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ABSTRACT 

The 2D non-separable linear canonical transform (2D-NS-LCT) can model a range of various paraxial 
optical systems.  Digital algorithms to evaluate the 2D-NS-LCTs are important in modeling the light field 
propagations and also of interest in many digital signal processing applications.  In [Zhao 14] we have 
reported that a given 2D input image with rectangular shape/boundary, in general, results in a parallelogram 
output sampling grid (generally in an affine coordinates rather than in a Cartesian coordinates) thus limiting 
the further calculations, e.g. inverse transform.  One possible solution is to use the interpolation techniques; 
however, it reduces the speed and accuracy of the numerical approximations.  To alleviate this problem, in 
this paper, some constraints are derived under which the output samples are located in the Cartesian 
coordinates.  Therefore, no interpolation operation is required and thus the calculation error can be 
significantly eliminated.   
 
Keywords: Digital holography, ABCD transforms, Numerical approximation and analysis, Discrete optical 
signal processing. 
 

1. INTRODUCTION 

The continuous two dimensional non-separable linear canonical transform (2D-NS-LCT) of an input signal ݃(ݔ,  ,can be given by [1, 2] (ݕ
 G(ݔ′, (′ݕ = ,ݔ)݃}ெܮ ,′ݔ){(ݕ  (′ݕ

 = ଵඥ௝ ୢୣ୲(஻)∬ exp ቂ௝గ൫௞భ௫′మା௞మ௫′௬′ା௞య௬′మ൯ୢୣ୲(஻) ቃ∞ିஶ exp ቄ௝ଶగሾ(ି௕మమ௫′ା௕భమ௬′)௫ା(௕మభ௫′ି௕భభ௬′)௬ሿୢୣ୲(஻) ቅ × exp ቂ௝గ൫௣భ௫మା௣మ௫௬ା௣య௬మ൯ୢୣ୲(஻) ቃ ,ݔ)݃  (Ia-1)           ,ݕ݀ݔ݀(ݕ
where M is the transformation matrix of the LCT system, 

ܯ = ൮ܽଵଵ ܽଵଶܽଶଵ ܽଶଶ			ܾଵଵ ܾଵଶܾଶଵ ܾଶଶܿଵଵ ܿଵଶܿଶଵ ܿଶଶ				݀ଵଵ ݀ଵଶ݀ଶଵ ݀ଶଶ൲ = ቀܣ ܥܤ  ቁ,                                            (1-Ib)ܦ

where ,ܣ ,ܤ ܦ	and	ܥ  are 2 × 2 sub-matrices, e.g. ܤ = {ܾଵଵܾଵଶ; ܾଶଵܾଶଶ} .  In this case it is assumed 
that det(ܤ) ≠ 0,  where det(ܤ)  represents the determinant of sub-matrix ଷ݌~ଵ݌	and	ଵ~݇ଷ݇			.ܤ  are as 
defined in [1]. 
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 ݇ଵ = ݀ଵଵܾଶଶ − ݀ଵଶܾଶଵ, 	݇ଶ = 2(−݀ଵଵܾଵଶ + ݀ଵଶܾଵଵ), ݇ଷ = −݀ଶଵܾଵଶ + ݀ଶଶܾଵଵ, ݌ଵ = ܽଵଵܾଶଶ − ܽଶଵܾଵଶ, ଶ݌	 = 2(ܽଵଶܾଶଶ − ܽଶଶܾଵଶ), ଷ݌	 = −ܽଵଶܾଶଵ + ܽଶଶܾଵଵ,	           (1-Ic) 

 
Definition of the 2D-NS-LCT when ܤ = 0	,⟹det(ܤ) = 0, is given by [3], 

   G(ݔᇱ, (ᇱݕ = ,ݔ)݃}ெܮ ,ᇱݔ){(ݕ  	(ᇱݕ
                   = ඥdet(ܦ) expൣ݆ߨ(ܿଵଵ݀ଵଵ + ܿଵଶ݀ଵଶ)ݔᇱଶ൧ expሾ݆2ߨ(ܿଵଵ݀ଶଵ + ܿଵଶ݀ଶଶ)ݕ′ݔ′ሿ × expሾ݆ߨ(ܿଶଵ݀ଶଵ + ܿଶଶ݀ଶଶ)ݕ′ଶሿ ݃(݀ଵଵݔ′ + ݀ଶଵݕ′, ݀ଵଶݔ′ + ݀ଶଶݕ′),                 (1-Id) 

where ܯ = ;0		షభ்ܦ} (ܤ)Definition of the 2D-NS-LCT when det  .{ܦ	ܥ = 0 but ܤ ≠ 0 are given in [3]. 
 

