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Abstract: The use of biosensors is considered a novel approach for the rapid detection of 
foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or 
biochemical signals into measurable electrical signals, are systems containing a biological 
detection material combined with a chemical or physical transducer. The objective of this review 
was to present the effectiveness of various forms of sensing technologies for the detection of 
foodborne pathogens in food products, as well as the criteria for industrial use of this technology. 
In this article, the principle components and requirements for an ideal biosensor, types, and their 
applications in the food industry are summarized. This review also focuses in detail on the 
application of the most widely used biosensor types in food safety. 
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1. Introduction 
Many people around the world become ill each year by consuming food pathogens. These 

foodborne illnesses are highly correlated to both physical and chemical contamination of foods in 
addition to the presence of pathogenic microorganisms [1,2]. A number of authors have reported 
that food contamination caused by microorganisms could be attributed to the natural 
contamination that occurs in raw materials [3] or the cross-contamination of foods due to different 
contaminated sources such as air, water, hair, dirt, animal feces, humans, infected wounds, etc. [4]. 

Microbial pathogens can contaminate foods and cause foodborne diseases [5]. The Centers for 
Disease Control and Prevention (CDC) in the United States has stated that either foodborne or 
waterborne pathogens are considered to be the primary causative factors in 76 million cases each 
year for foodborne illnesses in the United States alone [6]. The percentage of pathogenic bacteria, 
parasites, and viruses was five million cases, two million cases, and thirty million cases, 
respectively [7,8]. 

Multiple conventional tests were applied to detect microbial contaminants in foods, surfaces, 
utensils, and equipment. These tests included the following: viable cell counting [9], staining [10], 
carbohydrate fermentation assay, enzyme linked immunosorbent assay [11], polymerase chain 
reaction [12], ultraviolet detection [13], and fluorescence techniques [14]. Despite the development 
of many analytical techniques using automated and complex instrumentation for monitoring and 
detecting the biological contaminants in foods, there are still several drawbacks and limitations to 
using these traditional approaches [8]. For example, these traditional approaches require large 
numbers of samples, high skill levels, and are time consuming and costly [15,16]. In addition, most 
traditional methods require a long time to obtain accurate microbiological results [17]. 
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Consequently, in the past few years, a lot of developed and rapid in situ methods were investigated 
as an alternative to the existing microbiological approaches. These methods were highly sensitive to 
count and evaluate food contamination as well as the degree of cleaning and sanitizing of food 
contact surfaces [18]. 

Biosensors represent one such innovative method that has been developed to overcome some 
major problems regarding food sample analysis. Moreover, the use of biosensors to monitor and 
provide rapid real-time information will be superior compared to traditional microbiological 
approaches [19]. Adenosine triphosphate (ATP) bioluminescence, a highly effective biosensor, can 
be used for food process manufacture monitoring such as HACCP (hazard analysis and critical 
control points) [20,21]. Bioluminescence is the mechanism of light emission from organisms and 
thereby reflects the chemical conversion of energy into light. The ATP bioluminescence test is since 
ATP is a significant biological source of energy found in various microbes and thus represents the 
presence of a living microbe [22]. 

Biosensor technology was developed to be a useful indicator of bacterial contamination on 
food and food contact surfaces. In this review, we present the effectiveness of various forms of 
sensing technologies for the detection of foodborne pathogens in food products, as well as the 
criteria for industrial use of this technology. This review will also focus in detail on the application 
of the most widely used biosensor types in food safety. 

2. Foodborne Pathogens 

In recent years, the demand for enhanced food security has gradually increased. As reported in 
the media and other sources, diseases caused by bacterial contamination represent about 40% in all 
infections, and the diseases due to foodborne pathogenic have a significant effect on the health of 
the population as a whole as well as the economy [23]. 

