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Abstract. Using High-Density surface Electromyography (HD-sEMG) signals for gesture 

classification has augmented the spatial information of muscle activity by increasing the 

density and convergence of the electrodes. In this paper, spatial features are extracted from 

HD-sEMG data. These features generated by combining HOG features of HD-sEMG map and 

intensity features calculated from the average of segmented HD-sEMG map which is denoted 

as (AIH) features. Real-time evaluation was performed for inter-session identification. The 

simulation of proposed algorithms is achieved by MATLAB; the result of our experiments 

achieves high accuracy with good performance based on spatial features reached to 99%. The 

comparison of our results with other research indicates that the proposed algorithms can 

enhance the performance and accuracy of gestures identification process by SVM classifier. In 

addition, the results confirm the robustness of the spatial features to the variation of EMG 

signals over time. 

1. Introduction 

Electromyography (EMG) signal is a neural control for recognizing human intent motion that 

generated during muscle contraction. EMG signals among other bioelectric signals had a problem of 

analyzing due to its stochastic and non-stationary properties. The myoelectric control system uses 

EMG signals as a control input to perform prosthetic functions. These prostheses increase the abilities 

of amputees and other patients with physical damage or cognitive functions result from disease, injury, 

and aging [1,2]. 

The myoelectric control system is divided into two categories: conventional control system and pattern 

recognition approach.  The conventional control system uses the amplitude of each pair of electrode 

site controls one motion of the prostheses. While the pattern recognition approach augments the 

number of degrees of freedom (DOF) that can be intuitively controlled [3-6]. Myoelectric pattern 

recognition has been used for different applications such as prostheses [7-9], wheelchairs [10], 

rehabilitation robots [11].  

Typically, there are two techniques to recording EMG signals, either sparse electrodes that required 

precise position over the muscle area or single array that position at the circumference of a specific 

area such as Armband. Electrodes organized in two-dimensional array of closely spaced electrodes 

that covered a limited muscle known as HD-sEMG. The number of electrodes utilized for HD-sEMG 

data ranges from 35 to over 350 while the largest number of Armband electrodes is 16 [6,12].  
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HD-sEMG signals have been analyzed using two methods. One known as HD-sEMG map [13] and 

instantaneous image [14]. HD-sEMG map is an image formulation obtained from signal amplitude for 

specific time window of raw sEMG signals. Sometimes it is called intensity or heat map. 

Instantaneous images organized directly from raw sEMG signals. The number of image pixels 

corresponds to the number of electrodes for example if HD-sEMG signals arranged in 8×16 electrodes 

then the instantaneous image forms with 8×16 pixels. Accordingly, the number of instantaneous 

images constrained to sampling rate (e.g. if sampling frequency 1kHz and muscle contraction consists 

of 3s, then the number of instantaneous images was 3000). HD-sEMG data enable new possibility to 

use the EMG signals for image processing techniques. Jordanic et al. [15] employed HD-sEMG map 

to extract spatial features using mean shift channel algorithm combined with an intensity features to 

recognize twelve movement classes corresponding to four motion types with three effort levels.  Its 

classifier achieved the highest performance during fatigue and long-term identification. Stango [16] 

used HD-sEMG signals for controlling upper prostheses; robust features were used to reduce the effect 

of electrode number and shift that influenced the robustness and reliability of myoelectric pattern 

recognition during donning and doffing the prosthesis. His results achieved 95% classification 

accuracy. Geng et al. [14] proposed instantaneous recording of HD-sEMG as an image.  The 

researchers implemented deep learning represented by convolution neural network for gesture 

identification.  The highest recognition accuracy was obtained by simple majority voting algorithm 

over 150 frames reached 99%. Consequently Du et al. [17] used the same method of [14] but with 

adaptation to investigate higher performance for inter-session and inter-subject strategies. Roberto [18] 

used instantaneous images such that each pixel corresponds to instantaneous sample of EMG channels. 

Feature extracted after divide image into blocks. His results achieved accuracy reach to 91%. Amma 

[19] used spatial features and HD-sEMG map to reduce the changes of EMG signal over time and 

electrode shift to achieved classification accuracy to recognize 27 gestures. Our previous work [21] 

used envelop of HD-sEMG signals and extract the AIH features from HD-sEMG map. Our results 

achieved higher performance for three sub-databases compared with SVM performance based on TD 

features.  

