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ABSTRACT 

The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical 

systems.  Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling 

the light field propagations but also of interest in various signal processing based applications, for instance 

optical encryption.  Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random-

Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of 

freedom.  Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform 

(FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE 

systems, the proposed system is more secure and robust as it encrypts the data with more degrees of 

freedom with an augmented key-space.   

Keywords: ABCD Transform, Optical security and encryption, Numerical approximation and analysis, 

Discrete optical signal processing. 

1. INTRODUCTION

To meet the extensive demands in protecting personal information, more sophisticated security techniques 

have been highly sought. In the past few decades, a numerous optical as well as optically inspired digital 

techniques such as steganography, watermarking, and encryption in the interest of information security, 

have been proposed1.  Among those techniques, Double Random Phase Encryption (DRPE) or 4f optical 

processor1, 2, proposed by Refregier et al, has received a wide attention.  It is known that DRPE turns an 

intensity image into stationary white noise using two statistically distributed random phase keys that are 

employed at spatial and the Fourier domains, respectively.  As a consequent, the resulting encrypted data 

doesn’t disclose any information for visual inspection.  However, the decryption is said to be a reverse 

process of encryption and thus we can recover the original intensity image, by employing the correct keys 3, 

4. A substantial security of DRPE system in the Fourier domain gave an impetus to examine this approach

in other transformation domains such as the fractional Fourier (FRT)5,6 and the Fresnel transformation

domains (FST)7,8.  A digital counterpart of the conventional DRPE system is vulnerable to some organized

attacks9-12.  Thereafter, many studies for instance, pixel scrambling13-16, random permutation technique17

and photon-counting approaches18-20 that associated with the classical encryption system, regarded as

enhancing the information security. It however is widely accepted that the security of any encryption

system depends on the keys used and therefore the larger the key-space the more the security will be5. In

addition to these approaches, in this paper, for the first time, a novel 2D-NS-LCT21-39 based optical DRPE

system is proposed.  This proposed system offers encrypting information in multiple (10) degrees of

freedom (see Table 1).  Therefore, compared with the traditional
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 Fourier transform (FT),

 Fresnel transform (FST),

 Fractional Fourier transform (FRT),

 Linear Canonical transform (LCT),

 Gyrator transform,

 Arnold transform,

based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more 

degrees of freedom and extends the key required. 

Table 1. Transforms and their number of free parameters. 

This paper is organized as follows.  In Section 2, we briefly introduce the classical DRPE system and the 

2D-NS-LCT. The proposed 2D-NS-LCT based optical DRPE system is also described.  In Section 3, 

simulation results of the proposed system is depicted and analyzed.  Finally in Section 4 we conclude our 

discussion and future work is presented.   

2. DOUBLE RANDOM PHASE ENCRYPTION (DRPE)

In this section, firstly the classical DRPE system, the FT based DRPE system, is introduced briefly. 

Following that the powerful 2D-NS-LCT as well as its numerical calculation is presented.  Finally, the 

proposed 2D-NS-LCT based optical DRPE system is described.  

2.1. The classical Fourier transform based encryption 

As noted, DRPE is one of the widespread approaches for optical image encryption and hiding techniques1. 

The operation of the FT based DRPE system is illustrated in Fig. 1.  The input image field, sequentially 

propagates through  

(i) The 1st random phase key (D1),

(ii) One Fourier optical system,

(iii) The 2nd random phase key (D2),

(iv) One inverse Fourier optical system;

The resulting ciphertext (encrypted image) is a complex field and it does not disclose any of its content 

without the knowledge of two phase keys (i.e., secret keys).  The decryption process is illustrated in Fig 1. 

(b), in which the input image can be retrieved.  The optical implementation of the FT based DRPE system 

is shown in Fig. 2.  We recall (see Table 1) that there is no free parameter in the FT, while there are 10 free 

parameters in the general 2D-NS-LCT.  Therefore, the security of the DRPE system can be improved by 

means of introducing additional keys.  In such a system, in order to retrieve the decrypted image, in 

addition to the two phase keys (i.e., D1, D2) all the ten free parameters are required.  Subsection 2.3 

discusses the proposed approach more in detail. 

