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ABSTRACT   

The linear canonical transform (LCT) is essential in modeling a coherent light field propagation through first-order 
optical systems. Recently, a generic optical system, known as a Quadratic Phase Encoding System (QPES), for 
encrypting a two-dimensional (2D) image has been reported. It has been reported together with two phase keys the 
individual LCT parameters serve as keys of the cryptosystem. However, it is important that such the encryption systems 
also satisfies some dynamic security properties. Therefore, in this work, we examine some cryptographic evaluation 
methods, such as Avalanche Criterion and Bit Independence, which indicates the degree of security of the cryptographic 
algorithms on QPES. We compare our simulation results with the conventional Fourier and the Fresnel transform based 
DRPE systems. The results show that the LCT based DRPE has an excellent avalanche and bit independence 
characteristics than that of using the conventional Fourier and Fresnel based encryption systems.  
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1. INTRODUCTION  
 
The ubiquitous use of multimedia communication systems and the risk of attacks on, the resulting theft of private data 
from secured systems have led to the demand for ever improving information security techniques.  Techniques such as 
steganography and watermarking have been proposed in which data is hidden; on the other hand, data may be encrypted 
making it difficult to access without some key or keys [1-3]. Often both processes, i.e., hiding and encryption, are 
simultaneously employed. Among them, a technique proposed by Refregier et al [4], known as Double Random Phase 
Encryption (DRPE), using 4f optical processor has received a greater attention. Principally, this algorithm turns an 
intensity image into an unreadable format by using two statistically distributed random phase keys that are employed at 
the spatial and the Fourier domains, respectively. The resulting encrypted data is complex and it cannot disclose any 
information without decrypting the information using the correct phase keys [4]. In addition to this conventional 
technique, some its extensions have also been examined in the fractional Fourier domain [5], the Fresnel transform 
domain [6], the Hartley transform [7], and the Arnold transform based encoding systems [8]. Optical encryption 
techniques can be implemented as a cryptographic algorithm (digitally) and recently it is shown to be vulnerable for 
some organized attacks [9-12].  

The linear canonical transform (LCT) is a three parameter (α,  β,  γ)  group of linear integral transform, which can be used 
to model the propagation of the coherent wave field through the paraxial optical systems. Among its special cases are the 
Fourier transform (FT), the Fractional Fourier transform (FRT), the Fresnel Transform (FST), and the Gyrator Transform 
(GT) [13]. Since the conventional encryption technique has shown to be vulnerable for phase retrieval based attacks, [14, 
15] such as Chosen Ciphertext Attack (CCA), Ciphertext Only Attacks (COA) and Known Plaintext-Ciphertext Attack 
(KPCA), Gopinath et al has proposed a generalized cryptosystem using Quadratic Phase Encoding System [16]. It has 
been reported that the data is encrypted, in the canonical transformation domain, with the help of two random phase 
masks, six transformation parameters or four propagation distances and two focal lengths.  
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In principle, the cryptographic algorithms should satisfy some dynamic properties such as Avalanche effect (AE), strict 
Avalanche effect (SAE), and Bit Independence criterion (BIC) which tell us the relationship between the plaintext and 
ciphertext [17-19]. To the best of our knowledge, to date, no avalanche effect or bit independence criterion have been 
investigated for the LCT based DRPE system. Therefore, in this work, we focus analyzing the avalanche effect and bit 
independence properties of DRPE in the linear Canonical domain. Furthermore, a comparison is made on the systems 
that based on the Fourier, Fresnel and canonical domain DRPE.  

The rest of our paper is organized as follows: In Section 2, we present the backgrounds of the Fourier, the Fresnel and 
the linear Canonical transform based DRPE, respectively. Then, the concepts of avalanche effect and bit independence 
are presented in Section 3. In Section 4, we show our simulation results. Finally, we conclude our discussions in Section 
5. 

2. DOUBLE RANDOM PHASE ENCODING (DRPE) 
2.1. The Fourier transform (FT) based DRPE 

Optical and digital information security systems, based on double random phase encoding (DRPE) technique, have 
shown a predominant role in information security. Figure. 1 shows schematic setup of the amplitude encoding (AE) 
DRPE system [4, 20]. 

 

 

 

 

Fig. 1. Optical schematic setup for DRPE in the Fourier domain. 