In this paper, AIH features were extracted from HD-sEMG map by combining the HOG features of 

RMS-map and intensity of average segmented map per channel. Our experiment extended to 

implement real-time evaluation for inter-session identification. Results ensure the robustness of our 

feature set to the variation of EMG signals over time and between the sessions. 

The rest of the paper is organized as follows: Section 2 gives a description of gesture recognition as 

well as the requirements for this task. Section 3 tackles the simulation of the SVM classifier by 

MATLAB performed in order to test the accuracy of HD-sEMG features extraction algorithm. The 

final section contains the conclusions. 

2. EMG pattern Recognition 

2.1.  Experimental Database 

The HD-sEMG data of our experiments was obtained from CapgMyo standard database [20] which is 

used in [14,17,18]. A wearable non-invasive device was used to acquire HD-sEMG data. It consists of 

128 channels prepared in quadrature grid of 8×16 electrodes. EMG signals sampled at 1kHz and pre-

processed using band-pass filtered at 20-380 Hz. CapgMyo database contains three sub-databases; 

DB-a consists of 18 healthy able-bodied subjects. Each subject performed eight isometric hand 

gestures. Each gesture repeated for 10 trials. DB-b includes the same gestures of DB-a but acquired 

from 10 subjects recorded in two sessions for different days.  DB-c contains 12 gestures acquired from 

10 subjects. The gestures implemented in our experiments are shown in Figure 1. In other word, these 

gestures correspond to DB-a and DB-b. 
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2.2.  HD-sEMG Signal Analysis 

Robustness of prosthesis control system depends on employing HD-sEMG electrodes to get more 

information and discover invariant characteristics of EMG signals. The development of HD-sEMG 

signals augment the data size significantly and introduced the possibility of using EMG image. 

There are two methods for analyzing HD-sEMG signals; HD-sEMG map and instantaneous image. In 

this work, HD-sEMG map is used. Consequently, the recorded data for each channel is divided into 

non-overlapping windows. HD-sEMG map is calculated using root mean square (RMS) for each 

window as a segmented map [13,22].  
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Where N denotes samples number f segmented window, SMi,j is HD-sEMG map of the segmented 

window, EMGi,j corresponds to recorded EMG signals at (i,j) channel. The average map is obtained by 

averaging segmented map at each channel as 
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where AMi,j is the average value of segmented map located at (i,j) channel and denoted as an average 

map, M denote the window's number. Average map considered as an image in which each pixel 

corresponds to channel. Consequently, the average map is used as the input to the feature extraction 

method. 

2.3.  Features Extraction 

Different algorithms have employed to extract features from the EMG signal, some of them are simple 

and depend on RMS value to estimate EMG amplitude, others use time-domain features (TD). Time is 

the favorite domain due to the simplicity of computation with good performance and can be supported 

by other features in order to enhance the classifier performance [23]. More complex algorithm that 

depends on frequency features such as Fourier and wavelet domain [24]. New studies display that the 

spatial distribution of HD-sEMG maps improves the recognition of gestures [13,16]. Consequently, 

the spatial features of HD-sEMG maps are used either individually or combined to improve their 

performance [15].  

In this study, AIH feature extraction is implemented. H features related to HOG features of an average 

map that considered as an image. Its size corresponds to electrodes locations. The intensity features I 

are calculated for segmented maps after averaged per channel. Consequently, vector of 1×128 features 

are obtained. Intensity features are calculated as logarithm of segmented maps as  

10 ,

,

i j

i j
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Figure 1.  Hand gestures configurations. 
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where  ASM is the average of segmented maps per channel.  

The average intensity vector (AI) combined with H features to form AIH features. The block diagram 

of the proposal feature set illustrated is in Figure 2. 
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Figure 2. The block diagram of AIH features extraction approach. 

2.4.  SVM classifier 

Many researchers use the SVM classifier because of its simplicity, solid formulation, fast training and 

good classification performance for small training sets.  

Let dataset  1 1( , ),......( , )n nD x y x y , where ix   is the i
th
 training vector, 1iy    is a 

corresponding class label. The SVM classifier of the form ( ) ( )Tf x w x b  , obtained by minimizing  

2

, , 1

1

2
min

n

i
w b i

w C
 

                                                                                                                             (4) 

subject to the constrains                                     

 

 

( ) 1 1,.....,

0 1,.....,

T
i i i

i

y w x b i n

i n





       

  
  

where b  is the bias, w  are the weights, i training error of ix and C is the regularization 

parameter. 

