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A B S T R A C T   

In this discussion article, we try to highlight and discuss the wrong way for representing an areal phenomenon 
“flood” as a point vector format in GIS-based flood susceptibility studies and creating what is called “flood 
inventory map”. Two examples from the literature were taken to show that a flood event cannot be represented 
by point except with very small map scales (1: 10000000) and this flood event should be with other flood events 
to form the “flood inventory map”. With the help of the other two examples from the previous studies, this article 
showed the wrong used way for representing flood worldwide and suggested an appropriate method for mapping 
flood susceptibility.    

In geosciences and environmental hazard analysis, the term “sus-
ceptibility” refers to the likelihood of an event (landslides, floods for 
example) occurring in an area based on the local terrain, environmental 
conditions, and triggering mechanism (Lee and Pradhan, 2007; 
Pourghasemi et al., 2012; Reichenbach et al., 2018). Susceptibility 
depicts areas likely to have that event in the future correlating some 
conditioning factors that contribute to that event with the past dis-
tribution of events (popularly known as inventory) (Brabb, 1985). It is 
an estimate of where an event such as landslide or flood is likely to 
occur (Saleh et al., 2020). The susceptibility modeling can be performed 
in geographic information systems (GIS) platform using three main 
approaches: (i) the simple overly technique by adding the thematic 
input layers (Basharat et al., 2016; Roslee et al., 2017); (ii) using 
knowledge driven-models such as multi-criteria decision-making 
(MCDM) or fuzzy logic inference system (Neaupane and 
Piantanakulchai, 2006; Pradhan, 2010; Roodposhti et al., 2014; Souissi 
et al., 2020), and (iii) using data-driven models such as statistical 
models (bivariate and multivariate), machine learning models, and 
hybrid statistical and machine learning models (Nandi and Shakoor, 
2010; Bui et al., 2015; Hong et al., 2016; Pham et al., 2016). In the 
simple overly method, thematic maps of the factors influencing the 
event (landslide, flood, subsidence, …etc.) are combined linearly to 
produce the susceptibility map after giving a suitable weight for each 

factor (rating of each class). The second type of susceptibility modeling 
is similar to the first one, except that they depend on the advanced 
MCDM, for example, the analytical hierarchy process (AHP) for getting 
weights for each thematic layer in the susceptibility analysis and more 
advanced approaches such as fuzzy logic and the technique of order 
preference similarity to the ideal solution (TOPSIS), etc. for rating the 
classes of factors and getting the final susceptibility map. In the third 
category, the relationship between a group of factors affecting the 
events and the historical locations of these events (event inventory 
map) was used to model susceptiblity modeling. In this analysis, the 
factors are used as predictors and the geographical locations of events 
as the target variable. All three aforementioned categories of models 
provide maps that can help the decision-makers and local authorities 
for civil protective actions, assess damages, and make valid urban 
planning (Sadek and Li, 2019). 

The term “inventory map” appeared in the eighties of the last cen-
tury in the landslide susceptibility mapping to refer to the spatial dis-
tribution of landslides in a given area (Varnes, 1984). In the landslide 
susceptibility mapping, this term means the total number of registered 
landslides in an area (the area under consideration) with detailed de-
scriptions such as type of landslides, year of occurrences, soil texture, 
etc. In the GIS environment, the most common format to represent a 
single landslide is point feature class (a vector format). The total 
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number of landslides (points) is formed what is called the “landslide 
inventory map”. Let’s take an example from a published paper to un-
derstand how to represent landslide as a point vector format in GIS 
software to facilitate comparison when we move to the flood suscept-
ibility analysis. Fig. 1 is taken from the work of Bui et al. (2020), in 
which every single point has been used as a single landslide and the 
total number of landslides is called the “landslides inventory map”. 
Landslides are generally not an areal phenomenon, i.e. they do not 
distribute over a large area except for big landslides; therefore, re-
present them as point features is not a problem in the landslide sus-
ceptibility modeling. What if the landslide is big? Is it presentable as a 
point vector format? The answer: yes, it is but with taking into con-
sideration that this landslide is just one single landslide and needs to be 
with other landslides to make a “landslide inventory map”. 

The “flood susceptibility mapping” in fact is an almost identical 
copy of the landslide susceptibility analysis. A careful observation of 
the literature review, it can be said that the researchers in spatial flood 
susceptibility mapping have been strongly motivated by the landslide 
researches - even in terms of the influencing landslide factors and the 
methods used. Flood susceptibility modeling has been done using three 
approaches mentioned in the previous section and mostly the flood 
modeling has been done for three major types of floods such as riverine, 
flash, and urban. What concerns us here is the third category of the 
models used in modeling landslide susceptibility, i.e. data-driven 
modeling approaches, which depend on the “inventory map” as a de-
pendent variable (target). The big question here is the floods as a nat-
ural phenomenon like landslides to represent them as “points” in the 
GIS environment and formed what is named “flood inventory map”. 

