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Abstract
Myoelectric pattern recognition is a useful tool for identifying the user’s intended motion. However, the inherent non-

stationary properties of Electromyography (EMG) signals usually limited the use of real time commercial prostheses.

These variations cause the degradation of myoelectric control performance and make it unstable over time, across subjects

and sessions. In this study, this challenge is overcome by combining the use of robust spatial features and the supervised

adaptive learning method to improve the myoelectric performance. Three types of spatial features are proposed based on

histogram oriented gradient (HOG) algorithm and intensity features namely H, HI, and AIH features. H features correspond

to extracting HOG features from the HD-sEMG map. HI feature is obtained by concatenating the H features with scalar

intensity feature that calculated from HD-sEMG map. Finally, the hybrid AIH features are produced by combining the H

features with the intensity features matrix (AI) that obtained from the segmented maps. Three sub-databases are used for

evaluation. The proposal feature sets are compared with time-domain (TD) and a combination of intensity and center of

gravity features (ICG) to show the powerful of these features. The offline results report the superiority of the classifier’s

performance in term of precision and sensitivity based on AIH features than other feature sets (i.e. H, HI, TD, ICG) with

improvement 4.1%, 3.5%, 2.24%, 5.3% and 6%, 5%, 2.2%, 6.9% respectively. The adaptive classifier based on AIH

features outperforms adaptive myoelectric control based on other feature sets and the original version. The adaptive

classifier utilized testing data that update the original dataset which in turn has a significant effect on improving the

myoelectric performance in the presence of the variation of EMG signal properties.

Keywords EMG signal classification � Myoelectric pattern recognition � HD-sEMG � Real time classification �
Spatial features extraction � SVM classifier � Adaptive myoelectric control

1 Introduction

Myoelectric control techniques have been used for con-

trolling the upper limb prosthesis. Regardless of the non-

stationary of EMG signals and its statistical properties over

time, it is considered as an important input for controlling

the prosthesis. It contains rich information about the

muscle. EMG signals are generated by muscle tissue using

non-invasive electrodes that placed on the skin (Campbell

et al. 2020; Hui et al. 2018). Myoelectric control system

can be categorized as pattern recognition techniques and

conventional control techniques. Conventional control

systems allow patient to control single device in an on-off

mode like an elbow or hand. The conventional control

systems are limited to their degree of freedom (i.e. pros-

thetic’s functions). While, Myoelectric Pattern Recognition

techniques (MPR) are used for controlling more dexterous

prosthesis. Moreover, various features are extracted from

EMG channels rather than conventional control that

depend on the EMG amplitude. MPR controls more pros-

thetic’s functions intuitively (Parajuli and Sreenivasan

2019; Edwards and Hebert 2015).
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In the last decades, pattern recognition techniques are

motivated many researchers to control the prosthetics hand.

Myoelectric pattern recognition technique depends on

recorded and pre-processed the EMG signals, identifying

the suitable features then classifies them into sets of com-

mands (Phinyomark et al. 2013). Although there are dif-

ferent classifiers can be used for gestures classification such

as Artificial neural networks (ANN) (Ahsan et al. 2011),

linear discriminate analysis (LDA) (He et al. 2012), sup-

port vector machines (SVM) (Gu et al. 2018) and deep

learning techniques (Wei et al. 2019), many researchers

concur that the classification’s performance is not consid-

erably depend on classifier algorithm (Hargrove et al.

2007; Zhang and Zhou 2007). Contrarily, the choice of

convenient and robust features is a big challenge.

Multiple feature sets are employed to improve the

classification performance such as time domain (TD)

(Scheme and Englehart 2014), frequency domain (FD) (He

et al. 2014), time frequency domain (TDF) features (Al-

Timemy et al. 2016) and recently the spatial features that

extracted from HD-sEMG signals (Zhang et al. 2019).

Spatial features appeared with the growth of HD-sEMG

techniques. HD-sEMG electrodes are several channels used

for recording EMG signals that organized in two dimen-

sional array with closely spaced electrodes. Stango et al.