The performance of SVM classifier was evaluated offline in term of Sensitivity, Precision, and 

Accuracy for each gesture based on confusion matrix  
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where TP (true positive) is the number of samples of a specific class that classified properly and TN 

(true negative) is the number of samples that do not belong to a specific class and not related to that 

class. FN (false negative) is the number of samples pertaining to a specific class but erroneously 

classified into another class, and FP (false positive) is the number of samples that are not pertaining to 

a definite class but incorrectly classified into that class [13,21,22]. 

For online evaluation, the performance is evaluated in term of overall classification accuracy for each 
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3. Simulation Results 

In this paper, two sets of experiments are conducted in order to test the powerful of AIH features for 

offline and online evaluation 

3.1. Offline evaluation 

In this part, the experiment of our previous work [22] was re-evaluated to include all able-bodied 

subjects of database DB-a with different evaluations to be familiar with other researchers to compare 

with them. Therefore, for each subject, the classifier is trained by five trials and tested on the 

remaining five trails (50% training set, 50% testing set). Table 1 shows the performance of SVM 

classifier based on AIH features for 18 subjects. 

 

 

It is noticed that the SVM classifier based on AIH features achieved higher performance for all 

subjects averaged between eight gestures. The worst subject investigates the recognition performance 

with 97.5% (Accuracy), 93.2% (Precision) and 90% (Sensitivity), which is an accurate performance. 

The average accuracy of 18 subjects reached 99%. This shows the possibility of AIH features to 

classify eight gestures using simple classifier trained by small training set. Accordingly, our results 

confirm that the choice of features was more important than the choice of classifier. Moreover, we can 

see that the performance of each gesture averaged between 18 subjects was investigate good 

performance above Precision 91.7 % and Sensitivity 86.6% as shown in Figure 3. It can be observed 

that most gestures produced higher recognition performance except gesture4 and gesture5, which is, 

still provides acceptable performance. The classification performance of gestures in terms of precision 

and sensitivity showed the efficient of AIH features for recognition.  

TABLE 1. The accuracy, precision, and sensitivity of 

eighteen-subjects of SVM classifier using AIH features 

Subjects  Accuracy% Precision% Sensitivity % 

Sub1 100 100 100 

Sub2  99.375 97.9       97.5 

Sub3  98.12 93.3       92.5 

Sub4 100  100 100 

Sub5 99.37 97.9 97.5 

Sub6 98.75 95.8 95 

Sub7  98.125 92.3 92.5 

Sub8  98.75 95.8 95 

Sub9 100 100 100 

Sub10 98. 5 96.4       95 

Sub11 100 100       100 

Sub12  100 100 100 

Sub13 99.37 97.9 97.5 

Sub14 97.5 93.2 90 

Sub15 100 100 100 

Sub16 98.12 94.3 92.5 

Sub17  100 100 100 

Sub18 97.5 93.2 90 

Average 99.08 97.1 96.38 
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Figure. 3 The classification performance based on the precision and sensitivity of eight gestures 

averaged between 18 subjects 

The proposed method compared with other researchers that used HD-sEMG data. Jordanic [15] used 

HD-sEMG map and spatial features using mean shift channel algorithm combined with intensity 

features. Jordanic used three HD-sEMG maps associated with three arrays of HD-sEMG signal. 

Accordingly, scalar intensity value was calculated for each map as a logarithm of summation of all 

HD-sEMG map elements. While in our method the intensity features calculated from average maps 

obtained from five frames per channel. As a result, the size of intensity features is related to the 

number of electrodes (i.e. in our method, the size of intensity features was 128). In [17] use the same 

databases and powerful of deep learning to attain higher accuracy reached 99.5 % using instantaneous 

image of recorded HD-sEMG signals. The majority voting of 150 frames was used to achieve this 

accuracy. While our method used simple classifier that required small training set compared with large 

data sets required by deep learning to achieve average accuracy reached 99%. This confirms that the 

choice of features is significantly affect the performance of recognition. Moreover, our study also 

compared with the previous work [18], which used instantaneous image for analyzing HD-sEMG data, 

instantaneous image, divided into blocks for three scenarios that two blocks image give best result 

than others. We extend our experiment to be the same evaluation procedure as [18]. The same 

databases have been used (i.e. sub-database DB-a) which, the comparison illustrated in Table 2. It can 

be noticed that our method superior to the latest work in all performance parameters [18]. The 

improvement of TPR reach 5% than [18], precision improved by 5.8% and F. score improvement by 

4.4%. 

