. The measured and estimated TOC for different ML models (testing stage).

Fig. 7. Taylor diagram for visual comparison of ML models used (testing stage).
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