The inverse 2D-NS-LCT recovers ݃(ݔ, ݔ)ܩ from (ݕ ′, ,ݔ)݃ ,by (′ݕ (ݕ = ,ᇱݔ)ܩ}ெషభܮ ,ݔ){(ᇱݕ  (II-1)                                                 ,(ݕ
where ିܯଵ =    .ܦ is the transpose of sub-matrix ்ܦ and ,{்ܣ	்ܥ−	;்ܤ−	்ܦ}

 
The continuous NS-LCT is additive [1, 2]: L୑మ ቄL୑భ{g}ቅ = L୑య{g},                                                           (1-III) 
where ܯଷ = ଶܯ ଵ.  Whenܯଶܯ = ଵିܯ ଵ, we obtain a statement that the transform is unitary [1, 2]: ܮெషభ൛ܮெ{݃}ൟ = ݃.                                                                   (1-IV) 
A wide variety of 2D orthogonal paraxial optical systems can be modelled by the 2D separable linear 
canonical transform (2D-S-LCT) [2]. For example, the Fourier transform, the Fresnel transform, the 
fractional Fourier transform are its special cases.  However many more general paraxial optical systems 
exist which cannot be modelled using the 2D-S-LCT [2].  For example, systems which: 

(i) are non-orthogonal, non-axially symmetric, or contains an anamorphic lens [4, 5]; 
(ii) Involve coupling and/or shearing operations (between components along the different 

dimensions), e.g., a coordinate transform, see Table II in [1]; and 
(iii) Involve rotations between any arbitrary planes in phase space, e.g., the gyrator transform [6~10]; 

Such systems can only be modelled using the 2D-NS-LCT [2].  They may be distinguished by their ABCD 
matrices.  A separable system has diagonal A, B, C, and D sub-matrices, and hence zero-valued elements in 
the following positions in its ABCD matrix: 

ۇۉ
ܽ௫					0						ܾ௫					0			0						ܽ௬				0						ܾ௬ܿ௫					0					݀௫					0				0						ܿ௬					0					݀௬ۊی                                                   (1-V) 

We then associate the matrix ൬ܽ௫	ܾ௫ܿ௫	݀௫൰ with the x-direction and the matrixቆܽ௬	ܾ௬ܿ௬	݀௬ቇ with the y-direction.  

Non-separable systems are fundamentally different and have non-zero values in one or more of these off-
diagonal matrix positions.  These values act to create a link (or coupling) between what happens along the 
two directions. 
According to the additive property, see Eq. (1-III), the ABCD matrix can be decomposed in many ways.  
One such decomposition is reproduced here, see [20, 21], ܯ = ଵܯଶܯଷܯସܯ = ൬ܤ											00					ି்ܤଵ൰ ቀ			ܫ						ܤ0୘ܦ			ܫቁ ቀ 0ቁ					ܫ−ܫ						0 ቀܫ											ିܤ0ଵܣ				ܫቁ.             (1-VI) 

Consider the effect of this series of operations on a discrete input signal.  The chirp multiplication (ܯଵ) 
does not alter the nature of the signal, i.e. it remains a discrete signal, and the locations of the samples are 
unchanged.  The FT (ܯଶ) can be efficiently performed using an FFT, and hence the output of this operation 
is also discrete.  The 2nd chirp multiplication (ܯଷ) does not change the location of the signal samples.  The 
samples are now located on a regular Cartesian grid, much as at the start of the calculation.  However, the 
coordinate transform (ܯସ ) changes the locations of these samples to potentially “inconvenient” or 
“irregular” locations.  This creates the problems that this paper attempts to address.   
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Except in rare occasions, e.g., when ܤ is a diagonal or anti-diagonal matrix, the output image shape of the 
corresponding NS optical system is skewed, i.e. a rectangular input image becomes a parallelogram.  This 
presents difficulties in a number of situations.  For example: 
 
 

