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Abstract. In this work we focus on spectral asymptotic for the second derivative operators.
Here we study Schrödinger operator with zero-range potentials, because this operator has great
importance for understanding the solvable problems in quantum mechanics and atomic
physics. It appears in different models such as the mathematical physics, applied mathematics
and theoretical physics. We have two objectives in this work. We first demonstrated that this
operator has a continuous spectrum contains an infinite number of bands separated by gaps.
We then explained that the bands to gaps ratio tends to zero under certain conditions.

1. Introduction

The differential operators are ubiquitous in many natural systems, ranging from quantum to
atomic physics applications. These applications are used to give rise a solvable model of
complicated physical phenomena [1,2,5]. Because the method of solid-state physics reproduces
the geometry of the problem extremely well, therefore, there is a particular interest in the
applications of these models.  Kroing and Penney [10] were the first who described this model by
the Hamiltonian operator

= − + ∈ ( − ),
where  is the Dirac delta function and n are the actual coupling constants that describes each
point interactions. They also explained the spectrum of permissible energy values which consists
of continuous region separated by finite intervals. Further, this operator is used to solve the
complicated physical phenomena. The point interactions found in many different models by
considering boundary conditions at the individual points. The generalized point interaction in one
dimension with boundary conditions( )( ) = ( )( ) ,
is studied in [12, 13]. He also discussed the existence and the physical properties of the one-
dimensional δ′-interaction Hamiltonian. Bloch theorem is used to explain that any such operator
coincides with some self-adjoint extension of the unperturbed second-derivative operator
restricted to the set of functions vanishing in a neighbourhood of the origin [7]. Moreover, the



FISCAS 2020

Journal of Physics: Conference Series 1591 (2020) 012057

IOP Publishing

doi:10.1088/1742-6596/1591/1/012057

2

connected extensions of the Schrödinger operator are studied and described by the boundary
conditions at the origin in [8], ( )( ) = ( )( ) ,

where , , , are real, and − = , ≤ < . The spectrum of the generalized
Kroing-Penney model has infinitely many gaps and the behaviour depend substantially on the
parameters of generalized point interaction [6]. Moreover, the spectral asymptotic for operators
with partial derivatives have been the subject of extensive research for over a century. Therefore,
it drew the attention of many remarkable mathematicians and physicists. The mathematical
framework used to describe this spectral asymptotic was based on the Bloch theorem. In our work
we used the transfer matrix to describe this behaviour.

The main result of this paper is contained in three Propositions which describe the
asymptotic behaviour of the operator corresponding to the values of three independent real
parameters. We show that the spectrum of this operator is absolutely continuous and fills in an
infinite number of bands separated by gaps.

Let us give a brief outline of the contents of the paper: In section 2, we define the second-
derivative operator and discuss the classes of unitary of equivalent of this operator. We also derive
the reduction relation in Proposition 2.1. Then, we study the transfer matrix to obtain the
dispersion relation which uses to calculate the spectral bands. In section 3, we investigate the
spectral asymptotic by three Propositions (3.1), (3.2) and (3.3).

2. Preliminaries

At the beginning let us briefly recall the definition of the second-derivative operator . We

consider here the operator ≡ ( , ) where = ∈ ( , ) such that ,   ,   , ∈ℝ and ≤ < , acting in the Hilbert space (ℝ) defined on the functions from {ℝ\{ } ∈ℤ (Sobolev space) satisfying the boundary conditions,( )
′ ( ) = ( )

′ ( ) ,    ∈ ℤ. (2.1)

In addition, this coincides with a self-adjoint operator extension of the operator =− ⁄ limited to all functions from (ℝ), disappearance in a neighbourhood of the points= [9].

Now, in order to illustrate the spectral asymptotic of the second derivative operator, we first
are going to describe the classes of unitary equivalent operators of this operator. There are three
independent real parameters to describe these classes which are = + , . The
following proposition explains the relationship between these parameters to each other, as well as
determining the values of these parameters to calculate the spectral asymptotic of the second
derivative operator.

Proposition 2.1. If , be three independent real parameters describing the operator
such that = + , then   ≥ + .

Proof. Since = + , then multiplication this equation by we get:
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= + .

But − = ,

thus = + .

Implies that − = + ,

then = ∓ − ( + ) .
By the same way we get = ∓ − ( + ),
therefore + = ∓ − ( + ) .

Since − ( + ) ≥   ,

implies that  ≥ ( + ).

