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Abstract 

In recent years, the number of researches in the field of artificial limbs has increased significantly in order to improve the 

performance of the use of these limbs by amputees. During this period, High-Density surface Electromyography (HD-sEMG) 

signals have been employed for hand gesture identification, in which the performance of the classification process can be 

improved by using robust spatial features extracted from HD-sEMG signals. In this paper, several algorithms of spatial feature 

extraction have been proposed to increase the accuracy of the SVM classifier, while the histogram oriented gradient (HOG) has 

been used to achieve this mission. So, several feature sets have been extracted from HD-sEMG signals such as; features 

extracted based on HOG denoted by (H); features have been generated by combine intensity feature with H features denoted as 

(HI); features have been generated by combine average intensity with H features denoted as (AIH). The proposed system has 

been simulated by MATLAB to calculate the accuracy of the classification process, in addition, the proposed system is 

practically validated in order to show the ability to use this system by amputees. The results show the high accuracy of the 

classifier in real-time which leads to an increase in the possibility of using this system as an artificial hand. 

KEYWORDS: HD-sEMG, SVM classifier, Spatial features extraction, HOG approach, Artificial Hand.  

 

I.  INTRODUCTION 

 The concept of the prosthesis interaction with the 

amputees is depending on the electromyography (EMG) 

signals produced by muscle tissue, which is sensed by 

electrodes. The local features extracted from EMG signals 

are used to producing the commands needed to perform 

prosthetic functions. These prostheses increase the abilities 

of amputees and patients with physical damage or cognitive 

functions as a result of disease, injury, and aging [1]. 

 There are two categories of myoelectric controls which 

are pattern recognition approach and direct control system 

(conventional).  In the direct control, each pair muscle in the 

opposite site is control the motion of the prostheses. In the 

case of the artificial limb has a lot of joints movement, a 

problem will appear due to the existence of a more degree of 

freedom (DOF) than the control signal obtainable from the 

muscles of an amputee. This problem may overcome by 

switching control, which the patient should switch between 

all available joints. However, switching control is 

impractical due to a long-time is needed to achieve a 

complex task [2]. Moreover, the region of muscle activity at 

which EMG is recorded and measured near-surface of the 

skin may involve the sharing of more than one muscle that 

causes the EMG cross-talk. The limitations of both direct 

and switching control systems led to the use of a pattern 

recognition approach for myoelectric control, which 

increases the number of DOF that can be intuitively 

controlled [3-5]. 

 In the last decades, surface electromyography (sEMG) 

signals are widely used for pattern recognition, which 

problems of the signal amplitude value, bad sensing due to 

fatigue, and abnormal distribution of sEMG on the muscles 

have not been taken seriously during the most studies of the 

recognition tasks. The high performance of the pattern 

recognition process can be achieved by solving the problems 

of these issues. In recent studies, High-density surface 

electromyography (HD-sEMG) has been introduced a 

myoelectric control system, which is a two-dimensional 

array of electrodes that can give a high performance of 

recognition by increasing the density of electrodes that cover 

the most of muscle area [6-11]. 

 Recently, Pattern recognition is the most efficient 

method for identifying the upper limb gestures from sEMG 

signals. There are many classifiers that used for pattern 
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recognition with a high performance like deep learning 

approach, artificial neural network (ANN), support vector 

machine (SVM), linear discriminant analysis (LDA) [12]. 

Stango [13] uses HD-EMG signals for controlling upper 

limb prostheses, in which spatial features extracted from the 

HD-EMG map making the performance of classifier robust 

to electrode shift but this system has not been solved the 

problem of the sensitivity reduction due to fatigue or long 

term of classification. Rojas [14] employs three electrodes 

array for Biceps, Triceps, and forearm to identify 12 gestures 

corresponding to four motion types with three effort levels, 

which spatial features are extracted by mean shift channel 

algorithm combined with intensity features obtained from 

five segmented maps corresponds to muscles. However, this 

system is complex and costly.  