(1) It is common to assume that the input to a discrete transform has been sampled on a regular grid.  
The effect of the coordinate transform (ܯସ) is to move these samples to a skewed rectilinear grid.  
As a result, the output of the transform cannot be used as an input to another transform without 
further preprocessing.  Interpolation techniques can be used to regularize the sample grid while 
this increases the number of samples, requires computational resources and may not be perfectly 
reversible.  As a consequent, the output of the transform is not immediately suitable to act as the 
input for further calculation – it is literally a parallelogram peg for a square hole.  This is relevant 
to calculations involving several stages or iterative algorithms where the calculation process 
involves going repeatedly back and forth between sample values in transform related domains.  
This problems must be solved before one can deal with considerations of unitarity or additivity 
considered elsewhere in this paper; and 

(2) Similarly, this coordinate transform occurs when one wishes to display the resulting output on a 
digital screen (made up of regularly arranged pixels).  Once again interpolation becomes 
necessary to fit the data to the display. 

Note that this problem does not occur in both the 1D transform case and 2D separable transform case 
because the coordinate transform reduces to a simple magnification, which is easily accounted for in terms 
of sampling rates. 
The effect of the coordinate transform on the locations of the samples is further illustrated in Fig. 1.  For 
the input shown in Fig. 1(a1) the effects of three different transforms are presented.  The outputs appear in 
Figs. 1(b1) ~ (d1), and the associated sampling grids in Figs. 1(b2) ~ (d2).  The three transforms are as 
follows: 

Fig. (b) The simplest case.  A separable system or a system where B is a diagonal or an anti-
diagonal matrix; 

Fig. (c) The most common case among non-separable systems. The difficulty discussed above 
can be clearly seen; 

Fig. (d) An example of the special non-separable case that has the advantageous sample 
arrangement under discussion. 

The remainder of this paper is structured as follows.  In Section 2 a constraint on the ABCD parameters and 
input signal is proposed which guarantees alike results in Figs. 1(b1) and 1(b2) is output.  In other words, 
while the output signal is not rectangular, it does consist of samples located on a regular grid.  Such a data 
set can be easily displayed on a typical discrete display such a liquid-crystal display screen. Finally, in 
Section 3,  we conclude our discussions. 
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Fig. 1.  Illustration of sampling intervals in 2D-NS-LCT: (a1) the absolute value of an example 

(frequency) input image.  It is sampled on a regular grid, like that of (a2).  The remaining images 
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[(b1), (c1) and (d1)] show the absolute value of several different transform of the data. In (b1), the 
transform is an S-LCT (or a NS-LCT system where B is a diagonal or anti-diagonal matrix), and 

hence the corresponding output sampling grid is also a regular grid, see (b2).  In (c1), the transform 
is a typical NS-LCT.  Its samples are located on a rectilinear but non-Cartesian grid as shown in 

(c2).  Finally, the transform in (d1) is a special NS-LCT case, where the skewed samples coincide 
with a Cartesian grid, as depicted in (d2).   

 

2. PROPOSED CONSTRAINT 

In this section, we propose a constraint under which the output samples can be located in a regular 
Cartesian coordinate system.  For ease of presentation, the detailed derivation of the constraint is given in 
detail in Section 3.  At the start of this section the constraint is simply stated. 
 
The constraint: The output samples of a 2D-NS-LCT can lie on a Cartesian coordinates without 
interpolation, if any of the seven constraints in Table I is satisfied: 

TABLE I  The proposed constraint 
 Constraints 
①B is a diagonal matrix ܾଵଶ = ܾଶଵ = 0 
②B is an anti-diagonal matrix ܾଵଵ = ܾଶଶ = 0 
③B is an lower diagonal matrix ܾଵଶ = 0, ௬ܮ = ݈ܾଶଶܮ௫/ܾଶଵ, and ݈ ∈ ℕ 
④B is a upper diagonal matrix ܾଶଵ = 0, ௬ܮ = ܾଵଶܮ௫/(݈ܾଵଵ), and ݈ ∈ ℕ 
⑤ܾଵଵ = ௬ܮ 0 = |ܾଶଶܮ௫/ܾଶଵ| 
⑥ܾଶଶ = ௬ܮ 0 = ݈ܾଵଶܮ௫/ܾଵଵ, ݈ ∈ ℕ 
⑦ ܾ௜௝ ≠ 0	∀	݅, ݆ 
 