Then   ≥ + . (2.2) █

Now, we are going to study the transfer matrix for the purpose of describing the second
derivative operator spectrum. Subsequently, this matrix is given by [3, 4]

=  − = + +− + − +   ( . )
where = √ . And since = , therefore, the specific determinant of this matrix is given
by ( − ) = − + .
Furthermore, the operator's spectrum coincides with the set of where the spectrum of this
operator is calculated as zeros of the following inequality [11],| | ≤ .
Thus ( + ) + ( − ) ≤ .    
Let us now define the function by
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( ) =  +   − . (2.4)

Consequently, we can be determined the operator's spectrum by solving the following equation| ( )| ≤ (2.5)

This equation is called the dispersion relation which used to obtain the spectral bands in the
following section.

3. Spectral asymptotic for the periodic operator

In this section, we study the spectral asymptotic for the second derivative operator . There are
infinite numbers of bands in this operator, which has a continuous spectrum (i.e. consist of all
eigenvalues such that the resolvent of operator exists and defined on a set which is dense in(ℝ)) and it is tending to ∞. The following three Propositions give an explicit description of the
spectral asymptotic corresponding to the parameters of this operator.

Proposition 3.1. Assume that are arbitrary satisfying the equation (2.2). If ≠ , then
there are infinite numbers of bands ∆  = [  , ] of the operator , which has a continuous
spectrum and located in the intervals [( − )⁄ , ( + )⁄ ] for large values of . And
their edges are asymptotically which are given by

= + − + − + − + + − − + + ,→ ∞,
(3.1)

= + + + − − + + − + + − + ,→ ∞.
In addition, the length and the midpoint of the band are asymptotically which given by:

|∆ | = | | + − | | − | | + + | | + ,  → ∞, ( . )
and

= + + − − + −  + ,  → ∞, ( . )
respectively.
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Proof. At first, let us to prove that there is only one band ∆ of continuous spectrum in each
interval for the large enough values of .

Now, by the equation (2.4) we get( + ⁄ ) = ( + ⁄ ) + ( ⁄ − ( + ⁄ ) ( + ⁄ )= (− ) + ( ) → ∞.

This equation determines the values of the end points of each interval . Since it has alternating
signs, and when is sufficiently large, thus | ( + )| >⁄ . Consequently, that means
there is one spectral band when the interval is considered.

Let ( ) = we get:= ( ) = − + + + − ,
implies that = ( − )/( ( + ) + .

(3.6)

This function is rational and by the comparison test it tends to ±∞ as → ∞ .

Note that

1- if + = , ≠ , then ( ( − ))/(( + ) + ) = − / .

2- if + ≠ ,   arbitrary, then ( ) = − /( + ) + ( ( + ))/(( +) ) / + ( / ).

3- if + = ,   = , then the relation (3.6) takes the form:( + / + ) sin = ( / − ) cos ,
implies that − cos  =  0.
But cos = 0 when = + 2⁄ , hence, there is one extreme point in each interval I for the
function when → ∞. Consequently, because the function is continuous and monotonically
between these points, then for is sufficiently large, there is only one band where | ( )| ≤ 2 in
each interval I .
In order to calculate the end points of each band Δ , let us to solve the equation | ( )| = 2 [11].
Consider the first case > , then the left and right end points of the intervals Δ satisfy the
following equationscos + ( −   ) sin = (−1) 2, (3.7)+ ( −  ) sin = (−1) 2, (3.8)

respectively.
On the other hand, due to the points and are closed to for large , then let us to use the
following representation of the asymptotic= + + + 1 , = + + + 1   → ∞.
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Substituting these representations into (3.7) and (3.8), we get:= + 1 − 2| | 1 + [− 3  − 1 − 1| | + +( + ) − 43| |− 2 (2 − | |)] 1 + 1 ,   → ∞= + 1 [ + 2| |] 1  + [− 3 − (1 + 1| |) + ( − 4| | ) + 43| |− 2 (2 − | |)] 1 + ( 1 )    → ∞.
In the similar way we can be analysed of the case when < 0, which leads to formula (3.1).
Finally, the |Δ | and of the band are given by|Δ | = − = 8| | + 4 − 1| | − 2| | + 43| | + 2| | 1 + 1 , → ∞,
And = +2 = + 2 + 1 − 23 − 1 + 2 − 4 1  + 1 ,   → ∞,
respectively. █

Additionally, the length of the gaps is calculated as the following| | = − = (2 + 1) − 8 + 1 .
Implies that|Δ || | = 4| | + 1 , as → ∞. (3.9)
As a result, we conclude that the bands to gaps ratio tends to zero at high energies.