Initially, 𝑔 𝑥, 𝑦 ,  represents the spatial coordinates of a two dimensional (2D) signal or an image, is being encrypted 
using two random phase masks. The random phase masks (RPMs) of spatial and frequency domain,  𝐷!(𝑥, 𝑦) =
exp[𝑖2𝜋𝑛!(𝑥, 𝑦)] and  𝐷!(𝑥!, 𝑦′) = exp 𝑖2𝜋𝑛! 𝑥!, 𝑦′  respectively. The phase keys 𝑛! 𝑥, 𝑦 , 𝑛! 𝑥!, 𝑦!   are statistically 
independent and uniformly distributed in   −0.5, 0.5  [14, 15]. At first, the input image is multiple by the spatial phase 
mask, RPM1, and then the Fourier transform (ℱ)  is performed. Later, the resulting image is modulated by the second 
phase mask, RPM2, in the frequency domain.  Finally, by taking an inverse Fourier transform (ℱ!!) we get the 
encrypted image,  𝐸 𝑥",  y" . Mathematically this process can be defined as follows [14],   

                                                                                                                    𝐸 𝑥",  y" = ℱ!! ℱ 𝑔(𝑥, 𝑦)×𝐷!(𝑥, 𝑦) ×𝐷!(𝑥!, 𝑦′)                                                     (1) 

The encrypted image  𝐸 𝑥",  y"   is complex and due to the statistical properties of the two random phase 
masks,  𝐷! 𝑥, 𝑦 , and  𝐷! 𝑥!, 𝑦! ,  it is unreadable.  

2.2. The Fresnel transform (FST) based DRPE 

We briefly analyze the concept of a lens-less optical DRPE encryption system, shown in Fig.2.  

 

 

 

 

 

Fig. 2. Optical schematic setup for DRPE in the Fresnel domain. 
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As shown in Fig. 2, the entire system is illuminated by a plane wave with the operational wavelength  𝜆. First, the 
primary amplitude image,𝑔 𝑥, 𝑦 , is modulated with the first random phase mask (RPM1), which is kept at the input 
plane and represented as  exp 𝑖𝑛!(𝑥, 𝑦) . Then, the Fresnel propagated object wave field is further modulated by the 
second random phase mask (RPM2), given by exp 𝑖𝑛!(𝑥′, 𝑦′)   in the transformed domain. Here, the random phase keys 
𝑛! 𝑥, 𝑦 and  𝑛! 𝑥!, 𝑦! are statistically independent. Finally, the synthesized image produces the final encrypted data at 
the output plane. Under the Fresnel approximation [21], the encrypted image is given as follows:  

                                                                                                                                            𝐸 𝑥",  y" = Θ! 𝑢 𝑥!, 𝑦! exp 𝑖𝑛! 𝑥!, 𝑦! ; 𝑧! ,                                                    (2) 

where 𝑢 𝑥!, 𝑦! = Θ! 𝑔 𝑥, 𝑦 𝑒𝑥𝑝 𝑖𝑛! 𝑥, 𝑦 ; 𝑧! . The symbol Θ!  stands for the Fresnel transform with respect to the 
operational wavelength λ at distances  𝑧!  and 𝑧!. Equation (1) shows that the security of an encrypted image  𝐸 𝑥",  y"  
depends not only on the random phase masks (i.e., RPM1, RPM2) but also on the wavelength λ and the positions of the 
masks 𝑧!, 𝑧! [6].  

 

2.3. The linear Canonical Transform (LCT) based DRPE 

The LCT is a three-parameter class of linear integral transform and 2D separable LCT is defined as [22]: 

                                                                  𝐿𝐶𝑇!,!,! 𝑔(𝑥, 𝑦) = 𝑔(𝑥, 𝑦)exp 𝑖𝜋 𝛼 𝑥! + 𝑦! − 2𝛽 𝑢𝑥 + 𝑣𝑦 + 𝛾(𝑢! + 𝑣!) 𝑑𝑥𝑑𝑦!
!!              (3) 

Where 𝛼,𝛽, 𝛾 represents the real canonical transform operators. We briefly describe LCT based AE DRPE system [15]. 
At first, the primary amplitude image, 𝑔 𝑥, 𝑦 ,  is modulated with the first random phase mask (RPM1), which is kept at 
the input plane, given as  𝐷!(𝑥, 𝑦) = exp 𝑖2𝜋𝑛! 𝑥, 𝑦 . Subsequently, the propagated object wave is further modulated 
by the second random phase mask (RPM2), given as 𝐷!(𝑥, 𝑦) = exp 𝑖2𝜋𝑛! 𝑥′, 𝑦′  in the canonical domain. Again, the 
random phase keys  𝑛! 𝑥, 𝑦  and 𝑛! 𝑥′, 𝑦′  are statistically independent. The final encrypted image  𝐸 𝑥",  y"   is 
expressed as follows [15]:  