ܾଵଵܾଶଶܾଵଶܾଶଵ = 1 + 1݈݇ , ௬ܮ = ݈ ܾଶଶܾଶଵ ௫ܮ , and ݇, ݈ ∈ ℕ 

Recall that in relation to Table I, ܾଵଵ, ܾଵଶ, ܾଶଵ, ܾଶଶ are the four elements of sub-matrix ܤ,	which is assumed 
to have non-zero determinant.  It should be noted that in Table I: 

 In Case ① or ②, when the matrix B is a diagonal or anti-diagonal matrix, the resulting 
output samples lie on regular grid without further constraint.  The only difference between the 
input and output grids is that the sides are in general of different length;  

 In cases ③	ܾଵଶ = 0, and	④	ܾଶଵ = 0, the matrix B is a lower or upper diagonal matrix.  In 
each case a further constraint must be satisfied to make the output samples lie on a regular 
grid, i.e. ③ ܮ௬ = ݈ܾଶଶܮ௫/ܾଶଵ,	or ④ ܮ௬ = ௕భమ௅ೣ௟௕భభ , where	݈ ∈ ℕ, and ܮ௫	and	ܮ௬  represent the 
extents of the input signal along the x and y directions; 

 Similarly, in cases ⑤	ܾଵଵ = 0, and	⑥	ܾଶଶ = 0, a further constraint should be satisfied to get 
a regular output grid: ⑤	ܮ௬ = |ܾଶଶܮ௫/ܾଶଵ|,	or ⑥	ܮ௬ = ݈ܾଵଶܮ௫/ܾଵଵ,			where	݈ ∈ ℕ; and  

 In case ⑦ܾ௜௝ ≠ 0	∀	݅, ݆, i. e. ܾଵଶ ≠ 0, ܾଶଵ ≠ 0, ܾଶଶ ≠ 0,	 the additional constraints ௕భభ௕మమ௕భమ௕మభ =1 + ଵ௞௟ 	and	ܮ௬ = ௟௕మమ௅ೣ௕మభ , where ݇, ݈ ∈ ℕ, should be satisfied to get a regular output grid. 
 

3. PROPOSED CONSTRAINT DERIVATION 

In this section, the proposed constraints in Table 1 are derived. 

3.1 The effect of shearing operation 

First, let us begin by discussing the effect of shearing operation on output sampling grid.  Given the 
following shearing operation: ൬	1 + 1												ݕℎݏ							ݔℎݏ				ݕℎݏݔℎݏ ൰ = ቀ	1		ݏℎ0ݔ				1 ቁ ൬	1					0ݏℎݕ		1൰,                                          (3-I) 

i.e. a shearing on ݕ- axis followed by a shearing on ݔ- axis, see Eq. (3-I) from right to left sides.  In this 
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paper we assume that the number of input samples on ݔ- and ݕ- axis are the same, denoted as ܰ.  
 
In the case when the input sampling intervals ௫ܶ = ௬ܶ	, i.e. the input window is square, the Cartesian output 
grid can be obtained if in Eq. (3-I)  ݏℎݔ and ݏℎݕ are integers.                                                       (3-II) 
Further in the case when ௬ܶ = ݌ ௫ܶ	, i.e. the input window is rectangle, where ݌ is positive real number, the 
Cartesian output grid can be acheived if in Eq. (3-I) ݏℎݔ = ,݌/݇ ݕℎݏ = ,݌݈ and	݇, ݈ ∈ ℕ                                                  (3-III) 

 

3.2 The effect of coordinate transform (of the 2D-NS-LCT) 

Based on the discussions in subsection 3.1, let us now consider the coordinate transform B of the 2D-NS-
LCT.  In [1] we have shown that when ܾଶଶ ≠ 0 and det	(ܤ) ≠ 0, the sub-matrix B can be decomposed into, 

 ൬ܾଵଵܾଵଶܾଶଵܾଶଶ൰ = ቌ1 + ௕భమ௕మభୢୣ୲	(஻) 			௕భమ௕మమ				௕మభ௕మమୢୣ୲	(஻) 							1	 ቍ ቆ ୢୣ୲	(஻)௕మమ 			0			0							ܾଶଶቇ = ቆ1			 ௕భమ௕మమ0						1	ቇ ቆ			1									0௕మభ௕మమୢୣ୲	(஻) 		1ቇ ቆୢୣ୲	(஻)௕మమ 			0			0							1 ቇ ൬1			0		0		ܾଶଶ൰.    (3-IV) 