 Geng et al. [15,16] have been used a 2 dimentional array 

of electrodes with 128 channels organized as a grid of 8×16 

matrix.  Geng deals with the instantaneous recording of 

HD-EMG as an image, in which a deep convolution network 

has been implemented for gesture recognition that classifies 

instantaneous sEMG images, in this system huge data needs 

for training. In [17], researchers presented a recognition 

approach based on two categories: wireless HD-EMG 

recognition system and brain-inspired HD computing in 

order to achieve high recognition performance, which the 

proposed system performs. In Rubana [18], several 

classifiers have been used to analyze the EMG signal, also 

the comparison is performed between these methods in terms 

of performance which the high accuracy evaluated by the 

Extreme Learning Machine (ELM) algorithm, in this system, 

many problems appear such as complexity, cost, in addition 

to synchronization problems. 

 The researchers found that the features of EMG signals 

are an important factor for identifications and have more 

impact than classifiers [19]. So, it is best to select simple and 

fast classifiers for identification like LDA or SVM, which 

commonly used especially in pattern recognition approaches 

[20,21]. Furthermore, pattern recognition approaches 

observed by different studies like subjects of neuromuscular 

diseases [22] and in fields of the myoelectric control system 

for prostheses [23-26]. Features that extract from EMG 

signals can be in time, frequency/scale, and 

time-frequency/scale domain [12,20,27]. Time is the favorite 

domain due to the simplicity of computation with good 

performance [20] and can be supported by other features in 

order to enhance performance [19]. Physiological like 

muscle stress or non-physiological as skin impedance is 

affected on the EMG signals in terms of strength and shape, 

so they are an impact factor on the neuromuscular control 

[28]. An LDA classifier is proposed by Liu et al. [29], in 

which the training is performed during different days and 

then combined the results in order to achieve adaptation for 

the change in the features. 

 In this paper, the spatial features are proposed for 

gesture recognition based on three scenarios; the first one is 

H features that corresponds to the histogram oriented 

gradient (HOG) algorithm while the other method HI 

features that is related to the combination of H features and 

intensity feature that evaluated from the intensity of 

HD-sEMG map. AIH features related to the same 

combination of H features and intensity features as the 

intensity of the segmented HD-sEMG map. These features 

are extracted from HD-sEMG signals of eight hand 

movements of prostheses. The gesture recognized using 

SVM classifier based features sets. The control system has 

been designed by a microcontroller in order to control the 

artificial hand based on classification decisions. Two types 

of experiments have been achieved in order to validate the 

proposed system. The first type is the proposed system has 

been simulated in real-time in order to evaluate the accuracy 

of classification, while the second type is practical 

experiments in order to validate the proposed system. The 

results of the experiments proved that the SVM classification 

performance is improved by using the proposed features, 

while the proposed system practically success. 

 The rest of the paper is organized as follows: in section 

2, interactive control system has been described and study 

the required tools for this task. In section 3, the simulation of 

SVM classifier by MATLAB has been performed in order to 

test the accuracy of using modified HD-sEMG features 

extraction algorithms. The final section contains the 

conclusions about the results. 

II. INTERACTIVE CONTROL SYSTEM 

 There are many issues emulate the ability of amputees to 

use artificial limbs such as motion flexibility of hand 

mechanical structure, decision-making accuracy based on 

EMG signals, and how much the control system is 

interactive with an amputee. The complete control system 

has been drawn in Fig. 1, which the HD-sEMG signals have 

been sensed by a two dimensional array of electrodes and 

then sends to a PC in order to decision making based on 

achieving the classification process for each hand gesture. 

The gestures identification process is achieved by extracting 

robust spatial features from HD-sEMG signals that will be 

employed for the SVM classifier. Finally, based on the 

decision made by PC, the hand will perform the gestures, 

which the hand is interfaced with the PC through the 

microcontroller-based control system. In the following 

sections, the description of the proposed design will be 

presented. 

 
Fig. 1: Interactive Control System. 

A. Gestures Identification Approach 

 The efficiency of gesture identification is a key factor in 

controlling prostheses. While the high performance to 

recognize gestures is subject to many factors [16,30], 

starting from sensing the HD-sEMG signals of muscles 

[13,33], and then the method that used for extracting the 

HD-sEMG signal features [9,13-14], finally, the 
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classification method for gesture identification 

[18,19,24,27]. 