Foodborne illnesses thus represent an enormous challenge to worldwide health care systems 
[24]. For example, in the US, about 48 million individuals suffer from foodborne illnesses each year 
resulting in around 128,000 hospitalizations, 3000 deaths, and $15.6 billion in economic losses [25]. 
Because human food and water sources can be easily contaminated by a broad spectrum of 
microbial pathogens, serious illness results if these microbial pathogens or their toxins are 
consumed [26]. Bacteria, viruses, and parasites are the most prevalent pathogens that cause 
foodborne diseases [27,28], but fungal foodborne diseases are also identified [29]. Bacteria are the 
most well-known foodborne pathogen, and cause the greatest number of foodborne illnesses, 
including the most hospitalizations (63.9%) and deaths (63.7%) [25]. Bacterial contamination can 
cause repeating intestinal irritation, kidney disease, mental incapacity, receptive joint inflammation, 
visual impairment, and even death [30]. In addition, foodborne diseases can occur because of toxins 
produced either from bacteria or fungi, which may survive even after food processing. Foods that 
are raw, including meat and poultry or vegetables, fruits, eggs, dairy products, and even cooked 
seafood, can be contaminated with both foodborne pathogens and their toxins [31–33]. Examples of 
foodborne diseases caused by pathogens in the food matrix are shown in Table 1.   
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Table 1. Examples of Foodborne Diseases Caused by Microorganisms in the Food Matrix. 

Pathogenic 
Sources 

Food Matrix Symptoms and Illnesses References 

Staphylococcus 
aureus 

Unpasteurized Milk 
and Cheese Products Food Poisoning 

Khare et al. [34] 
Mostafa et al. [35] 

Bacillus cereus 
Dairy Products, Dry 

Foods, Rice, Egg 
Products 

Diarrhea, Vomiting 
Grutsch et al. [36] 

Griffiths and 
Schraft [37] 

E. coli O157:H7 
Meat Products and 

Milk 
Diarrheal Diseases and 

Producing of Shiga Toxins 

Xu et al. [38] 
Kramarenko et al. 

[39] 

Vibrio 
parahaemolyticus Seafood Diarrhea 

Letchumanan et al. 
[40] 

Jiang et al. [41] 

E. coli O26 Ground Beef 
Stomach Cramps, Bloody 
Diarrhea, Vomiting and 

High Fever 

Ma et al. [42] 
Amagliani et al. [43] 

Salmonella 
enteritidis 

Meats, Eggs, Fruits, 
Vegetables 

Vomiting, Diarrhea, 
Cramps, Fever 

Sharma [44] 
Paramithiotis et al. 

[45] 
Vibrio 

parahaemolyticus 
Vibrio cholerae 

Freshwater Fish 
and Shellfish 

Severe Diarrhea, Cholera Li et al. [46] 
Baron et al. [47] 

Klebsiella 
pneumoniae 

Fresh Fruits and 
Vegetables 

Pneumonia 
Mesbah Zekar et al. 

[48] 
Ghafur et al. [49] 

Campylobacter 
jejuni Meat, Poultry 

Postinfectious Reactive 
Arthritis 

Riley [50] 
Skarp et al. [51] 

Clostridium 
perfringens Poultry Meat 

Human Gastrointestinal 
Diseases 

Hamad et al. [52] 
Rouger et al. [53] 

Clostridium 
botulinum 

Uncooked Food, 
Canned Foods 

Botulism 
Aston and Beeching 

[54] Yadav et al. 
[55] 

Listeria 
monocytogenes Lentil Salad 

Gastroenteritis and 
Invasive Infection 

Drali et al. [56] 
Vojkovska et al. [57] 

Shigella sp. Poor Water Supply 
Watery Diarrhea Mixed 
with Blood and Mucous 

Nisa et al. [58] 
Shafqat et al. [59] 

hepatitis E virus Rabbit Meat Liver Disease 
Bigoraj et al. [60] 
Kaiser et al. [61] 

Salmonella Fresh Vegetables Gastroenteritis Yang et al. [62] 
Saw et al. [63] 

3. Monitoring of Microorganism Activities in the Food Matrix 

A successful microbiological environmental surveillance system can provide early warning of 
possible microbiological hazards in food items, detect problems, and thereby support 
comprehensive microbiological safety. Thus, for several decades, the microbiological aspects of 
food safety have been intensively examined. For example, maintaining food protection has always 
been a very critical aspect of government policies in some countries. Management systems have 
been set up to prevent harmful contaminants from being introduced into the food chain [8]. 
According to the Centers for Disease Control and Prevention (CDC), the influence of 
microorganisms such as bacteria, viruses, and fungi on human life is worthy of significant attention 
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[22]. The implementation and monitoring of microbial food safety contributes to enhanced 
productivity, higher wages, sustainable development, and better livelihoods, which is why it has 
been suggested that policy makers implement appropriate food safety policies in order to enhance 
global nutrition and improved food security [64]. 