Transforms No. of Free Parameters 

Fourier transform (FT) 0 

Fresnel transform (FST) 2 

Fractional Fourier transform (FRT) 1 

Linear Canonical transform (LCT) 3 

Gyrator transform 1 

2D-NS-LCT 10 
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Fig. 1. The overview of FT based DRPE system: (a) DRPE encryption; (b) DRPE decryption.  D1 and D2 

represent two random phase keys, which are independent phase functions positioned in the space and Fourier 

domain (or spatial frequency domain) respectively.  D1, in the space domain, makes the input field white.  D2, 

in the Fourier domain, makes input field stationary and encoded.  The symbol * refers to convolution operation. 
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Fig. 2   Optical setup for the FT based DRPE system: (a) Optical setup for DRPE encryption, where |f| 

represents the absolute value of focal length of the lens; (b) Optical setup for DRPE decryption. 
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2.2. An overview of 2D-NS-LCT 

The 2D-NS-LCT can represent a wide variety of non-orthogonal, non-axially symmetric and anamorphic 

systems21-40.  Among its special cases are the FT, FRT, and FST, gyrator transform, chirp transform, 

homogeous coordinate/affine transform (including e.g. rotation transform, and shearing (interferometer) 

transform).  The continuous 2D-NS-LCT of a signal 𝑔(𝑥, 𝑦) is defined as22, 

 G(𝑥′, 𝑦′) = 𝐿𝑀{𝑔(𝑥, 𝑦)}(𝑥′, 𝑦′) =
1

√𝑗 det(𝐵)
∬ exp [

𝑗𝜋(𝑘1𝑥′2+𝑘2𝑥′𝑦′+𝑘3𝑦′2)

det(𝐵)
]

∞

−∞
  

exp {
𝑗2𝜋[(−𝑏22𝑥′+𝑏12𝑦′)𝑥+(𝑏21𝑥′−𝑏11𝑦′)𝑦)]

det(𝐵)
} exp [

𝑗𝜋(𝑝1𝑥2+𝑝2𝑥𝑦+𝑝3𝑦2)

det(𝐵)
] 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ,             (1-1) 

where, 

𝑘1 = 𝑑11𝑏22 − 𝑑12𝑏21,  𝑘2 = 2(−𝑑11𝑏12 + 𝑑12𝑏11), 𝑘3 = −𝑑21𝑏12 + 𝑑22𝑏11,
 𝑝1 = 𝑎11𝑏22 − 𝑎21𝑏12,  𝑝2 = 2(𝑎12𝑏22 − 𝑎22𝑏12),   𝑝3 = −𝑎12𝑏21 + 𝑎22𝑏11.   (1-2) 

A, B, C, and D are 2×2 submatrices defining the transformation matrix M of the system as follows, 

𝑀 = (

𝑎11 𝑎12

𝑎21 𝑎22
 

𝑏11 𝑏12

𝑏21 𝑏22

𝑐11 𝑐12

𝑐21 𝑐22
 

𝑑11 𝑑12

𝑑21 𝑑22

) = (
𝐴 𝐵
𝐶 𝐷

),          (1-3) 

In these matrices, det(𝐵) ≠ 0, where det(𝐵) is the determinant of matrix B.  The number of independent 

parameters in the matrix M is ten22.  One of the most important properties of the continuous 2D-NS-LCT is 

the unitary property, i.e., they are always invertible as follows40, 

𝑓(𝑥) = 𝐿𝑀−1{𝐿𝑀{𝑓(𝑥)}(𝑦)}(𝑥).  (2) 

Discrete transforms that approximate the continuous LCTs allow us to simulate a number of propagation 

problems.  But such discretization can destroy the unitary property, i.e., in general the discrete 2D-NS-LCT 

is not unitary.  In [38, 39], we recently proposed an unitary numerical implementation of the 2D-NS-LCT,  

  𝑀 = (
𝐴 𝐵
𝐶 𝐷

) = (
𝐵  0

0     𝐵𝑇 −1) (
𝐼  0
𝐵𝑇𝐷   𝐼

) (
0      𝐼

−𝐼     0
) (

𝐼  0
𝐵−1𝐴   𝐼

),  (3) 

i.e., the 2D-NS-LCT can be numerically evaluated by taking a ① 2D Chirp; ② 2D FT; ③ another 2D

chirp; and ④ an affine transform, see Eq. 3, from right side to left side.  We have reported that a given 2D

input image with rectangular shape/boundary, in general, after the 2D-NS-LCT the resulting output

sampling grid is a parallelogram, i.e., the output samples may not located in a Cartesian coordinates, thus

limiting the further calculations, e.g. inverse transform38.  In [39], a fast unitary discrete algorithm for some

2D-NS-LCT is investigated for the iterative phase retrieval based applications.  We also have demonstrated

that unitarity can significantly improve the convergence of iterative phase retrieval algorithm37, 39.  We note

that such an unitary algorithm is not only important for phase retrieval techniques but also to extract

information about an object given with some known illumination. It is therefore significant when solving

inverse problems to decrypt information from an encrypted image, e.g. decryption.