(2015) used HD-sEMG signals to classify 9 motions using

an array of 192 electrodes. Spatial Variogram features are

used to reduce the effect of shifting electrodes’ locations.

HD-sEMG data can be analysed in two techniques; HD-

sEMG map (topological map) (Nougarou et al. 2019; Jaber

et al. 2020) and instantaneous image (Scheme and Engle-

hart 2014). Geng et al. (2016) used instantaneous image

with the powerful of deep learning technique to classify

hand gestures. The instantaneous samples are used as a

feature vector. Amador et al. (2019) used instantaneous

image with LDA classifier. Image features extraction is

used by dividing the instantaneous image into blocks.

Jordanic et al. (2017, 2016) used spatial features extracted

from HD-sEMG map to reduce the effect of long term

identification and muscle fatigue that influences the

robustness of the Myoelectric pattern recognition.

Although many researchers was achieved a good per-

formance for the myoelectric pattern recognition, their

experiments was employed in offline analysis (Amador

et al. 2019; Jordanic et al. 2017, 2016). However, the

implementation of the classification techniques in real time

conditions is not reliable and robust because of the varia-

tion of EMG signals over time which in turn deteriorates

the performance of myoelectric pattern recognition. The

main reasons of the variability of EMG signals include

physiological changes (i.e. muscle fatigue) or non-physio-

logical changes (i.e. electrodes shift, impedance variations)

(Kyranou et al. 2018). To overcome this problem, various

solutions have been employed such as choosing robust

feature set (Jordanic et al. 2016; Jaber and Rashid 2019),

selecting special training protocols (Hargrove et al. 2008)

or using adaptive learning methods (Spanias et al. 2016;

Sensinger et al. 2009; Huang and Yang 2017; Liu et al.

2017). Adaptation can be presented in two categories;

supervised manner (Spanias et al. 2016; Sensinger et al.

2009) and unsupervised manner (Huang and Yang 2017;

Liu et al. 2017). The adaptive classifier guarantees the

robustness of the classification accuracy by responding to

the changes in the testing information through the retrain-

ing process (Sensinger et al. 2009).

In this paper, three types of spatial features are proposed

based on histogram oriented gradient (HOG) algorithm and

intensity features namely H, HI, and AIH features. H fea-

tures correspond to extracting HOG features from the HD-

sEMG map. HI feature is obtained by concatenating the H

features with scalar intensity feature that calculated from

the HD-sEMG map. Finally, the hybrid AIH features are

produced by combining the H features with the intensity

features matrix (AI) obtained from the segmented maps.

Three sub-databases are used for evaluation. The proposal

feature sets are compared with time-domain (TD) and a

combination of intensity and center of gravity features

(ICG) to show the powerful of these features. The offline

results report the superiority of the classifier’s performance

in terms of precision and sensitivity based on AIH features

than other feature sets (i.e. H, HI, TD, ICG). The adaptive

classifier based on AIH features outperforms adaptive

myoelectric control based on other feature sets and the

original version. The adaptive classifier utilized testing

data that update the original dataset which in turn has a

significant effect on improving the myoelectric perfor-

mance in the presence of the variation of EMG signal

prosperities.

The main contribution of this study is

1. Combined the robust spatial features with the adaptive

learning to overcome the variability of EMG signals

over time and across sessions. Three spatial features

are proposed using histogram oriented gradient method

and intensity features. These features are evaluated in

offline and online phases. A comparison with conven-

tional and spatial features are made to show the

powerful and robustness of our proposed features.

2. Proposed supervised adaptive classifier that utilized the

test data to update the original dataset continuously.

Accordingly, the classifier is retrained after each online

testing stream by the updated dataset. A certain amount

of samples (i.e. correctly predicted samples) are added

to the original dataset after each online stream. The

proposed adaptive classifier is considerably depending
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on the robustness of the spatial features to predict the

gestures and subsequently retrain the classifier.