Microbial food safety is radically different from chemical food safety. Although chemical 
contaminants and additives usually join the food chain at predetermined levels, microbes may join 
at any point [65]. Consequently, food regulations everywhere are very straightforward on this level. 
For instance, the EU General Food Law [66] states: “a high level of protection of human life and 
health should be assured in the pursuit of community policies”. The microbiological safety of 
consumer products is also closely linked to the hygienic properties of the manufacturing system. 
Under these conditions, the implementation of adequate sanitation methods is essential for the 
protection of the final product. Evaluation of the efficacy of such methods is important for the 
assurance of these procedures [67]. In fact, all food safety regulations require these inspection 
activities. Researchers are therefore making considerable efforts to establish rapid and effective 
methods to meet the requirements of daily investigation and monitoring of food production [67]. 

The requirement of monitoring contamination in the food chain involves several analytical 
methods and the use of sophisticated and automated instrumentation that has been recently 
developed for detection of contaminants in food [68]. However, there are still many drawbacks and 
limitations to using these traditional approaches [8]. Furthermore, diagnostic tools must be capable 
of assessing feasibility and flexible enough to identify the pathogen of concern. Table 2 shows a list 
of some microbiological analysis approaches used to monitor food safety. 

Table 2. Examples of Microbiological Analysis Approaches for Monitoring Food Safety. 

Microbiological Approaches 

Detection 
Limit 
(Log 

CFU/ml) 

Time 
Consumed 

References 

Viable Cell Counting Unlimited days 
Rajapaksha et al. [9] 
González-Ferrero et 

al. [69] 

Microscopy Unlimited min Sakamoto et al. [70] 
Mobed et al. [71] 

Absorbance 8–9 Immediate Hazan et al. [72] 
Ikonen et al. [73] 

Enzyme Linked Immunosorbence 2.83–3 3 h 
Shen et al. [74] 

Preechakasedkit et al. 
[75] 

Staining with Fluorescence Dyes 3–4 26 min Guo et al. [76] 
Annenkov et al. [77] 

Start Growth Time 1.60–2.60 h Hazan et al. [72] 

Flow Cytometry 4–8 h 
Ou et al. [78] 

Adan et al. [79] 

Methylene Blue Dye Reduction Test 7 h Bapat et al. [80] 
Pawar et al. [81] 

Isothermal Microcalorimeters >2  5–7 h Fricke et al. [82] 
Broga et al. [83] 

Laser-Induced Breakdown 
Spectroscopy (LIBS) 

1 
 3 min 

Multari et al. [84] 
Moncayo et al. [85] 

Fourier Transform Infrared (FT-IR) 
Spectroscopy 5.3 60 s 

Ellis et al. [86] 
Johler et al. [87] 

Nanoprobe-ATP  2–6 20 min Xu et al. [88] 
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4. Biosensors 

Leland Charles Clark Jr. designed the first biosensor research instrument in 1956 using an 
electrode to measure the oxygen concentration in blood. After that, scientists from different fields, 
such as physics, chemistry, and material science, have come together to build more sophisticated, 
reliable, and mature biosensing devices for applications in the field of medicine [89]. Several 
approaches using innovative techniques for pathogen enumeration and identification in perishable 
and semi-perishable foods have been identified in the last few years. In most microbiological 
research, quantification of bacterial cells is necessary. Therefore, seeking cost-effective techniques 
with several properties is required, namely high sensitivity, specificity, and fast responses [70,90]. 

The word biosensor refers to an effective and creative analytical device that has a biological 
sensing function with a broad variety of applications such as food safety, environmental 
monitoring, biomedicine, and drug discovery [91]. More specifically, biosensors are widely used in 
the identification and detection of bacteria and have attracted great interest as one of the most 
efficient and accurate methods of food analysis and food safety monitoring [92–94]. In addition, 
biosensors typically deliver fast, on-site tracking and thus provide real-time details throughout the 
production process [95,96]. Biosensors are thus another broad class of bacteria detection method. 
For example, conductometric measurements provide fast and simple bacterial detection [97]. 