Furthermore, in the encryption systems, if a non-unitary (or irreversible) numerical algorithm is used in 

optical transforms, its impossible to the decrypted image, even with known two phase keys.  Since most 

discrete FTs are unitary, e.g. the fft command in MATLAB, the decryption process in Fig. 1, does not 

suffer such problem.  However, in the proposed 2D-NS-LCT based DRPE system, it is mandatory to ensure 

the numerical algorithm used is unitary, which will be further analyzed later. 
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2.3. Proposed 2D-NS-LCT based DRPE system 

As discussed above, since the digital implementations of DRPE systems are not secured enough, in this 

paper, for the first time, the 2D-NS-LCT transform (that has 10 free parameters) based DRPE system is 

introduced.  We note that to decrypt the encoded information, this technique requires: 

(I) Two phase keys: D1 and D2;

(II) Ten free parameters (of the 2D-NL-LCT);

(III) Unitary discrete 2D-NS-LCT (to generate the encrypted image and to help get the decrypted

image when two phase keys are known).
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Input Image

(a)Step 1: Encryption

(b)Step 2: Decryption

D1 D2

D1* D2*
Decrypted

 Image

 Image
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2D-NSInverse 2D

-NS-LCT

Fig. 3 Illumination of the 2D-NS-LCT based DRPE system: (a) DRPE encryption; (b) DRPE decryption. 

3. PROPOSED METHOD ANALYSIS

A feasible optical setup to implement our proposed system is shown in Fig. 4.  Here we used two colorful 

3D cubes to represent the optical setup for the LCTs, pink and blue cubes represent the 2D-NS-LCT and its 

inverse transform respectively.  The optical setup for the 2D-NS-LCT can be designed by matrix 

decomposition29,38,41. 
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Fig.4 Optical setup for the 2D-NS-LCT based DRPE system: (a) Optical setup for DRPE encryption; (b) 

Optical setup for DRPE decryption. 
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We examine the proposed system by simulations.  In our simulation, the number of input image samples 

are 256 by 256.  The input sampling intervals along two dimensions are the same, both are set to be 0.1/256. 

Two following transform matrices of the 2D-NS-LCT are applied, 

𝑀1 = (

0  0
0 0

 1 0.5
 0.5 0.5

0 −58 
−26 164 

0 0  
0 0 

)  and  𝑀2 = (

 8  9
  10 −3

1 0.5
 0.5 0.5

122 −58 
−26 164 

5 6 
7 0 

)    (4) 

The decomposition given in Eq. (4) is applied to evaluate the continuous LCTs39.  

We start with a plaintext, a 2D gray Lenna image with 256 by 256 pixels, see Fig. 3(a).  After applying the 

1st phase key, it becomes a complex field.   Then after further propagating through the 2D-NS-LCT, the 

resulting output image is located in a parallelogram, which has with 768 by 768 pixels, see the image with 

parallelogram boundary above the pink 2D-NS-LCT rectangle shown in Fig. 3(a).  Finally after the inverse 

2D-NS-LCT the encrypted image is located in a rectangular grid again with 256 by 256 pixels.   

As long as the numerical algorithm to evaluate the LCTs is unitary, after the decryption process shown in 

Fig. 3(b), the decrypted image obtained will be the same as the original input image, i.e. plaintext.  In our 

simulation, the mean squared error between the decrypted image and the input image is calculated by [42] 

MSE =
∑ ∑(|Decrypted image|−|Input image|)2

∑ ∑ |Input image|2  (5) 

where |∙| returns the absolute value.  For transform 𝑀1 and 𝑀2, see Eq. (4), the MSE are 1.95 × 10−31 and
3.49 × 10−17 respectively.

4. CONCLUSION

The classical Fourier transform based DRPE shown to be vulnerable to organized attacks. To alleviate, in 

this paper, a novel 2D-NS-LCT based DRPE system is proposed.  The proposed system improves the 

security of the encryption system by introducing more free parameters (secret keys).   
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