1) HD-sEMG Sensing Process 

 Electromyography (EMG) signals acquired from 

electrical activities of muscle by means of surface, needle or 

implantable electrodes. The electrode may be invasive or 

non-invasive, the invasive required an interface device 

between the patient and the robotic prostheses by surgery. 

Hence, surface EMG electrodes are preferred due to 

avoiding invasive operation during the recording of signals. 

The surface electrodes either dry in direct connection with 

the patient's skin or gelled electrode that uses the chemical 

material as the interface between skin and electrodes [34]. 

Recent research showed other types of surface electrodes 

such as multi-channel electrodes. Multi-channel electrodes 

use several channels as the linear array or 2D array of surface 

electrodes known as HD-sEMG electrodes [35,36]. 

HD-sEMG channels are organized as a two dimensional 

(2D) grid of closely spaced electrodes covering a muscle 

area as shown in Fig. 1. 

2) HD-sEMG signals database 

 In this work, the standard databases of HD-sEMG 

signals have been used that is commonly used for gesture 

identification to arrive at a fair comparison with the relevant 

systems and test the success of the proposed methods with 

respect to other works. Different types of databases are 

available such as the CSL-HDEMG database with 192 

electrodes arranged in a form of 8 × 24 electrodes for upper 

forearm muscles. It consists of 27 gestures recorded by five 

subjects. NinaPro is a scientific database has ten spares 

electrodes on the forearm. In the NinaPro dataset, 27 

subjects performed 52 gestures recorded for 10 trials in 

sub-database1 (DB1) and 40 subjects performed 50 gestures 

are recorded for 6 trials by sub-database2 (DB2) [15]. 

 The HD-sEMG data obtained from a standard database 

given at http:// zju_capg.org/myo/data. It consists of 128 

channels prepared in matrix form 8×16 as a 2D array of 

closely spaced electrodes. DB-a is considered with 18 

subjects. Each subject performed 8 isometric hand gestures. 

Each gesture repeated for 10 trials [16]. The acquired 

HD-sEMG data were pre-processed using band-pass filtered 

at 20-380 Hz and sampled at 1000 Hz. Each gesture recorded 

ten trials for each subject. For each trial, the channel was 

recorded for 1000 samples of instants. 

 CapgMyo database do not enforce definable contraction 

force when the subject performed gestures. The opinion of 

gesture recognition considered a contraction force level is a 

form of feature [16,36], in which the identification of 

gestures is easier by imposing the contraction force. This 

issue produced a limitation in real-world applications, it is 

difficult to order users to have specific contractions force. 

3) HD-sEMG features extraction 

 HD-sEMG map is the spatial distribution of intensities 

of the active motor unit over the muscle, in which the sEMG 

- map is proposed for medical applications, recently, it has 

been used for gesture recognition. The sEMG map is 

calculated as 

  jiji EMGRMSAM ,,    

where AMi,j is activation map of channel (i,j), EMGi,j is the 

EMG signal at location (i,j) channel. Each pixel in map 

corresponds to RMS value of a channel at location (i,j). 

 The HD-sEMG map was calculated for non-overlapping 

windows (200ms time duration), which is the suggested 

window length for many studies of pattern recognition based 

prosthetic control [37]. Then averaged the segmented map as 
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where ASMi,j average segmented map, Xi,j is window of 

EMG signal located at (i,j) of 2D arrays, SMi,j is the 

segmented map located at (i,j) channel. 

N is total number of samples in each window of sEMG 

signal, M is number of non-overlapping windows. 

 There are different proposed algorithms use to extract 

features some of them are simple such as RMS value to 

estimate EMG amplitude or use time domain features (TD) 

or more complex frequency feature such as Fourier and 

wavelet domain. New studies display that the spatial 

distribution of HD-sEMG map improves the recognition of 

motions. The spatial features relevant to HD-sEMG maps 

were extracted and used in identification either individual or 

combined so as to improve their performance [4,38,39]. 