Because biosensors are analytical devices for the detection of microbial contamination, their 
function depends on the interaction between biologically active agents, the transducer, and a signal 
conversion unit [98,99]. Mayer and Baeumner [100] clarified that biosensors typically contain two 
main components: a target recognition component such as receptors, nucleic acids, or antibodies 
and a signal transducer that transforms target recognition into physically detectable signals. The 
internal reflection, fluorescence resonance energy transfer (FRET), chemiluminescence, 
bioluminescence, and surface plasmon resonance (SPR) have been employed as manufacturing 
optical transducers in the fabrication of biosensors [8]. In general, biosensors may be divided into 
three basic groups based on the type of transduction element: optical biosensors, mechanical 
biosensors, and electrochemical sensors [22]. An example of different components of biosensors 
used in food analysis is shown in Figure 1. Many compounds, such as bacterial antigens, toxins, 
microbial contaminated by-products, or spoilage precursors, could be easily detected using 
biosensors for the rapid analysis of food deterioration and food quality [101]. 

 
Figure 1. Diagram showing the different components of a biosensor used in food analysis. 
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4.1. Types of Biosensors 

Biosensors are categorized into various groups depending on their working principles (Figure 
2). Examples of biosensors include electrochemical, mechanical, biological, acoustic sensors, surface 
plasmon resonance (SPR), and optical biosensors. Three of the most important biosensors are 
discussed below. 

 
Figure 2. Schematic representation of various combinations of physical and biological elements of 
biosensors. 

4.1.1. Optical Biosensors 

Optical biosensor methods characterized by high sensitivity, simple handling, and rapid 
detection have been used extensively to identify very large numbers of bacteria [102]. Optical 
biosensors enable visualization of microbial activities in food with the naked eye. The alteration in 
the transduction surface due to cell connection by means of direct binding or ligand identification 
assists in active analyte detection. Ivnitski et al.[103] demonstrated that optical biosensors may 
distinguish microbes in food through either in situ detection in the refractive index or by means of 
the thickness that develops as bacterial cells attach to receptors on the transducer surface [103]. The 
optical biological sensor contains a biodegradable polymer by analytical enzymes secreted by 
microorganisms during the deterioration of the natural product. As the number of bacteria 
increases, there is increased secretion of enzymes that cause food degradation, which will be visible 
with the degradation of the polymer [104]. Colorimetric, fluorescence, chemiluminescence, and 
surface plasmon resonance (SPR) are the principal optical techniques employed [105]. Newly 
created biosensors for the identification of microbial contamination in food items are shown in 
Table 3.   
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Alamer et al. [105] developed an immunoassay with sandwich to diagnose pathogenic bacteria 
in poultry such as Salmonella Typhimurium, Staphylococcus aureus, Salmonella enteritidis, and 
Campylobacter jejuni. Immobilized lactoferrin on a cotton swab was employed to pick up the 
bacterial contamination on the surface of the chicken, accompanied by a sandwich immunoassay 
formulated with a different antibody coupled with colored nano-beads. The form and concentration 
of the present microorganism defined the color and strength of the cotton swab [105]. Several plant 
pathogens including the cucumber mosaic virus [106], Pantoea stewartii [107], plum pox virus [108], 
Prunus necrotic ringspot virus [109], citrus tristeza virus [110], and potato virus [111] have already 
been detected using various optical biosensors. SPR biosensors have been used to successfully 
identify and detect cowpea mosaic virus, tobacco mosaic virus, lettuce mosaic virus, Fusarium 
culmorum, Phytophthora infestans, and Puccinia striiformis [112]. 

4.1.2. Electrochemical Biosensors 

Electrochemical biosensing techniques are among the most employed platforms for detection 
of foodborne pathogens [113]. Electrochemical biosensors have been reported to be successful 
techniques for bacterial detection due to their low cost, accuracy, miniaturization capacity and 
ability to detect changes directly based on the interaction between the sensor and sample. However, 
the time required to detect food contamination using electrochemical biosensors has significantly 
decreased with the advancement of new methods, some of which require as little as 10 min [19]. 
Electrochemical biosensors are categorized according to the various electrical signals produced by 
the existence of targets into impedimetric, potentiometric, amperometric, electrochemiluminescent, 
voltammetric, and conductometric methods [114]. 