                                                                                                                𝐸 𝑥",  y" = 𝐿!!,!!,!! 𝐿!!,!!,!! 𝑔 𝑥, 𝑦 𝐷!(𝑥, 𝑦) ×𝐷!(𝑥!, 𝑦′) .                                          (4)                        

The process of LCT based encryption (i.e., multiplying input image with the first phase mask) can be regarded as scaled 
FT with additional chirp multiplication 𝑒𝑥𝑝 𝑖𝜋𝛾!(𝑥!" + 𝑦!")  [1]. Thus, Eq. (2) can be rewritten as, 

                                                                                                              𝐸 𝑥",  y" = 𝑒𝑥𝑝 𝑖𝜋𝛾! 𝑥"" + 𝑦"" ℱ ℱ 𝑔(𝑥, 𝑦)×𝑅!! ×𝑅!! .                                            (5)               

A schematic diagram of an optical implement of an LCT based AE DRPE system is given in Fig. 3. 

 

 

 

 

 

 Fig. 3. Optical schematic setup for DRPE in the linear Canonical domain. 

The encrypted image is a complex-valued data and resembles a noisy distribution. The decryption process involved, 
when using this LCT based DRPE system, is given by [15]: 

                                                                                                          𝑔 𝑥, 𝑦 = |ℱ!! ℱ!! 𝐸(𝑥", 𝑦")×exp  [−𝑖𝜋𝛾!(𝑥"" + 𝑦"")] ×𝐷!∗ |.                                     (6) 
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Where ℱ!!  represents an inverse Fourier transform. As it can be seen in Fig. 3, in the LCT based DRPE system, together 
with the random phase masks (RPMs) also the individual LCT parameters (𝛼!,𝛽!, 𝛾!,𝛼!,𝛽!, 𝛾!), which are defined by 
the system parameters, serve as keys of the cryptosystem.  We note that the constants 𝛼!,𝛽!, 𝛾!  associated with the 
LCT can be related to the propagation distances 𝑑!,𝑑! and focal length  𝑓!  by [15, 22]:  

𝛼! =
𝑑! − 𝑓!

𝜆 𝑓! 𝑑! + 𝑑! − 𝑑!𝑑!
,   

𝛽! =
𝑓!

𝜆 𝑓! 𝑑! + 𝑑! − 𝑑!𝑑!
, 

𝛾! =
𝑑! − 𝑓!

𝜆 𝑓! 𝑑! + 𝑑! − 𝑑!𝑑!
. 

                                             (7) 
Similarly, the relation between the second set of LCT parameters 𝛼!,𝛽!, 𝛾!  and 𝑓!,𝑑!,𝑑!  follows those in Eq. 7. In the 
symmetric 2D separable case, the same parameter values 𝛼,𝛽, 𝛾   are applied in both the horizontal  (𝑥)  and vertical 
(𝑦)  directions [22].  

 

3. SECURITY ANALYSIS 
3.1. Avalanche Criterion (AVAC) 

H. Feistel et al [23] has first defined the Avalanche Criterion (AVAC) as a desirable property for the Substitution and 
Permutation networks (SPNs). AVAC is then considered as an important cryptographic property, which says that even a 
tiny amount of changes in the plaintext (or key) leads to an “Avalanche changes” (i.e., drastic changes) in the ciphertext. 
Briefly, a function 𝑓:   0,1 ! → 0,1 ! satisfies AVAC, when a flipped single input bit changes, on average, half of the 
output bits [24, 25]. For instance, the conventional encryption method (𝐸) can be described as: 𝐶 = 𝐸 𝑋,𝐾   where 
𝐶  represents the ciphertext 𝑋, 𝐾  denotes the plaintext and the key, respectively. Suppose that, perturbation is made in the 
input texts such that 𝑋 → 𝑋!or  𝐾 → 𝐾′, then the ciphertext will be changed (i.e., 𝐶′) drastically. Then, the avalanche 
changes (also known as avalanche effects) can be measured using (two different strings of equal length) Hamming 
distance (𝐻), which gives the number of changed bits. Let us assume a binary string value for ciphertext 
𝐶 = 110011001100  and perturbed ciphertext as    𝐶! = 0011110101, then the avalanche effect is measured using 
Hamming distance between 𝐶,𝐶! as: 𝐻 𝐶,𝐶! = 𝐻 110011001100, 0011110101 = 4.  In order to measure the 
avalanche effect (AE) that occurs in the encrypted image, when the input image bits are inverted, we use the following 
equation [19]: 