The rest of the paper organized as follows: Sect. 2 gives a

description of gestures recognition such as experimental

data, features extraction and classification. Section 3

tackles the simulation of SVM classifier based different

feature sets. Both intra and inter session evaluation are

implemented. Finally a conclusion is introduced.

2 Gestures Recognition

2.1 HD-sEMG Database

Three sub databases in CapgMyo are used in this work (Du

et al. 2017a, b). The electrodes were arranged in two

dimensional array in the form of 8 � 16 matrix. The EMG

signals were sampled at 1 kHz and pre-processed by Band

pass filter at 20–380 Hz. DB-a consists of 8 gestures

acquired from 18 subjects in single session. DB-b has the

same gestures of DB-a, but each subject participate in two

session held at separate days. DB-c consists of 12 gestures

performed by 10 subjects in one session. Each gesture was

repeated 10 times. The gestures of DB-a and DB-b is

shown in Fig. 1.

2.2 Features Extraction

The HD-sEMG technique is increased the spatial infor-

mation of the muscle activity. It is capable of analysing

EMG signals in both temporal and spatial domains. The

spatial domain allows the potential of using the image

processing techniques (Angkoon and Erik 2018).

HD-sEMG map is used for analysing HD-sEMG signals.

HD-sEMG map is calculated using root mean square

(RMS) or other feature extraction that depend on amplitude

such as mean absolute value (MAV) and waveform length

(WL) for individual channels that organized in two

dimensional array. In this work, HD-sEMG map is calcu-

lated as root mean square (RMS). The signal of each

channel is divided into several non-overlapping windows.

The length of window is chosen to be 200ms (as suggested

by many pattern recognition studies) (Smith et al. 2011).

HD-sEMG map is computed for each window as seg-

mented map (Jaber et al. 2019; Rojas et al. 2012)

SMi;j
k

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N�1

n¼0

EMGi;j

� �2

v

u

u

t ð1Þ

where SMi;j
k

is segmented map of window k at channel (i, j),

N denotes the number of samples in the EMG window,

EMGi;j is window of EMG signal at channel i, j.

Accordingly, for each window of EMG signals, there is

an equivalent segmented map. The number of segmented

maps in a channel is correspond to the number of non-

overlapping windows. The average map (AM) is obtained

by averaging the segmented maps per channel as

AMi;j ¼ mean SMi;j

� �

ð2Þ

Each element of AM is obtained by averaging the seg-

mented map at that channel. The computing of the Average

Map is illustrated in Fig. 2. The average map AM is con-

sidered as an image in which each pixel corresponds to

channel. Thus, the image size is corresponds to the elec-

trodes number of HD-sEMG signals in that array. The

spatial features can be used either individually or combined

with other features to improve the classifier’s performance.

Three types of feature sets are extracted from the Average

Map (AM). Histogram Oriented Gradient method is

employed to extract HOG features from AM. The cell size

to be used is 4 � 4 (Dalal and Triggs 2005). This features

denoted as H features. HI features is a combination of H

features and intensity features that calculated as a loga-

rithm of the summation of all pixels in AM (Jordanic et al.

2016)

I ¼ log10

1

N

X

i;j

AMi;j ð3Þ

The scalar intensity feature is concatenated with HOG

features to form HI features. The third feature sets is AIH

features. The intensity features in this type is calculated in

different way than Eq. (3). It is denoted as AI (i.e. average

intensity). It is calculated from the segmented maps per

channel as

Fig. 1 The hand gestures
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Ii;j ¼ log10 mean SMi;j

� �� �

ð4Þ

AI ¼
Ii�1;j�1 Ii�1;j Ii�1;jþ1

Ii;j�1 Ii;j Ii;jþ1

Iiþ1;j�1 Iiþ1;j Iiþ1;jþ1

2

6

4

3

7

5

ð5Þ

The intensity features is calculated for each channel from

segmented maps at that channel. AI features represent the

spatial distribution of intensity features for the channels. As

a result, intensity feature matrix denoted by AI is con-

catenated with H features to form AIH features. AIH fea-

tures considered as a hybrid of spatial features.