During the last decade, exponential development in electrochemical biosensors has been 
observed for analysis of food and beverages and to identify genetically modified organisms 
(GMOs) in food [19]. Chen and colleagues recently established and developed polyaniline- carbon 
nanotubes (CNTs) as a redox nanoprobe connected to a signal probe to enhance the electrochemical 
signal for Mycobacterium tuberculosis detection [115]. A single-walled carbon nanotube (SWCNT) 
biosensor was successfully immobilized with a polyclonal antibody to detect Yersinia enterocolitica 
in Kimchi solutions with a low detection of 4 log CFU/ml [116]. The disposable potentiometric 
paper-based biosensor was designed to detect of Salmonella Typhimurium. In the first step, the 
combination from ethylenedioxythiophene:polystyrene sulfonate was coated on filter paper. Next, 
antibodies to the target bacteria were covalently attached to filter paper. A linear range of 4.07 log 
CFU/ml was recorded, with a detection limit of 0.698 log CFU/ml. Less than 5 min was sufficient to 
perform the analysis and obtain the results [117]. Similarly, Silva and coworkers developed another 
approach for Salmonella Typhimurium detection in apple juice using a potentiometric biosensor 
conjugating on a gold nanoparticle polymer inclusion membrane, and a detection limit of 6 cells/mL 
was achieved [118]. 

4.1.3. Mechanical Biosensors 

Mechanical biosensors can measure a mass sensitive sensor surface deflection because the 
target analytes will be bonded on the functionalized surface [119]. Mechanical biosensors are 
typically classified into four broad groups according to the sensor-analyte chemical interactions: 
affinity-based assays, fingerprint assays, separation-based assays, and spectrometric assays [120]. 
Quartz crystal microbalance (QCM) is a mechanical biosensor that is widely used due to its capacity 
to track shifts in mass in sub-nanogram amounts. The change in mass using QCM biosensors is 
recognized by the resonant frequency of quartz crystal, and this technique is commonly used with 
extreme sensitivity for quantification of the whole cell of microorganisms [121]. Bayramoglu et al. 
[122] designed A QCM-aptasensor to isolate and rapid detect Brucella melitensis in milk and milk 
products. The aptamer was immobilized on magnetic nanoparticles and the QCM chip for the 
quantitative detection of B. melitensis with high specificity. The QCM biosensor detection limit for 
determination of B. melitensis was 3 log CFU/ml [122]. 
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Lectins were employed and immobilized as a recognition element on the surface of the QCM 
chip to detect the foodborne pathogen Campylobacter jejuni. The limit of detection was 3 log CFU/ml. 
A modified strategy was utilized to improve the sensitivity of the assay by Masdor et al. [123] who 
detected E. Campylobacter jejuni based on the inclusion of antibody conjugated gold nanoparticles. 
The limit of detection was enhanced and found to be 2.17 log CFU/ml because the gold 
nanoparticles exhibited mass amplification effects. Several other studies were successfully 
employed to develop a novel sensor based on a quartz crystal microbalance with dissipation to 
detect the most widely spread mycotoxins in red wine called ochratoxin A. The method described 
here was fast, sensitive, and cost effective, and the analysis time was less than one hour. A limit of 
detection of 0.16 ng/ml was attained with an excellent linear range between 0.2 and 40 ng/ml [124]. 
The most advanced mechanical biosensors for the identification of microbial contamination in food 
items are shown in Table 3. 

Table 3. Newly Created Biosensors for the Identification of Various Contaminants in Food Items. 

