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ABSTRACT 

Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum.  Emitted 
frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a 
continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image 
normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised 
contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular 
spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before 
numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a 
tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality. 
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1. INTRODUCTION 
 

The terahertz region (0.1 GHz–10 THz) is a significant part of the electromagnetic radiation spectrum, which lies 
between the microwave and infrared regions. The use of coherent THz radiation for imaging is gaining attention as it’s 
more a powerful tool for material science and mechanical engineering [1]. Over the past two decades, research on 
Terahertz (THz) technology has shown potential in practical applications (biomedical imaging) due to the ability of THz 
radiation to penetrate various non-conducting materials that are opaque for visible light [2, 3]. The combination terahertz 
digital holography takes the advantages of both the terahertz radiation and the digital holography, thus making up the 
defects of conventional holographic systems and in fact broadens the applications of holography [4-7]. It is known that 
due to various applications such as fast processing, compatibility and computer generated holograms (CGHs) to name a 
few, the use of photoelectric sensors (CCD, CMOS) in recording interferograms (i.e., digital holography) and numerical 
reconstruction have received wide attention [8-12]. 

Digital holography (DH) is a discrete whole-field imaging technique where both the intensity and phase 
components of a wave-field are captured using the holographic principle [13]. Numerical reconstruction of the digitally 
recorded intensity hologram enables access to the intensity and phase of the object field [12]. One common problem in 
recording and processing digital holograms is voluminous dataset, i.e., a huge amount of information have to recorded 
and processed which makes the process extremely (computationally) difficult. For this reason, methods such as data 
compression, compressive sensing have been proposed and implemented [14-18]. In this paper, for the first time, in order 
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to reduce the complexity in processing the digitally recorded holograms, we propose to use a Sparsity-based hologram 
compression. The method sparsity refers to randomly selecting some pixel information by discarding most of the data, 
however, reconstruction can be achieved with minimal loss [19, 20]. This approach will certainly reduce the dataset 
required for reconstruction (with reduced MSE value) and facilitates more efficient storage and data transmissions.  

The rest of our paper is organised as follows: In Section 2, we briefly discuss the Terahertz based off-axis 
holographic imaging system. Section 3 describes our experimental setup. Results are given in Section 4 and conclusion is 
presented in Section 5. 

2. OFF-AXIS DIGITAL HOLOGRAPHY 

Off-axis digital holographic method refers to recording holograms using digital sensors and employing numerical 
methods for reconstruction, enabling thus the applications of advanced holography. In principle, the laser beam is 
divided by a beam splitter, in which a part of beam is reflected or scattered by the object (known object arm) and 
interferes with the non-scattered beam (i.e., reference arm). The interference pattern (i.e., hologram) is recorded using 
digital cameras [8]. Assuming that the object and recording plane coordinates are xo-yo and x-y respectively, the object 
complex distribution on the object plane can be expressed as, 

( ) ( ) ( ), , exp ,o o o o o oO x y o x y j x yφ= ⎡ ⎤⎣ ⎦     (1) 

where the ( ),o oo x y  and ( ),o ox yφ  are the amplitude and phase distribution, respectively. The propagation of object 

wave towards the recording plane is calculated using the angular spectrum propagation integral, as follows [21]: 

( ) ( ) ( ) ( )221, , exp 1d x yO x y O x y jkd f fλ λ− ⎧ ⎫⎡ ⎤= ℑ ℑ − −⎡ ⎤⎨ ⎬⎣ ⎦ ⎢ ⎥⎣ ⎦⎩ ⎭
   (2) 

where λ is the wavelength, k=2π/λ is the wave number and d is the reconstruction distance. ℑ  and 1−ℑ denotes the 

Fourier transform and inverse Fourier transform respectively. The exponential function, ( ) ( )22exp 1 x yjkd f fλ λ⎡ ⎤− −⎢ ⎥⎣ ⎦
represents the transfer function of the wave propagation through free space [22, 23]. The functions ( )/x xf x N x= Δ  and

( )/y yf y N y= Δ are the spatial frequencies of horizontal and vertical directions in the spatial frequency domain. xN  and 

yN are the number of pixels, xΔ  and yΔ are the pixel size of the detector. Assuming the complex amplitude distribution 

of the reference wave ( ),dR x y , the off-axis digital hologram can be expressed as [18], 

( ) ( ) ( ) 2 2 2, , ,d d d d d d d dH x y O x y R x y O R O R O R∗ ∗= + = + + +    (3) 

where the first two terms on the right hand side of Eq.(3) denotes the intensity of the object wave 2
dO and reference 

wave 2
dR . The last two terms represents the real image and the virtual one, respectively, where * denotes the complex 

conjugation operation. The complex amplitude distribution of the object wave is obtained by the frequency spectrum 
filtering method and sequent angular spectrum reconstruction [21]: 

( ) ( )( ){ } ( ){ }1 1' , filter , ,o o d x yO x y H x y G f f− −
−

⎡ ⎤= ℑ ℑ ℑ ℑ⎡ ⎤⎣ ⎦⎣ ⎦     (4) 

where the amplitude and phase distribution of objects is obtained as, 

( ) ( )' , ' ,o o o oo x y O x y=       (5a) 

( )
( )
( )

Im ' ,
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Re ' ,
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o o
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x y
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φ
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    (5b) 
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5. CONCLUSION 

Terahertz radiation can be emitted over a wide spectral range and its radiation has a high penetration depth which makes 
it useful for security applications and non-destructive testing. In this paper, a continuous-wave Terahertz off-axis digital 
holographic system is described. It is known that hologram recording and reconstruction is computationally cumbersome 
for real-time object reconstruction or recognition, and is impractical for any type of holographic video streaming. 
Therefore, to alleviate, we have employed sparsity based hologram compression by which more efficient storage and 
transmission is facilitated.  
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