Let’s take an example from the work of Al-Abadi (2018), in which the 
flash flood susceptibility of an arid region of southern Iraq was ana-
lyzed. In that work, the author used the big flash flood that hit the area 
on 7 May 2013 (flood event) along with 10 influential flood factors 
(elevation, slope, plain curvature, topographic wetness index, stream 
power index, distance to ephemeral rivers, drainage density, geology, 
soil, and land use/land cover) for modeling flood susceptibility using 
three machine learning models (rotation forest, random forest, and 
Adaboost). Fig. 2 shows the inundation area by that flood using dif-
ferent scales. It is clear from this figure that this flood cannot be re-
presented using the point feature class (in GIS software) even on the 
small scale (map 2e). The reason for that, the flood usually distributes 
over large areas (an areal phenomenon). It is possible to represent flood 
events as points in a GIS environment but with regional studies and 
small map scales. Another example of how to represent flood is from the 
work of Tehrany et al. (2019). Authors of this article modeled the riv-
erain flood susceptibility at the Brisbane catchment of Australia using 
two machine learning techniques, decision trees and support vector 
machine. The inundation areas caused by an extreme flood event in 
2011 was used in that study along with elevation, slope, aspect, cur-
vature, stream power index, topographic wetness index, topographic 
roughness index, sediment transport index, geology, soil, land use/land 
cover, distance from roads, and distance from the river for mapping the 
potential flood region. The representation of the inundation areas of 
that flood with different map scales is shown in Fig. 3 (redraw by au-
thors of this essay). It is obvious that this flood cannot be represented 
by point feature in GIS environment except for very small-scale 
(1:10,000,000) (Fig. 3e). 

Fig. 1. Landslides are represented as points to make a “landslide inventory map” (after Bui et al., 2020). Adapted with permission from Elsevier, License No. 
4847220866274, June 13, 2020. 
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Authors of the two previous papers used the inundation areas as a 
guide to create random flood points and non-flood points to create 
“flood inventory map” to use as a target in the classification problem 
solved in their studies. In fact, as the flood points selected based on one 
flood event; the result is not “Inventory map”, they are only points 
affected by that single flood event. 

In simple words, let’s explain how to carry out flood susceptibility 
analysis using data-driven models. In the beginning, the flood locations 
(or flood events) are identified and then an equal number of non-flood 
locations are randomly determined from the non-flooded areas of the 

basin or watershed. These flood and non-flood locations are represented 
as points in the GIS environment and the total number of them formed a 
“flood inventory map”. After that, as the flood susceptibility is a clas-
sification problem, each flood points assigned 1 (or yes) and non-flood 
points assigned 0 (or no). Depending on the data availability and the 
nature of the study area, many influential factors are prepared. In 
general, the most factors used in the analysis of flood susceptibility 
include the topographical related factors (such as elevation, slope, 
curvature, aspect, topographic wetness index, stream power index, 
etc.), soil, geology, land use/land cover, and distance to rivers 

Fig. 2. The inundation area of flash flood by work of Al-Abadi (2018) with different scales (a) 1:250,000 (b) 1:500,000 (c) 1:750,000 (d) 1:1,000,000, and (e) 
1:10,000,000. 
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(streams). All these factors are prepared as raster with a specified 
spatial resolution, for example, 30 × 30 m, 10 × 10 m, etc. For each 
point locations (flood and non-flood), the values of flood influential 
factors were extracted and arranged in a table (text file or excel file) 
and passed to the appropriate software (R software, python, or any 
other related software) to implement the classification problem and get 
the probability map of flood susceptibility. Notice, the values of the 
influential factors are extracted for each point from only one pixel of 

these factor raster’s and depending on the cell size of that pixel. 
After this introduction about how to represent flood in the real si-

tuation and how to use data-driven models for flood susceptibility 
mapping, let’s take examples from published articles to explain how the 
researchers worldwide construct a “flood inventory map”. Choubin 
et al. (2019) modeled the flood susceptibility in the Khiyav-Chai wa-
tershed in Iran using two algorithms namely multivariate discriminant 
analysis and classification and regression trees and compared the 

Fig. 3. The inundation area of riverain flood by work of Tehrany et al. (2019) with different scales (a) 1:250,000 (b) 1:500,000 (c) 1:750,000 (d) 1:1,000,000, and (e) 
1:10,000,000. 
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results with support vector machine algorithm. The watershed area is 
small with an areal coverage of 126 km2. They used 51 flood location 
points that were identified between the years 2010 to 2017 to create a 
“flood inventory map” which was used as a target in the classification 
problem. They mentioned in their work that flooding at these recorded 
flood locations points has caused serious damage to transportation infra-
structure, residential areas, natural ecosystems, etc. Fig. 4 showed the 
study area of their work along with “flood location map”. Let’s analyze  
Fig. 4. First, every redpoint in this figure is a flood caused severe da-
mage; the size of this point, of course, can be controlled by the user in 
the GIS software; so, size of this point does not truly reflect the size of 
the flood that happen in that specific location (Fig. 4b), they only refer 
to the locations of the floods that happened. Let’s assume several 

aspects of this problem and try to analyze each aspect separately. (i) we 
assume that each point in Fig. 4 is a flood event in the full meaning of 
this word; but what is the actual size of each point in the spatial 
modeling. When converting these points to the raster, every single point 
takes the size of the cell of that raster. For example, if the raster cell is, 
the size of this point will be 900 m2, and if the raster cell is 10 × 10 m, 
the cell area becomes 100 m2. As the size cell (pixel) used in this study 
is 30 × 30 m, then every flood location has an area of 900 m2. This is a 
very small area to classify as a flooded area and how the flood event 
here destructive is questionable. Fig. 5 shows the areas covered by these 
flood events and the neighboring areas. Notice, that size of this flood is 
approximately the same size as a car and why the water stands at this 
location and does not cover the other parts of the area of the same 