Type of Sensor Contaminant Food 
Items 

Detection 
Limit 

Consuming 
Times 

Reference 

Optical Biosensor 

Chemiluminescence  
Listeria 

monocytogenes 
Milk 

1.1 log 

CFU/ml 
40 min 

Shang et al. 
[125] 

Colorimetric 
Cronobacter 

sakazakii 
Powdered 

Infant 
3.85 log 

CFU/ml 
30 min 

Kim et al. 
[126] 

Shukla et al. 
[127] 

localized Surface 
Plasmon Resonance 

(LSPR) 

Salmonella 
typhimurium 

Pork Meat 
4 log 

CFU/ml 
30–35 min Oh et al. [128] 

Interferometric Escherichia coli Buffer 
0.34 log 

CFU/ml 
2 h 

Zaraee et al. 
[129] 

Janik [130] 

Surface Plasmon 
Resonance (SPR) 

Pseudomonas Water 
7.09 log 

CFU/ml 
25 min 

Mudgal et al. 
[131] 

Zhang et al. 
[132] 

Mechanical Biosensor 

Multi-Channel Series 
Piezoelectric Guartz 

Crystal (MSPQC) 

Mycobacterium 
tuberculosis 

Buffer 
1 log 

CFU/ml 
1 day 

Ren et al. [133] 
He et al. [134] 

Quartz Crystal 
Microbalance (QCM) 

Salmonella Milk 
2 log 

CFU/ml 
10 min 

Ozalp et al. 
[135] 

Farka et al. 
[136] 

QCM 
Campylobacter 

jejuni 
Poultry 

1.30 log 

CFU/ml 
30 min 

Wang et al. 
[137] 

Masdor et al. 
[138] 

QCM 
Staphylococcus 

aureus 
Buffer 

7.41 log 

CFU/ml 
1 day 

Pohanka [139] 
Noi et al. [140] 

Electrochemical 
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Potentiometric 
Staphylococcus 

aureus 
Pig skin 

2.90 log 

CFU/ml 
2 min 

Zelada-
Guillén et al. 

[141] 
Arora et al. 

[142] 

Impedimetric 
Salmonella 

Typhimurium 
Apple 
Juice 

0.47 log 

CFU/ml 
45 min 

Sheikhzadeh 
et al. [143] 

Bagheryan et 
al. [144] 

Amperometric 
Streptococcus 

agalactiae 
Fish 

1 -7 log 

CFU/ml 
90 min 

Vásquez et al. 
[145] 

Arachchillaya 
[146] 

Electrochemical Chemiluminescence (ELC) Biosensors 

Aptamer-Based ECL 
Sensors 

Escherichia coli 
Luria–
Bertani 
Broth 

0.17 
CFU/ml 

40 min 
Hao et al. 

[147] 

ECL Immunosensor 
 

Vibrio 
parahaemolyticus 

 
Seafood 

0.69 log 

CFU/ml 
1 h Sha et al. [148] 

Paper-Based Bipolar 
electrode ECL 

Listeria 
monocytogenes 

Buffer 
10 

copies/μL 
 

10 s 
Liu and Zhou 

[149] 

Photoelectrochemical Biosensors 
label-Free 

Photoelectrochemical 
Aptasensor 

Bisphenol Milk 0.5 nM 90 s 
Qiao et al. 

[150] 

Tungsten Disulfide 
(WS2) Nanosheet-Based 

Photoelectrochemical 
Chloramphenicol 

Milk 
Powder 

3.6 pM 105 min 
Zhou et al. 

[151] 

Visible-Light 
Photoelectrochemical 

Aptasensing 
Sulfadimethoxine Milk 0.55 nM 50 s 

Okoth et al. 
[152] 

5. Bioluminescence Methods for Detection of Food Contamination 

The overall number of microbes is normally calculated using colony plate counts, dilution 
methods, methods of contact plate and swab, or techniques of membrane filtering. These methods 
produce repeatable findings that reflect the microbiological contamination. However, the long 
incubation time of the sample (up to 72 h for bacteria; up to 5 days for fungi) does not allow for 
rapid correction within one technical process, so for this purpose, tests to estimate the amount of 
bacteria need to be added quickly [153]. Consequently, Sharpe et al. [154] proposed utilizing the 
ATP test dependent on bioluminescence. This approach is becoming increasingly common in 
HACCP program in situ hygiene monitoring. Its principal benefit is the identification of microbial 
and chemical pollutants within a few minutes. 