Proposition 3.2. Assume that = 0, > 2, and is an arbitrary, then there are infinite numbers
of bands ∆  = [  , ] of the operator ℒ, which has a continuous spectrum and located in the
intervals I = [  ,  ( + 1) ] for large values of . And their edges are asymptotically
which are given by = + cos 2 + + 1 ,     → ∞,

(3.10)= ( + 1) − cos + + ,   → ∞.
In addition, the length and the midpoint of the band are asymptotically which given by:|Δ | = 2 − 2 cos 2 + − 2 cos 2 + 1 ,     → ∞, (3.11)
and = ( + 12) + (cos 2 − 2) + 2 + 1 ,  → ∞, (3.12)
respectively.

Proof. At first, let us to prove that there is only one band ∆ of continuous spectrum in each
interval I for the large enough values of .
Now, since = 0, and by the equation (2.4) we get( ) = cos + sin , (3.13)

and
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( ) = cos + sin =   (−1) .
Since the function ( ) is continuous and ( ) has alternating signs, moreover, when is
sufficiently large, | ( )| > 2, then we conclude that there is only one spectral band in each
interval.
The zeroes of ( ) we get0 = ( ) = − sin + cos − sin .
Impels that the equation for extreme points is given bytan = + ,
and because this function is decreasing if is sufficiently large, then there is only one solution in
each interval.
Note that if = 0, then ( ) = cos . Also, since ( ) = (−1) , = 2, then cos = ∓2.
Consequently, = ∓ cos 2 + .
Hence, there is one extreme point in each interval I for the function when → ∞.
Consequently, because the function is continuous and monotonically between these points,
therefore, for is sufficiently large, there is only one band where | ( )| ≤ 2 in each interval I .

Now, when > 2 then cos satisfies0 < cos 2 < 2⁄ .
On the other hand, due to the and points are closed to + cos and ( + 1) −cos respectively, then let us to use the following representation of the asymptotic= + cos + , = ( + 1) − cos + ,

where , are real constant.
The equation for the left end point,(−1) 2 = (−1) [(2 − sin(cos 2) sin  ] + + ( 2 )⁄               [(sin(cos 2) cos ) + 2 sin )].
By using the perturbation theory to keep the first terms, we get= + 1 ,      → ∞,
thus = + cos 2 + + 1     → ∞.
By the same way we can prove the representation for , i.e.= ( + 1) − cos 2 + + 1 ,    → ∞.
Furthermore,|Δ | = 2 − 2 cos 2 + − 2 cos 2 + 1 ,    → ∞,
and = ( + 12) + (cos 2 − 2) + 2 + (1),    → ∞,
respectively. █
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In addition, the length of the gaps is calculated as the following| | = 4πcos 2 ( + 1) + 1 as → ∞.
Implies that |Δ || | = 2⁄ − 2 cos 2cos 2 + 1 as → ∞. (3.14)
As a result, we conclude that the bands to gaps ratio tends to the finite non-zero limit depending
on the parameter only at high energies.
Proposition 3.3. Assume that = 0 ,   = 2, and ≠ 0; then there are infinite numbers of bands∆  = [  , ] of the operator ℒ, which has a continuous spectrum and located in the  intervalsI = [  ,  ( + 1) ]. And their edges are asymptotically which given byif  > 0, then = + + , = ( + 1), → ∞, (3.15)if  < 0, then = , = ( + 1) − | | + , → ∞ (3.16)

In addition, the length and the midpoint of the band are asymptotically which given by:|Δ | = 2 + ( − 2| |) + ,      → ∞, (3.17)
and = + + + +   ,     → ∞, (3.18)
respectively.

Proof. By using the similar way which used in the previous two propositions we can prove this
proposition. █

Furthermore, the length of the gaps is calculated as the following| | = 2| | + 1 as → ∞.
Implies that|Δ || | = | | + 1 as → ∞. (3.19)
As a result, we conclude that the bands to gaps ratio tends to infinity at high energies.

4. Conclusions

As mentioned in the introduction, the goal of this study was to describe a spectral
asymptotic of the second derivative operator corresponding to the values of three
independent real parameters. We first used the transfer matrix method to obtain the
dispersion relation which allowed to describe the spectrum of this operator. Then, we
observed there are three different spectral asymptotics for this operator depending on
independent parameters which are described in three propositions. More importantly, we
proved analytically that there are infinite numbers of bands of this operator ℒ filled with a
pure absolutely continuous spectrum. Furthermore, we proved analytically that the bands
to gaps ratio tends to zero at particular case when ≠ 0.
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