                                                                                                                                                                          𝐴𝐸 =
𝐻(𝐶,𝐶′)
𝑁𝑢𝑚(𝐶)

,                                                                                                                                                                                                    (8) 

where 𝑁𝑢𝑚 𝐶  represents the total number of binary bits in the Ciphertext (𝐶) and 𝐶′ denotes obtained ciphertext when 
perturbed input texts (i.e., 𝑋′ or  𝐾′) are used. We note that, if the value of 𝐴𝐸 is ≈ 50%  (meaning that approximately 
half of the bits in the ciphertext are changed when only few bit changed in either the plaintext or the keys) this usually 
means that a satisfactory avalanche effect [19]. 

3.2. Bit Independence Criterion (BIC) 

A. F. Webster et al [26] defined the Bit Independence Criterion (BIC) for S-boxes. Briefly, a function 𝑓:   0,1 ! →
0,1 ! satisfies BIC, if a bit 𝑘 in the input text (i.e., plaintext or key) is changed, it changes the output bits 𝑖  and 𝑗  in the 

ciphertext, independently. Let suppose that there are 𝑀  bits in the plaintext and thus it can be changed 𝑀 times, just by 
inverting one bit at a time. As a consequence, 𝑀 different ciphertext can be obtained. Then, the bit independence (BI) 
between bit 𝑗 and 𝑘 in the ciphertext is defined using the absolute correlation coefficient value as [26]: 
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                                                                                                                    𝐵𝐼 𝐶(𝑏!),𝐶(𝑏!) = |corr( 𝑏!!… 𝑏!! … 𝑏!! , 𝑏!!… 𝑏!! … 𝑏!! )|,                                        (9) 

where 𝐶(𝑏!) and 𝐶 𝑏!   represents the 𝑖th and 𝑗th bit in the ciphertext and 𝑏!!and 𝑏!!  denote the values of the 𝑖th and 𝑗th bits 
in the ciphertext when the 𝑚th bit in the plaintext is changed. We note that, if the value of  𝐵𝐼𝐶 𝐶(𝑏!),𝐶(𝑏!)  is closer to 
1 (i.e., unity) meaning that the compared bits are strongly correlated (i.e., very similar) else it is uncorrelated (i.e., 
independent).  To measure the BIC on the encrypted image, we used the following expression [19]: 

                                                                                                                                                                𝐵𝐼𝐶 𝐸(𝑋,𝐾) = max!!!,!!! 𝐵𝐼 𝐶 𝑏! ,𝐶 𝑏! ,                                           (10) 

Where 𝑖 ≠ 𝑗  and we note that when 𝐵𝐼𝐶 𝐸(𝑋,𝐾)   is lesser than 1 (i.e.,  𝐵𝐼𝐶 ≪ 1), the encryption satisfies the bit 
independence criterion.  

 

4. SIMULATION RESULTS 
Simulation results obtained, using the security analysis described in the previous section, are now presented. We used 
50×50 pixels image (see Fig. 4(a)) in order to measure the avalanche effect and the bit independence. In order to analyze 
the proposed encryption methods (i.e., FT, FST, LCT based DRPE) in bit units, each pixel value in the input and the 
encrypted images (see Fig. 5) were converted into a binary representation. We used the standard IEEE 754 double-
precision floating-point format (see Fig. 4(b)) to represent our pixel intensity values into the binary numbers [27]. This 
uses 64 bits (i.e., 1 sign bit, 11 bits for exponent width, and 52 bits for significant digits) as shown in Fig. We note that 
the sign, exponent bits are same for almost all amplitude values and therefore perturbation was considered only on the 
last 52 significant bits, without loss of generality [27].  

 

 

 

 

 

 

 

Fig. 4: (a) Grayscale test image used in our simulation and (b) IEEE 754 double-precision binary floating-point format [27].  