Recent developments in bio-analytical instruments have allowed for using the capacity of 
certain enzymes to release photons as a by-product of the enzymes’ reactions. This effect is known 
as “bioluminescence”, which can be used to identify the cells’ activity. This technique provides 
results in a short time and is among the latest technologies for rapid microbiological results [155]. 
Bioluminescence plays an important role in real-time process monitoring due to the emission of 
bright light by living microorganisms. Some study results also demonstrated that metal ions, heavy 
metals, phosphorus, naphthalene, genotoxicants and chlorophenols were detected by employing 
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bioluminescence-based biosensors [156]. The bioluminescent organisms in nature are broadly 
distributed and include a wide remarkably different of species. Among the organisms that emit 
light are bacteria, dinoflagellates, fungi, fish, insects, shrimp, and squid. The enzyme luciferase is 
responsible for catalyzing the bioluminescence reactions that occur in these organisms, and in 
certain instances the substrates are referred to as luciferins. Bioluminescence is very effective when 
used for fast spot tracking because tests are obtained in less than 15 minutes [157]. This procedure 
has been used on several food items including fresh and pasteurized dairy products [158], meat and 
poultry products [159], beer [160], and fruit products [161]. 

Sanitizing programs and hazard analysis and critical control point (HACCP) programs can be 
achieved in the food processing industry by using the common bioluminescence method of 
adenosine triphosphate (ATP). Bioluminescence assays and the identification of bacterial adenosine 
triphosphate (ATP) are strong predictors of the occurrence of food contamination in meat, poultry 
and dairy products and the cross-contamination of surfaces [162]. All living organisms use ATP to 
store energy. ATP acts as a chemical energy storage unit for free energy that is emitted through 
catabolism and thereafter used for anabolic processes [163]. The amount of ATP specifically reflects 
the presence of metabolic cells and can be used to count viable living cells in samples. This is 
because there is a linear association between the total number of available ATP molecules and the 
total number of colony-forming units, especially in bacteria and yeast [164]. 

The relationship between microbial biomass and intercellular ATP can be used to quantify the 
total number of microorganisms in food items. Recent studies have shown that the amount of ATP 
present in a cell differs based on the species and growth states of microorganisms. For instance, the 
extracellular ATP present in Acinetobacter junii and Pseudomonas aeruginosa at an incubation time of 6 
h was 255.2 ± 56.8 nM/OD and 25.5 ± 1.1 nM/OD, respectively [165]. Xu et al. [88] developed the 
traditional ATP fluorescence detection system by using a rapid detection system based on a 
nanoprobe and graphite electrode coupled with ATP bioluminescence technology for Escherichia 
Coli detection in food. With this new approach, the researchers were not only able to use the probe 
to capture and enrich Escherichia coli via an antibody–antigen reaction, they were also able to enrich 
ATP using an electric field generated by the graphene transparent electrode (GTE) in order to 
improve the accuracy of the system. This method resulted in the successful generation of a linear 
correlation coefficient of up to 0.972 compared to other traditional methods and satisfied the design 
criteria. The analysis was obtained within 20 min. The system was able to detect the total bacteria 
count in the range of 2–6 log CFU/ml, and its precision has a CV of 4.2%, indicating good reliability 
and repeatability [88]. 

Moreover, Fan and colleagues confirmed the possibility of developing a bioluminescence-
based ATP assay using antibacterial peptide-coated magnetic spheres to distinguish Gram-positive 
G+ bacteria from Gram-negative G− bacteria. The authors obviously found the conventional 
bioluminescence-based ATP cannot distinguish G+ bacteria from G− ones since ATP can be released 
from both bacterial cells. The results exhibited a linear range for G+ bacteria between 3.36 and 7.07 
log CFU/ml, and the limit of detection was 2.34 log CFU/ml within 33 min [166]. 