Eq. (3-IV) indicates that B can be performed by taking a scaling on ݕ; scaling on ݔ; shearing on ݕ; then 
shearing on ݔ, see Eq. (3-IV) from the right to left sides.  We note that: 

(1) The two scaling operations have no critical effect on the output sampling grid shape, i.e. the 
output grid after these two scaling operations is still rectangle, only its side lengths values are 
changed.  The corresponding output rectangle grid area is |ୢୣ୲	(஻)|்ೣ ೤் 	,		where |det	(ܤ)| returns the 

absolute value of the determinant of ܤ.   
We note that the input grid area value is ௫ܶ ௬ܶܰଶ.  After the FT operation, see Eq. (1-VI), the 
output grid area is ଵ்ೣ ೤்.  Then after the two scaling operations in Eq. (3-IV) the corresponding 

output grid area value is |ୢୣ୲	(஻)|்ೣ ೤் 	. 
(2) Therefore, it is evident that two shearing operations play an important role in the output shape.  

However we note that the shearing operation has no effect on the output image area, i.e. the area 
value of the final output parallelogram is still |ୢୣ୲	(஻)|்ೣ ೤் . 

Let us assume that ௬ܶ = ݌ ௫ܶ, i. e.		ܮ௬ =  ௫.  From Eq. (3-IV), after the FT and two scaling operations (inܮ݌
Eq. (3-IV)), the side lengths of the new output sampling grid ܮ௫ᇱ and ܮ௬ᇱ can be given by, ܮ௫ᇱ = ୢୣ୲	(஻)௕మమ்ೣ , and	ܮ௬ᇱ = ௕మమ೤் = ௕మమ௣்ೣ .                                                     (3-V) 

i.e. ܮ௬ᇱ =                                                             (3-VI)	௫ᇲܮᇱ݌

where ݌ᇱ = ௕మమమ௣ୢୣ୲(஻).  According to Eqs. (3-III), (3-IV), and (3-VI), the Cartesian output grid can be obtained 
if ௕భమ௕మమ = ௞௣ᇲ = ݇ ௣ୢୣ୲(஻)௕మమమ , ௕మభ௕మమୢୣ୲	(஻) = ᇱ݌݈ = ݈ ௕మమమ௣ୢୣ୲(஻)	 , and	݇, ݈ ∈ ℕ.                   (3-VII) 

The constraints for the following 5 cases in Table 1 can be obtained from Eq. (3-VII).  

① In the diagonal case, ൬ܾଵଵ			0	0		ܾଶଶ൰ = ቀܾଵଵ		0	0				1ቁ ൬ 1				0	0		ܾଶଶ൰, i.e. only scaling factors on ݔ- and ݕ- axis are 

involved here, the resulting output samples always lie on Cartesian grid; 

③ In the lower triangular case (ܾଵଶ = 0), Eq. (3-VII) can be simplified as ௕మభ௕మమୢୣ୲	(஻) = ݈ ௕మమమ௣ୢୣ୲(஻)	,	 i.e. ݌ = ௟௕మమ௕మభ .  Therefore, the constraint is ܮ௬ = ௫ܮ݌ = ݈ ௕మమ௕మభ ,	௫ܮ where	݈ ∈ ℕ, (݇ = 0); 

Proc. of SPIE Vol. 10233  102331V-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/02/2017 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx



 

 

④ In the upper triangular case (ܾଶଵ = 0), Eq. (3-VII) can be simplified as ௕భమ௕మమ = ݇ ௣ୢୣ୲(஻)௕మమమ 	, i.e. ݌ = ௕భమ௞௕భభ.  Therefore, ܮ௬ = ௫ܮ݌ = ଵ௞ ௕భమ௕భభ ,	௫ܮ where	݇ ∈ ℕ, (݈ = 0); 
⑤ In the anti lower triangular case (ܾଵଵ = 0), Eq. (3-VII) can be simplifed as ݌ = ௕మమି௞௕మభ = ௟௕మమି௕మభ	,	i.e. ݌ = ቚ௕మమ௕మభቚ.  Therefore, ܮ௬ = ௫ܮ݌ = ቚ௕మమ௕మభቚ  .௫ܮ
⑦ In the case when ࢐࢏࢈ ≠ ૙, ,࢏∀ ࢐, (i.e. in Eq. (3-IV): ௕భమ௕మమ ≠ 0	and	 ௕మభ௕మమୢୣ୲	(஻) ≠ 0), Eq. (3-VII) can be 