In order to report the powerful of the proposed feature

sets, two sets of features are presented; time domain (TD)

and intensity centre of gravity (ICG) feature sets. TD

features are corresponds to four features extracted from

each channel RMS, MAV, SSC, variance (VAR)

(Chowdhury et al. 2013).

The ICG features is a combination of intensity feature

that calculated by Eq. (3) combined with the centre of

gravity features calculated from the segmented maps per

channel as

CG ¼

P

i;j ASMi;j

� � i

j

� �

P

i;j ASMi;j

� �

ð6Þ

i, j denote channel’s position of the segmented map. ASMi;j

denote the average segmented maps at channel i, j.

The block diagram that illustrated the extraction of

feature sets is illustrated in Fig. 2

2.3 Adaptive SVM Classifier

In real time application, the amputee can control the

myoelectric prosthesis at certain time but cannot accom-

modate the changes of statistical properties of EMG signals

as time moves on which in turn degraded the myoelectric

system’s performance. However the adaptive learning

method can overcome this challenge. Adaptive classifier

changes its parameter continuously by responding to the

changes occur in EMG signals. In this study, the test data is

utilized to update the classifier and improved its perfor-

mance. Supervised adaptive method is used in which the

patient’s intended class is known. Initially, the baseline

dataset is used to calculate the non-adaptive classifier

(NASVM). The supervised adaptive classifiers (sASVM)

are calculated from the updated dataset after each online

testing stream. The updated data set is combined the

baseline dataset and samples that correctly predicted from

the testing stream. To illustrate the process, let the first

online testing stream is S1 (it is consists of few samples),

the initial classifier is trained by the baseline dataset. So, S1

Fig. 2 The extraction of feature sets
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stream is evaluated by NASVM. The correctly predicted of

S1 samples are added to the baseline data set. At the end of

S1 stream, sASVM classifier is calculated by the updated

dataset. For the next online stream S2, both NASVM and

sASVM is used for evaluated S2 stream and again the truly

classified samples are added to the updated dataset. This

cycle is repeated for all the testing streams. The

flowchart of supervised adaptive classifier is displayed in

Fig. 3.

2.4 Classification Performance

The simple implementation and fast training of SVM

classifier motivated the use of this classifier. Five different

SVM classifiers are implemented in this paper according to

different feature sets extracted from HD-sEMG data

• Classifier based H features.

• Classifier based HI features.

• Classifier based AIH features.

• Classifier based on TD features.

• Classifier based on ICG features.

The performance of SVM classifier is evaluated in term of

Sensitivity, Precision for each gesture based on confusion

matrix. The confusion matrix specifies the number of

exemplars in testing data that classified as true positive

(TP), true negative (TN), false negative (FN) and false

positive (FP). The precision and sensitivity is defined as

S ¼ TP

TP þ FN
ð7Þ

P ¼ TP

TP þ FP
ð8Þ

The classification accuracy is widely used in several

myoelectric control studies. In this study, it is used to

assess the online stream. It is defined as the percentage of

correctly predicted samples of testing data over all testing

data. It is calculated as

CA ¼ number of correct predicted samples

total number of testing samples
� 100 ð9Þ

3 Results of Experiments

In order to validate the performance based on the three

proposal feature sets, offline evaluation is introduced for

intra-session and inter-session recognition. In intra-session,

a part of data during a session is used for the training.

While, other remaining parts that belong to the same ses-

sion are used for evaluation. This case is used to investigate

the long-time recognition. The inter-session recognition is

required to train the classifier on a session and evaluate on

another session. However, In Inter-session, the recorded

EMG signals are significantly changes because of the

donning and doffing of the prosthetic device that cause the

deterioration of the classifier’s performance.

3.1 Offline Assessment

3.1.1 Intra-session Recognition

Eight able-bodied subjects of database DB-a are used in

this part. For each subject, the classifier is trained by five

trails of each gesture and tested on the remaining five trails

for single session. The performance of SVM classifier is

evaluated based on the proposed feature sets (H, HI, and

AIH). A comparison with conventional and spatial features

sets (TD and ICG) are performed to show the potential of

the proposed features. Tables 1 and 2 display the perfor-

mance of SVM classifier based on five feature sets in term

of precision and sensitivity.