Table 2. Comparison of our work with previous work [18] 

Gestures Roberto [18] Our work 

TPR FPR Pr. Fsc. TPR FPR Pr. Fsc. 

G1 0.955 0.009 0.938 0.946 1 0.001 0.99 0.994 

G2 0.924 0.015 0.895 0.909 0.988 0.017 0.917 0.944 

G3 0.898 0.013 0.909 0.930 0.988 0 100 0.993 

G4 0.898 0.026 0.828 0.846 0.866 0.006 0.96 0.887 

G5 0.901 0.010 0.927 0.914 0.911 0.006 0.96 0.923 

G6 0.967 0.004 0.975 0.971 0.988 0.001 0.99 0.988 

G7 0.949 0.011 0.926 0.937 0.988 0.006 0.965 0.974 

G8 0.834 0.013 0.899 0.865 0.955 0.004 0.974 0.961 

Aver. 0.911 0.012 0.912 0.914 0.961 0.005 0.97 0.958 
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TPP: True positive rate, FPR: False positive rate, Pr.: precision, Fsc.: F1 score 

3.2. Online evaluation 

Typically, poor performance has been obtained when training on the session and evaluating on others 

that there is a contrast of distribution of the training and testing data between sessions due to the 

nonstationary property of EMG signal over time and the variation of electrodes positions between 

sessions. Accordingly, the performance of inter-session identification deteriorates over time. To 

overcome this problem, either select efficient training protocols, choose robust features set or using 

adaptive learning method. This part shows the effectiveness of the proposed method for inter-session 

performance. The sub-database DB-b was applied which it contains ten subjects participate in two 

sessions on two different days. With a view of reducing the significant distribution of data between 

sessions, SVM classifier was trained by session1 and only two trails of session2 and evaluated by the 

remaining samples of session2. The testing data divided into streams that come simultaneously on the 

remaining trails of session2. Each stream has the same number of samples as shown in Figure 4. 

 

DB_b

Dividing remaining 

samples of session2 

into streams

Training  

SVM 

classifier 

Offline 

training

Recognition 

Session1+2 trails of 

session2

Make 

decision
Online 

evaluation 

S10 S9 S8
. . . 

. 
S5 S4

CA1

0%

CA9

%

CA8

%
. . . . 

CA5

%

CA4

%

 
 

Figure 4. Block diagram of online evaluation of SVM classifier 

The classification accuracy (CA%) was calculated for each testing stream. The performance of an 

online classifier based on AIH features for four subjects with their average accuracy are shown in 

Figure 5. It can be noticed that the online evaluation is achieved higher classification accuracy in term 

of inter-session identification. The average classification accuracy produced an acceptable 

performance above 87.5 %.  However, this reveals the robustness of AIH features to predict the 

gestures for eight batches online. 

 
Figure 5. Online evaluation of SVM classifier for four subjects with their averaged for inter-session 

classification. 

The inter-session performance of ten subjects of DB-b in terms of accuracy, precision, and sensitivity 

was shown in Figure 6. It is observed that SVM classifier based on AIH features achieved good results 
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for all subjects above 85% except subject1. However, it achieved acceptable performance. This 

confirms the robustness of AIH features to encounter the nonstationary characteristics of EMG signals 

over time with good performance for ten subjects participated in two sessions.   

 
Figure. 6 The classification performance for inter-session identification 

4. Conclusion 

The variation of EMG signals caused a big challenging that constrains the commercialization of upper 

limb devices. In this paper, spatial features are extracted from HD-sEMG data. These features 

concerned with HOG features and intensity features averaged between windowed HD-sEMG map. 

The offline evaluation achieved higher performance in terms of accuracy, precision, and sensitivity to 

classify eight gestures based on 18 subjects. The online evaluation reported the robustness of AIH 

features to electrode shift and slow changes of EMG signals over time. The spatial features were 

considerably improved the classification of motion intents.  
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