rewritten as 
 det	(ܤ) = ௕భమ௕మభ௞௟ , and	݌ = ௟௕మమ௕మభ , and	݇, ݈ ∈ ℕ,                         (3-IX) 

i.e. ௕భభ௕మమ௕భమ௕మభ = 1 + ଵ௞௟ 	 , ௬ܮ = ௫ܮ݌ = ݈ ௕మమ௕మభ  .	௫ܮ
In the 2nd and the 6th cases in Table 1, the decomposition of the matrix ܤ given in Eq. (3-IV) is invalid 
because of ܾଶଶ = 0.   

② In the anti-diagonal case, the matrix 	ܤ can be decomposed into: ൬		0		ܾଵଶܾଶଵ		0 ൰ = ൬ܾଵଶ				0	0				ܾଶଵ൰ ቀ0			11			0ቁ = ቀܾଵଶ			0	0					1ቁ ൬ 1				0	0		ܾଶଶ൰ ቀ1						00	 − 1ቁ ቀ		0			1−1		0ቁ,               (3-X) 

i.e. a 90° rotation transform followed by a reflect about ݔ-axis, scaling on ݕ, and then scaling on ݔ.  
It can be seen that no shearing operation is involved here, therefore the Cartesian output grid can 
always been obtained in this case. 

⑥ In the anti upper triangular case (ܾଶଶ = 0),  ൬ܾଵଵ	ܾଵଶܾଶଵ			0 ൰ = ൬		0			ܾଵଶ	ܾଶଵ		0 ൰ ቀ1			10			1ቁ = ቆ1		 ௕భభ௕మభ0						1ቇ ቀ	1					0	0 − 1 ቁ ቀ		0			1−1		0ቁ ቀܾଶଵ			0	0					1ቁ ൬ 1				0	0		ܾଵଶ൰,      (3-XI) 

i.e. a scaling on ݕ, scaling on 90 ,ݔ° rotation, reflect about ݔ-axis, and shearing on ݔ.  Only the 
final shearing operation determines whether the final output samples can still lie on Cartesian grid.  
The output extents ܮ௫ᇱ  and ܮ௬ᇱ  before the shearing operation in Eq. (3-XI), (i.e. the resulting 
output extents after the FT in Eq. (1-VI) and the former four operations in Eq. (3-XI)), can be 
given by, 

௫ᇱܮ  = ୠభమ೤் , and	ܮ௬ᇱ = ௕మభ்ೣ  ,	                                                (3-XII) i. e.		ܮ௬ᇱ = ᇱ݌ where	,	௫ᇱܮᇱ݌ = ௅೤ᇲ௅ೣᇲ = ௕మభ ೤்௕భమ்ೣ = ௕మభ௕భమ  According to Eq. (3-III), the Cartesian output 		.݌

grid can be obtained if the shearing operation parameter ௕భభ௕మభ = ௞௣ᇲ = ௞௕భమ௕మభ௣	,  i.e. ݌	 = ݇ ௕భమ௕భభ	.  
Therefore the constraint for this case is ܮ௬ = ௫ܮ݌ = ݇ ௕భమ௕భభ ,	௫ܮ where	݇ ∈ ℕ. 
 

4. FUTURE WORK 

In this paper, we have introduced and derived the constraints that result in unitary discrete 2D-NS-LCT 
algorithm.  Based on the proposed constraint in this paper, a fast unitary algorithm has been proposed in 
[20].  In [20] we have demonstrated that the unitary 2D-NS-LCT significantly improves the performance of 
the iterative phase retrieval algorithm.   
The proposed constraints in this paper are derived by means of basic geometry.  The question is have we 
found all unitary discrete 2D-NS-LCT?  Our future work will focus on exploring the sufficient constraints 
for the discrete LCTs to ensure unitarity. 
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