Fig. 3 The flowchart of supervised adaptive classifier
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The tables exhibit the superiority of AIH features than

other feature sets. It can be noticed that the performance

based on AIH is improved by 2.24% for precision and 2.2%

for sensitivity than that of TD features. However, a sig-

nificant difference of the performance is observed based on

H, HI and ICG with improvements reach to 4.1%, 3.5%,

5.3% respectively for precision and 6%, 5%, 6.9%

respectively for sensitivity. Moreover, the performance of

SVM classifier in term of precision based on AIH features

is achieved lowest standard deviation compared with that

of H, HI, TD and ICG feature sets (approximately 5% vs.

11.2, 11.3, 7.7, 11.5 respectively). Likewise, the AIH fea-

tures have lowest standard deviation for sensitivity (ap-

proximately 4.78 vs. 14.8, 13.5, 8.15, and 14.6

respectively). Our results confirm that the choice of fea-

tures is more important and considerably affect the clas-

sifier’s performance. Moreover, the spatial features can be

employed to improve the performance of simple classifier

such as SVM classifier.

To show the verification of our proposed features, three

sub databases of CapgMyo database is used, where DB-a

consists of eight gestures, DB-b consists of eight gestures

with two sessions. Accordingly, session 2 is used in this

experiment while DB-c has twelve gestures. As can be seen

from Figs. 4 and 5 that the performance based on AIH

features achieved higher precision and sensitivity than

other features for all databases. For DB-a, the performance

of classifier based on AIH features is achieved an

improvements reached to (5.1%, 7.5%), (4.4%, 6.5%) than

H and HI features respectively. While, for DB-b the

improvement of AIH is approximately the same for both H,

HI features (1.3%, 5.7%, 5.5%), (1.3%, 5.5%, 5.5%)

respectively. In addition, the performance of DB-c is

decreases for all features compared with other databases.

This is due to increase the gestures’ number to 12 gestures

rather than 8 gestures. Accordingly, the performance with

AIH features remain have accurate performance with

improvement (0.7%, 3.7%, 3.8%), (0.8%, 3.8%, 4.7%)

compared with H, HI features respectively. Recognition

based on AIH features achieved relative lower standard

deviation compared with other features.

Table 1 The Precision of eight-

gesture recognition by SVM

classifier using five features sets

(i.e. H, HI, AIH, TD and ICG)

Precision (%)

Gestures H features HI features AIH features TD features ICG features

G1 95.8 � 7.7 95.4 � 8.5 97.9 � 5.9 95.8 � 7.73 90.47 � 17.8

G2 94.3 � 10.9 94.3 � 10.9 100.0 � 0.0 100.0 � 0.0 93.3 � 12.44

G3 95.8 � 7.7 95.8 � 7.7 97.9 � 5.9 97.9 � 5.9 95.8 � 7.73

G4 93.2 � 13.7 94.4 � 15.7 94.3 � 10.9 91.87 � 15.5 81.9 � 13.4

G5 93.3 � 9.26 93.3 � 9.26 97.9 � 5.9 92.28 �10.87 95.3 � 13.25

G6 93.7 � 8.64 95.8 � 7.7 97.9 � 5.9 97.9 � 5.9 91.24 � 12.96

G7 95.8 � 11.8 95.8 � 11.8 100.0 � 0.0 95.8 � 7.73 97.9 � 5.9

G8 88.5 � 20.3 91.0 � 19.3 97.9 � 5.9 93.73 � 8.64 95.4 � 8.54

Average 93.8 � 11.2 94.4 � 11.35 97.9 � 5 95.66 � 7.78 92.6 � 11.5

Each gesture averaged between eight subjects and presented in term of mean and standard deviation

Table 2 The Sensitivity of

eight-gesture recognition by

SVM classifier using five

features sets (i.e. H, HI, AIH,

TD and ICG)

Sensitivity (%)