Fig. 4. (a) The study area of Choubin et al. (2019) with flood points (Adapted with permission from Elsevier, License No. 4847211404985, June 13, 2020 (b) the size 
of the points to represent flood in ArcGIS 10.5: 4, 10, and 18 point sizes (redraw by authors of this essay). 
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elevation is confusing. (ii) in the second aspect, we assume that all these 
flood locations (51 points) have come from a single flood event. In this 
case, the result is not an inventory map, they are just locations affected 
by that single flood. 

The second example is taken from the work of Janizadeh et al. 
(2019). In this article, authors mapped the flash flood susceptibility in 
the Tafresh watershed, Iran using five machine learning classifiers 
(alternating decision trees, functional trees, kernel logistic regression, 
multivariate perceptron, and quadratic discriminant analyses) through 
using 320 historical flood events (target) and eight variables elevation, 
slope, aspect, distance from rivers, average annual rainfall, land use, 
soil type, and lithology as flood influencing factors (predictors). Fig. 6 
shows the Tafresh watershed and the historical floods in the watershed; 
notice every red point in the figure is a historical flood event. The total 
number of these flood events (320) in this study is used as the “flood 
inventory map” along with 320 randomly non-flood points created by 

authors to refer to the locations that not affected by floods. The source 
of the data (flood locations) according to the authors is the Regional 
Water Organization of Markazi Province (Iran). Truly, it is confusing 
how these points represent floods here, especially, if we assume that the 
point size here reflects the size of the flood that occurred at a specific 
time, then merely comparing the point size with the scale used strikes 
the researcher with amazement, that the spatial distribution of this 
flood is very small Fig. 7. Suppose that these 320 points (floods) re-
present the places affected by one single flood, the question now is what 
is the scientific basis on which these 320 were chosen? and the points, 
in this case, do not form an inventory map, they are only flood locations 
extracted from one single flood. 

Surprisingly, there are a lot of published scientific researches 
(Table 1) that uses the “point feature” to represent a flood event (not 
areas affected by the flood) without taking into consideration the actual 
spatial extent of flood and whether the flood a point phenomenon (in 

Fig. 5. Comparison between point size of flood and the neighbor areas of Choubin et al. (2019) study.  

A.M. Al-Abadi and B. Pradhan   Journal of Hydrology 590 (2020) 125475

6



spatial analysis), such as landslides, a groundwater well, a spring, or 
subsidence to represent by a point and formed “inventory map”. 
Therefore, from the authors’ point of view, we think that creates an 
“inventory map” for an areal phenomenon like a flood is a great fallacy; 

simply it is impossible. 
Now the question is what is the preferred way for mapping flood 

susceptibility? The answer lies in studying the historical floods in a 
considered watershed, basin, or area and obtaining a rough picture of 
its spatial extent and represent that extent by polygon shape in a GIS 
platform. From this polygon, a sufficient number of points can be 
generated that cover the entire polygon to represent areas affected by 
the flood and choose a similar number of points from the areas not 
affected by floods to refer to the areas not affected by floods. Each point 
affected by the flood is given a value of 1 (yes, flood, etc), and the non- 
affected is given 0 (no, non-flood, etc). Thus, the target variable ne-
cessary to conduct a classification problem is generated. For more in-
formation, see the works of Al-Abadi (2018) and Tehrany et al. (2019). 
In the case it is not possible to obtain an approximate map of the spread 
of floods in an area, indirect methods can be used to determine the 
spatial extent of the floods, as in the work of Hosseini et al. (2020) and 
Costache et al. (2019). The authors of the first work extracted the in-
undation area using the Modified Normalized Difference Water Index 
(MDNWI) of Sentinel-2 satellite through the Google Earth Engine en-
vironment. From the probable extension of the deduced inundation 
area, the author capable to sample less uncertain points to represent 
flood and non-flooded areas and generate the target variable in their 
study. In the second study, the authors used the torrential areas as a 
guide to estimate the potential for surface runoff and mapping the 
probable extension of a flash flood in their study area. They represented 
the torrential valleys as polygon (a realistic way) in GIS environment 
and then they used that polygon to sample flood points and non-flood 
points to generate a target variable in their study. 

Fig. 6. The study area of Janizadeh et al. (2019) with “flood inventory map” 
(Adapted with permission from MDPI publishing house). 

Fig. 7. Comparison between point size of flood and the neighbor areas of Janizadeh et al. (2019) study.  
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