Many studies show that the relation between EMG 

amplitude and generated force is a non-linear. Therefore, the 

intensity features were evaluated as a common logarithm of 

the average intensity of HD-sEMG maps [25,40]. 
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where I is the intensity features, AMi,j is the intensity value 

of the pixel at location (i,j) of  segmented map. 

 In this study, three sets of feature extraction were 

presented H, HI, AIH. In these approaches, each channel of 

HD–sEMG recording signals are divided into several non- 

overlapping windows. HD-sEMG maps have been 

calculated for each window using the RMS value as in (3). 

The average segmented map has been calculated for each 

channel to obtain ASM of 8×16 whereas pixels intensity of 

this map corresponds to channels location and represents 

muscle activation map in each channel. The average 

segmented map (ASM) can be considered as images, 

therefore, the problem of hand gesture can be reframed as the 

problem of image classification. The Histogram Oriented 

Gradient (HOG) algorithm is applied to extract the spatial 

features of the average HD-sEMG map. HOG is an efficient 

feature extraction technique, which is widely used in image 

processing for the purpose of object detection. HOG counts 

the occurrences of gradient orientation in localized portions 

of an image [41]. The extracted HOG features from the 

average HD-sEMG map denoted as H features, which used 

for the gesture classification process. 

 The second proposed feature set is concatenated of 

intensity feature (I) and H feature within a single vector of 

the feature, in which the intensity feature has been calculated 
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by equation (4) as a scalar value. This feature set is denoted 

as HI. 

 In the third proposed feature, the intensity feature is 

calculated by averaging the segmented maps per channel to 

represent a vector of 1×128 features corresponds to the 

number of channels of HD-sEMG array. This intensity 

vector is concatenated with H features to form AIH features. 

The three proposed feature sets have been illustrated as a 

flowchart in Fig. 2.  

 

4) HD-sEMG Classification Process 

 The simple implementation and fast training of the 

SVM classifier encouraged the use of this classifier for 

classifying eight hand gestures by finding the best 

hyperplane that separates multi classes. The linear kernel 

was used that achieved preferable accuracy than other 

kernels [1]. Three different SVM classifier has been 

implemented according to different feature sets extracted 

from HD-sEMG data 

• Classifier based on H features. 

• Classifier based on HI features. 

• Classifier based on AIH features. 

 In order to achieve an honest assessment of the true 

accuracy of our classifier, 10 fold cross-validation has been 

used.  

 the performance of the classifier has been evaluated in 

term of sensitivity (S) and Precision (P) that computed from 

the confusion matrix as  
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where TP (true positive) is the number of samples that were 

classified properly to a specific class; TN (true negative) is 

the number of samples that do not pertain to a definite class 

and were not categorized to that class; FN (false negative) is 

the number of samples pertaining to a specific class but 

erroneously classified into another class; FP (false positive) 

is the number of samples not pertaining to a definite class but 

incorrectly classified into that class [26,42]. Figure 3 shows 

the systematic representation of SVM classifier based on 

AIH features. 

The classification accuracy (CA) is used for real time 

evaluation of individual stream. It is calculated as 

 % 100
correctly predicted samples

CA
total test samples

      (11)

 
Fig. 2: Features extraction flowchart. 
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Fig. 3: The systematic representation of SVM classifier based on AIH features. 

 

B. Implementation of Myoelectric Control System 

 In this section, the myoelectric control system has been 

implemented, which is shown in Fig. 4. As mentioned in 

previous sections the HD-sEMG system is used for sensing a 

2D array of EMG signals. In this paper, the HD-sEMG 

signals from a dataset have to be employed, and then spatial 

features are extracted. While these signals will be used for 

the real-time classification that achieved in Laptop by 

MATLAB software. The classification process is followed 

by decision making in order to achieve gestures, while the 

decision will be sent through a PC interfacing circuit to the 

artificial hand control system. Microcontroller type 

ATMEGA 2560 has been used for the main control unit, 

which is receiving the decision from PC. According to these 

decisions, instruction making will be generated in order to 

drive the artificial hand. The Artificial hand has a simple 

design, which made from metal material with five fingers for 

each finger there are 3-DOF of three revolute joints. 