Gestures H features HI features AIH features TD features ICG features

G1 92.5 � 21.2 95.0 � 9.2 97.5 � 7 95.0 � 9.258 92.5 � 10.35

G2 87.5 � 18.3 87.5 � 18.3 90.0 � 15 95.0 � 9.25 90 � 15.1

G3 95.0 � 9.25 95.0 � 9.2 100.0 � 0 100. 0 � 0 87.5 �21.23

G4 90.0 � 21.38 90.0 � 21.38 95.0 � 9.2 85.0 � 17.72 100. 0 � 0

G5 90.0 � 15 90.0 � 15 100.0 � 0.0 92.5 � 14.88 90 � 21.38

G6 97.5 � 7 97.5 � 7 97.5 � 7 97.5 � 7.07 95 � 9.25

G7 82.5 � 19.8 87.5 � 21 100.0 � 0.0 100.0 � 0 90 � 21.38

G8 97.5 � 7 97.5 � 7 100.0 � 0.0 97.5 � 7.07 80 � 18.5

Average 91.5 � 14.87 92.5 � 13.56 97.5 � 4.78 95.3 � 8.15 90.6 � 14.6

Each gesture averaged between eight subjects and presented in term of mean and standard deviation
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Our results are compared with Geng et al. (2016), Du

et al. (2017b). The researchers used the same databases.

The same evaluation procedures are used (i.e. the same

training and testing sets 50% for all sub databases and

session2 of DB-b). The researchers used instantaneous

value of HD-sEMG signals as an image to classify hand

gestures. The features used for conventional classifier was

the instantaneous value of EMG signals as a feature vector.

The researchers compared their results with the conven-

tional classifier such as KNN, SVM, random forest and

LDA for three sub databases. Their results showed that the

performance of conventional classifier such as SVM

achieved relative lower classification accuracy. While, our

results reported that the performance of SVM based on

AIH features achieved good results with classification

accuracy (CA) CA% = 97.5 for DB-a, CA% = 96.5 for DB-

b and CA% = 91.3 for DB-c. HD-sEMG map is used in our

study rather than instantaneous image. The comparison is

shown in Fig. 6. Our results confirm that the choice of

features is more important than the choice of classifier.

Accordingly, simple classifier as SVM is preferable.

On the other hand, our study also compared with the

previous work (Amador et al. 2019). They used instanta-

neous image with LDA classifier and the same databases

(i.e. sub database DB-a with 18 subjects). Hence, our

experiment is extended to include 18 subjects. It is

observed that the performance of SVM classifier based on

AIH features superior than the previous work (Amador

et al. 2019). Our work has great improvement in the per-

formance than (Amador et al. 2019) as illustrated in

Table 3. Our work improved TPR to 5%, precision

improved by 5.8%. Moreover, the F-Meas. improvement

by 4.4%.

3.1.2 Inter-session Recognition

In this experiment, DB-b is employed. It is consists of two

sessions held in two separate days. The HD-sEMG signals

acquired from ten subjects. The SVM classifier is trained

Fig. 4 The Precision of SVM

classifier averaged between five

subjects and presented in term

of mean and standard deviation

Fig. 5 The sensitivity of SVM

classifier averaged between five

subjects and presented in term

of mean and standard deviation
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by session1 and two trials of each gestures in session2

while the remaining part of session2 are used for evaluation

(i.e. session1 and 20% of samples of session2 is used for

the training, 80% of session2’s samples is used for testing).

The recorded EMG signals across sessions augment the

variability of signals’ properties over time. The classifica-

tion accuracy of SVM classifier based on five feature sets

(i.e. H, HI, AIH, TD and ICG features) is shown in Table 4

The results show the deteriorated performance based on

H and HI features. While AIH, TD, ICG features remain

achieved an accurate performance. AIH features outper-

form the other features sets for all gestures. The results

report the robustness of AIH features that achieved higher

classification accuracy than TD and ICG (i.e. 91.2% vs.