Figure 5 shows the measured avalanche effect (AE) values, using Eq. (8), plotted against the varying number of flipped 
bits (i.e., bit units) in the plaintext of the DRPE system in the FT, FST, and LCT domains, respectively. Additionally, we 
also calculated the AE value, when some bits in the plaintext are perturbed, as a percentage of changed pixel (i.e., pixel 
values) in the encrypted image. It can be seen from Fig. 5 that the avalanche effect for the LCT based DRPE is better 
than that of in the Fourier and Fresnel domains. The AE value is 50% for DRPE in the LCT domain, while it is little 
lower than 50% in the Fresnel domain and when only fewer than 10 bits are flipped in the plaintext, DRPE in the Fourier 
domain achieves lower AE values. These results interpret the fact that when just 1 bit is inverted in the plaintext, almost 
all of the ciphertext values will change in the LCT, FST (few bits remain the same) based DRPE, while some of the pixel 
values would remain the same for DRPE in the Fourier domain. Especially, for the case when less than five bits are 
flipped in the plaintext we get AE value less than 40%. We note that the reason for this result is that the chirp function 
[22]. In the FST based DRPE, we use a one chirp function while in the LCT based DRPE we use two chirp functions and 
that helps the LCT and FST domain to achieve a satisfactory avalanche effect. Whereas, the chirp function becomes 

(a) 
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unity in the Fourier domain [13]. As a consequence, the conventional FT based DRPE system did not achieve a 
satisfactory avalanche effect.  

 

 

 

 

  

 

 

 

 

 

 

Fig. 5. Simulated results for the Avalanche effect with varying number of perturbed bits in the plaintext. Bit unit refers that 
the encrypted image is compared in binary units, the Pixel unit represents the encrypted image is compared as pixel values. 

 

Figure 6 shows the calculated avalanche effect values plotted against the varying number of flipped bits in the first and 
second phase keys of the DRPE system in the FT, FST, and LCT domains, respectively.  As it can be seen, when only 
one bit was flipped in the input keys (i.e., first or second phase key) we get similar AE values as we achieved in Fig. 5.  
Also, we note that the avalanche value for DRPE in the Fourier domain gets 50% only when more than 15 bits in the key 
for the first or second phase were flipped. Similarly, in the pixel values, DRPE in LCT, FST domains are stays at 100% 
while that in the FT based system increases to be 100% after about five bits in the phase keys are changed.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulated results for the Avalanche effect with varying number of bits in the perturbed phase keys. (a) Avalanche 
effect with bits changed in the first phase key (b) Avalanche effect with bits changed in the second phase key. 

 

For bit independence measurements, we selected 100 bit pairs, at random, from the encrypted amplitude image and 
calculated BIC for each of the pairs using Eq. 3 and the results were averaged from 100 measurements. Table 1 shows 
the bit independence results for the FT, FST, and LCT based DRPE system. As it can be seen from the Table 1, the bit 
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independence values for the DRPE systems, employed in this study, are far away from 1, meaning that the DRPE possess 
a satisfactory bit independence property. We note that the simulated avalanche effect and bit independence values are 
calculated by averaging 100 consecutive simulation results. 

 

Table 1.  Bit Independence Criterion (BIC) for DRPE in the Fourier, the Fresnel and the Linear Canonical domains.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 

 
We presented a method for calculating the avalanche effect and the bit independence property (which are common 
metrics used in evaluating the block cipher algorithms) on double random phase encryption (DRPE) system in the 
Fourier (FT), the Fresnel (FST) and the linear Canonical transformation (LCT) domains. Simulation results show that 
DRPE based LCT system achieves excellent performance in the sense of better avalanche effect and bit independence 
properties than that both of the Fourier and Fresnel domain based DRPE system. To be more precise, for the avalanche 
effect property, DRPE in the LCT and FST domains achieve superior results than that in the DRPE in the Fourier 
domain. Further, we note that, for the comparison purpose, in this work, the additional keys of the FST   i. e. , 𝜆, 𝑧!, 𝑧!  
and the LCT based DRPE   i. e. ,𝛼!,𝛽!, 𝛾!,𝛼!,𝛽!, 𝛾!, 𝑓!, 𝑓!  systems were not considered, however, these results will be 
reported in our future work. Furthermore, avalanche effect and the bit independence analysis will also be carried out on 
the Photon-counted imaging (PCI) based cryptosystems.  
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