 
Fig. 4: Implementation of myoelectric Control System. 

III EXPERIMENTS AND RESULTS 

 Several experiments have been implemented in order to 

validate the proposed system. These experiments start to 

simulating the HD-sEMG signal classification to identify the 

hand gesture, which accuracy, precision, and sensitivity have 

been evaluated for performance measurement. As mentioned 

in the previous section, the HD-sEMG electrodes have been 

organized as a 2D array in 8 rows and 16 columns. The 

identification is tested on the first eight able-bodied subjects 

of database DB-a for the classification of eight hand 

gestures. The classifier was trained using five trials and used 

the remaining five trails for testing. (50% training set, 50% 

test set). The offline evaluation confirms the powerful of the 

proposed feature sets. The averaged precision and sensitivity 

of all gestures are displayed in Table I. There is a significant 

difference of precision and sensitivity based on AIH features 

compared with H, HI features (i.e. PAIH=97.9, SAIH=97.5 

corresponds to PH=93.8, PHI=94.4, SH=91.5, SHI=92.5).  

Moreover, AIH features achieved lower standard deviation 

(approximately 1%, 5%, and 4.78%) than H, HI features 

(2.76%, 11.2%, 14.87% and 2.68%, 11.35%, 13.56% 

respectively). While, slight difference is noticed between the 

performances of SVM classifier based on H feature and HI 

features.  

TABLE I 

THE AVERAGE ACCURACY, PRECISION, AND SENSITIVITY 

AVERAGED BETWEEN EIGHT SUBJECTS, EIGHT GESTURES 

AND PRESENTED IN TERM OF MEAN AND STANDARD 

DEVIATION.  

Features sets Average  P % Average  S % 

H features  93.8 ± 11.2 91.5 ± 14.87 

HI features 94.4 ± 11.35 92.5 ±  13.56 

AIH features 97.9 ± 5 97.5 ± 4.78 

 

 In order to implement the real time evaluation of three 

feature sets (H, HI, AIH), the DB-a is divides into ten 

streams such that five streams are used for training the 

classifier in offline while the rest used for on line evaluation. 
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The classification accuracy is evaluated for each stream in 

real time individually. The classification accuracy of five 

streams based on three feature sets (H, HI, AIH) are shown 

in Fig. 5. 

 
Fig. 5: The Classification Accuracy of five streams (TC6, 

TC7, TC8, TC9, TC10) based on three feature sets average 

between five subjects in term of mean and standard 

deviation. 

 It is obvious that the classification accuracy of three 

SVM classifiers based on three feature sets achieved good 

results for all online five streams always above 85%. 

Moreover, AIH considerably outperform all of the compared 

features and its performance is higher than others feature 

sets. This is explicit from the average accuracy that is always 

above 92.5%. Further, AIH features have been satisfied 

relative lower standard deviation than other feature sets as 

can be seen in TC6, TC8, TC10. This reveals the robustness 

of AIH features to predict the gestures for five batches online 

than other features. The superiority of AIH features due to 

the spatial intensity features of individual channels that are 

repeated between trials that belong to the same gestures. 

 Other experiment is illustrated in this work that 

achieved practical implemented of a hand prosthesis. 

Classification of six gestures are employed for arbitrary 

subject (e.g. subject 4 is chosen). The confusion matrix is 

described for four streams of subject 4 based on three feature 

sets (H, HI, AIH features) as shown by Fig. 6, Fig. 7, Fig. 8. 

Respectively.     

 
Fig. 6: Confusion matrix for four online streams evaluation respectively based on H features. 
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Fig. 7: Confusion matrix for four online streams evaluation respectively based on HI features. 

 As can be noticed by Fig. 6 all gestures are 

discriminated correctly except gesture2. There is a 

misclassification in 4th stream such that gesture 2 cannot be 

recognized, it is predicted as gesture 4. The classification 

accuracy of stream 4 is corresponds to classify 5 gestures 

correctly versus one misclassification. Hence, the 

classification accuracy is 83.33%. The same online 

evaluation is satisfied for HI features as shown by Fig. 7. 