84.2%, 81.2 respectively) with lower standard deviation

(i.e. 14.26% vs. 19.3%, 22.3% respectively). It is observed

that spatial distribution of intensity features combined with

HOG features has a considerable effect for discrimination

of gestures compared with only HOG features or comput-

ing scalar intensity feature for the average map. Moreover,

the results report the potential of intensity features of

individual channel that represent the muscle activity rather

than four TD features or the spatial ICG features. The inter-

session results report the robustness of AIH features to

overcome the variability of EMG signals across sessions.

Fig. 6 The classification

accuracy of hand gestures for

three databases include the

comparison of the previous

work (Geng et al. 2016; Du

et al. 2017a) and our work

Table 3 Comparison of our

method with previous work

(Amador et al. 2019)

TPR FPR Pr. F-Meas.

Previous work Amador et al. (2019) 0.911 0.0126 0.912 0.914

Our work 0.961 0.0055 0.97 0.958

The classifier’s performance averaged between eight gestures and eighteen subjects of DB-a

Table 4 The Classification

Accuracy of SVM classifier

using five features sets (i.e. H,

HI, AIH, TD and ICG)

Classification Accuracy (%)

Gestures H features HI features AIH features TD features ICG features

G1 53.7 � 45.28 53.75 � 41.6 97.5 � 7.9 90 � 8.8 91.25 � 15.6

G2 38.7 � 35.5 42.5 � 38.7 80 � 19.72 80 � 22.97 72.5 � 21

G3 48 � 51.5 52.5 � 48.1 91.25 � 13.24 91.2 � 13.2 77.5 � 28.1

G4 37.5 � 34.8 51.2 � 44.68 88.75 � 10.9 81.2 � 31.3 68.75 � 28.4

G5 46.2 � 35.8 62.5 � 33.3 95 � 8.7 88.7 � 13.7 82.5 � 30.7

G6 75 � 34.8 73.7 � 36 92.5 � 23.7 81.25 � 27.1 92.5 � 13.4

G7 43.75 � 40.5 42.5� 39.6 96.25� 6.03 95� 8.7 93.7� 8.8

G8 42.5 � 36.8 47.5 � 35.2 88.7 � 23.89 66.2 � 27.6 71.2 � 32.3

Average 48.2 � 39.4 53.28 � 39.6 91.25 � 14.26 84.2 � 19.3 y81.25 � 22.3

Each gesture averaged between ten subjects of DB-b and presented in term of mean and standard deviation
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3.2 Online Assessment with Adaptation

In this part, supervised adaptive classifier (sASVM) and

non-adaptive classifier (NASVM) are applied for both

intra-session and inter-session cases. The testing data are

divided into streams. Each stream consists of one trail of

eight gestures. These streams are assessed individually.

NASVM as well as sASVM classifiers are trained offline,

and evaluated online by sequence of the streams. After

each stream, the dataset is updated. The correctly predicted

samples are added to the original dataset. Accordingly, the

classifier is retrained by the updating dataset.

3.2.1 Intra-session Evaluation

In this experiment, long time identification is applied. DB-a

with single session is used. For each subject, the dataset is

divided into ten streams such that the first three streams are

used for training the classifier in offline, while the

remaining seven streams are used for online evaluation.

The testing streams are evaluated online for both NASVM

and sASVM based on the proposal feature sets as shown in

Fig. 7. It can be observed that the adaptive learning is

improved the classification accuracy for all feature sets.

However, the classification accuracy of sASVM based on

H, HI is achieved a slight difference than NASVM. While

sASVM with AIH features has significant difference than

NASVM. The classification accuracy of NASVM classifier

with AIH features is achieved always above 87.5% com-

pared with 71.8 for NASVM based on H, HI features. This

indicates that the improvement rate is about 16% which is a

significant rate. Although the adaptive classifier based on

H, HI is improved the classification accuracy, it is achieved

classification accuracy above 73% which is relative lower

accuracy. While, sASVM classifier is satisfied high clas-

sification accuracy and stable performance as streams

move on. This confirms that updating the data set from the

test sample is improved the performance of the classifier

for long term identification. The proposed supervised

adaptive classifier utilized a specific amount of test samples

that added to the original dataset (i.e. only the correctly

predicted samples). Moreover, the proposed adaptive

classifier considerably depends on the powerful of feature

set to correctly predict the test samples before added them

to the original dataset.