While online evaluation of AIH features can recognize all 

gestures for all four streams for that subject with 100% 

classification accuracy. 

 In order to show the classification accuracy of each 

subjects, the classification accuracy (CA%) is calculated for 

each subject averaged between testing stream. The 

performance of online classifier based on AIH features for 

five subjects with their average accuracy are shown in Fig. 9. 

It is clear that the performance significantly changes 

between subjects. inter-subject variation due to human 

anatomical such that the motor units in the muscle tissue is 

different between subjects. However, the average 

classification accuracy produced an acceptable performance 

above 92.5 %.  This gives an indication that the choice of 

feature set is more important than the choice of the classifier, 

and has a significant effect on the performance of classifier. 

As a summary Table II include the classification accuracy of 

the related work. Indeed, the comparison of the related work 

isn't fair due to several factors such as different databases 

used, increased number of task identification, number of 

subjects that entrant in the experiment. However, this table 

display the scope of the classification accuracy with respect 

to features, classifier and technique for recording EMG 

signals used. Stango, Phinyomark [13,43] used the same 

classifier of our work (SVM) to classify 9,7 movements with 

average accuracy 95 %, 88.6% respectively using two 

different feature sets.  

 Geng in [16] verified the maximum accuracy of 99.5 by 

using the powerful of CNN deep learning method based on 

instantaneous image of 128 channels. In our study, SVM 

classifier based AIH features achieved high classification 

accuracy reach to 97.5%. This gives an indication that the 

choice of feature set has a significant impact on the 

identification process. Further  the spatial features have been 

influenced the classification performance.   
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Fig. 8: Confusion matrix for four online streams evaluation respectively based on AIH features 

 
Fig. 9: the classification accuracy based on AIH features for 

five subjects with dsdwtheir average 

IV CONCLUSIONS 

 Five subjects performed eight gestures. HD-sEMG data 

has been obtained from the standard database CapgMyo 

database DB-a. It consists of 128 channels configured as 

8x16 arrays, each channel recorded for 1000 samples 

instants. Each channel is divided into 5 frames of 200ms 

non–overlapping windows. HD-EMG map is calculated for 

each segmented window by RMS value then averaged 

segmented maps to obtain the average segmented map. 

Different feature sets have been extracted H feature 

corresponds to spatial features extracted from the average 

segmented map that considered as an image of 8 x16 by the 

HOG algorithm. HI features obtained by combining H 

features and intensity features. The last evaluated as 

intensity feature of the average segmented map.  AIH 

features related to combined H features and vector of 

intensity features that calculated for segmented maps per 

channel. The gesture recognized using SVM classifier based 

features sets. AIH features have been achieved higher 

performance (i.e. P= 97.9 ± 5, S=97.5 ± 4.87) with lower 

standard deviation. So, the spatial and intensity features 

considerably improved the classification of motion intents. 
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TABLE II 

COMPARISON BETWEEN THE PERFORMANCE OF GESTURES IDENTIFICATION BASED ON AIH, FEATURES AND PERFORMANCE OF 

GESTURES IDENTIFICATION THAT ACHIEVED BY OTHER RESEARCHERS. 

Reference 
Classification 

accuracy 

Nu mber of 

movements 

Number of 

subjects 
Type of Features Channels 

Classification 

type 

Rojas [25] 98.7 % 4 9 I+CG 
120 for 2-array (Biceps and Triceps) 

114 for forearm array 
LDA 

Stango [13] 95 % 9 7 Variogram 192 SVM 

Geng [16] 99.5 % 8 18 
Instantaneous values of EMG 

signal as feature vectors 
128 Deep learning 

Ali [17] 97.9 % 5 3 Spatial HD vector 64 HD classifier 

Phinyomark [43] 88.6 % 7 11 TD4 Myo armband  SVM 

Our work 97.5 % 8 8 AIH 128 SVM 
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