3.2.2 Inter Session Evaluation

Inter-session evaluation is more practical for the applica-

tion of the prosthesis since there is a time gab between

recording the training and testing data. This causes a

considerable variations of EMG signals’ characteristics

over sessions. These variations hinder the use commercial

prostheses and deteriorate the performance of myoelectric

pattern recognition approach. In this experiment, the SVM

classifier is trained offline by session1 and 20% of ses-

sion2’s samples. The remaining 80% of samples of ses-

sion2 is used for online evaluation as eight batches. The

comparison of three feature sets AIH, TD, and ICG for

both sASVM and NASVM are implemented. H and HI

features are not considered in this experiment because

previously in offline evaluation the performance is degra-

ded across sessions. These features are inapplicable for

inter sessions recognition. Even with adaptive learning, H

and HI are not robust enough to predict the gestures. Thus

the adaptive learning has a relative augmentation of clas-

sification accuracy for these feature sets. The NASVM and

sASVM based three feature sets AIH, TD and ICG is

shown in Fig. 8 respectively.

It is obvious that the classification accuracy of sASVM

classifier is outperformed NASVM classifier for all feature

sets. sASVM classifier is improved the classification

Fig. 7 Online evaluation of

SVM classifier for adaptive and

non-adaptive classifier based on

H, HI and AIH. The

classification accuracy of each

testing stream averaged between

eight subjects
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accuracy averaged between all streams by 7%, 5.5%, 7%

than NASVM classifier based on AIH, ICG, TD respec-

tively. Moreover, the NASVM classifier based on AIH

features is fulfilled an improvement than NASVM based on

TD and ICG features reach to 9.3%, 10.6% respectively.

While the sASVM classifier based on AIH features is

improved the classification accuracy than sASVM based on

TD, ICG by 9.1%, 8.3%. Furthermore, the standard devi-

ation is relatively reduced by adaptive classifier. The

results of NASVM classifier for three feature sets report the

Fig. 8 Adaptive and non-

adaptive SVM classifier based

on a AIH features, b TD

features, c ICG features. The

classification accuracy of each

stream averaged between ten

subjects in term of mean and

standard deviation
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robustness of AIH features between sessions than con-

ventional and other spatial features. The spatial distribution

of intensity features for individual channel has significant

effect for improving the accuracy. Furthermore, the com-

bination of adaptive classifier and robust features guarantee

the improving of classifier’s performance. The limitation of

this work is the application of inter session is limited to

only two sessions. Moreover, unsupervised adaptive

learning is more applicable since amputee has no knowl-

edge about the gestures.

4 Conclusion

The variation of EMG signals’ characteristics over time

and across sessions is limiting the commercialization of

upper limb devices. In this paper, a combination of adap-

tive classifier and robust features is proposed to improve

the classification performance. Three proposed feature sets

are proposed (H, HI, and AIH) and evaluated in offline and

online experiments with intra-session and inter-session

recognitions. The proposed feature sets are compared with

other conventional and spatial features (TD and ICG) to

show the powerful of the proposed features. The offline

experiments show the superiority of AIH features than

other feature sets. The supervised adaptive classifier is

exploited the test data for responding to the changes of test

data across sessions and over time. The dataset is updated

after each online testing stream. Accordingly, the classifier

is updated its parameter by retraining from the updated

dataset. The results report that the classification accuracy is

improved by sASVM classifier based on AIH features than

the NASVM classifier with improvement reach to 7%.

Moreover, the sASVM classifier based on AIH features is

improved the classification accuracy than sASVM based on

TD, ICG by 9.1%, 8.3%. This work confirms that the

choice of features is more important and affects the clas-

sification accuracy. Furthermore, the combination of robust

features and adaptive classifier guarantee the improvement

of the classification performance.
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