6. Principle of Bioluminescence Based-ATP Determination 

Adenosine triphosphate is the main activated energy carrier of all living cells in nature, 
including bacteria, mold, yeast, and algae [167]. ATP levels can also be used as a criterion for 
microbial activity measurement. ATP bioluminescence is based on a biochemical reaction catalyzed 
by the enzyme [168]. The reaction is catalyzed by the luciferase enzyme conversion of luciferin to 
oxyluciferin in the presence of oxygen (O2) and magnesium cation (Mg++), and ATP adenosine 
triphosphate is converted to adenosine monophosphate (AMP) with the emission of light [169]. The 
intensity of light in the luminescence reaction is expressed in relative light units (RLU). The reaction 
between ATP and luciferin and luciferase complex is described according to the following equation: Luciferin + ATP +  O2   ௟௨௖௜௙௘௥௔௦௘,ெ௚ାଶሶሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ   Oxyluciferin + AMP +  𝑝𝑟𝑜𝑑𝑐𝑢𝑡𝑠 + light  (1) 
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This light output from the breakdown of cellular ATP by the bioluminescence reaction can be 
measured using sensitive photons of light meters in an instrument called a luminometer. The 
greater the amount of ATP will present, the higher amount of light produced by the APP assay test; 
consequently, the greater the RLU level produced. ATP bioluminescence has often been used for 
the investigation of microbial contamination of food contact surfaces and for measuring the 
efficiency of cleaning procedures. It is a simple and rapid method that provides results within 
minutes compared to conventional methods, which typically take 24–48 h. Libudzisz and Kowal 
and [170] stated that on the bacterial cell possesses approximately 1 ATP femtogram. Based on the 
species, physiological status or metabolic function of microorganisms, the concentration will vary 
from 0.1 to 5.5 fg/cell. Luo et al. [171] claimed that the average concentration of ATP in a cell is 
approximately 0.47 Cell fg. To determine the number of microbes in each sample, it is presumed 
that 1 pg of ATP is equal to 1000 bacterial cells. Table 4 below shows the content of ATP (fg/cell) in 
some bacterial, mold, and yeast cells. 

Table 4. The Content of ATP (fg/cell) in Some Bacterial, mold and Yeast Cells. 

Microorganisms ATP (fg/Cell) References 
Campylobacter jejuni 1.7 Ng et al. [172] 

Yeast 100 Miller and Galston [173] 
Lactobacillus sp. 2.0–2.2 Libudzisz and Kowal [170] 

Pseudomonas fluorescens 0.6 Pistelok et al. [174] 
Escherichia coli 1 Libudzisz and Kowal [170] 

Bacteria Mixture 1 Miller and Galston [173] 
Lactobacillus acidophilus 0.33 Nelson [175] 

Campylobacter coli 2.1 Ng et al. [172] 

7. Applications of Bioluminescence Based ATP in the Food Industry 

7.1. Hygiene Monitor 

The efficacy of ATP-based bioluminescent assays is enhanced due to their ability to provide 
rapid results that indicate the existence or absence of certain biological contaminants in real time 
[176]. ATP bioluminesce assays are widely used in the food industry for estimating the cross-
contamination of surfaces and products through swabbing. This type of application enables results 
within 5 min that are just as accurate as those obtained using traditional techniques. The levels of 
overall surface contamination can be indicated successfully because ATP from all microbial sources 
will be detected [177]. The time of bacterial viability on certain kitchen surfaces ranges between four 
and 24 hours. Therefore, during food preparation it is necessary to design appropriate hygienic 
protocols such as proper washing and disinfection to control and avoid microbial risks. The ATP 
test thus helps to quickly verify that surfaces are clean and properly disinfected. In addition, this 
method does not pose a threat to humans [178]. However, because raw materials of plant or animal 
origin increase ATPs, the test results can be overstated. About cleanliness and hygiene, it is not 
known yet whether microorganisms or traces of biological content are found throughout the work 
and the production equipment by measuring only the ATP [179]. In this case, the values are usually 
dependent on the relative light units (RLU) rather than the concentration of ATP collected. The 
findings are correlated with the previously defined baseline levels for the industry and the 
individual measurement points. Low RLU rates would mean that the measurement point is safe 
and clear of chemical and microbiological contaminants, while high RLU levels would be indicative 
of points of contamination [179]. In a study conducted by Rodrigues et al. [180], the relationship 
between the values of ATP-bioluminescence and the extent of microbial contamination was 
estimated according to traditional methods in order to evaluate the cleanliness of the cutting 
surfaces in the poultry slaughterhouse [180]. Their findings confirmed that that there was a linear 
relationship between the microbial content using conventional methods and the bioluminescent 
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ATP approach. Using the bioluminescent ATP detection system, extremely low contamination rates 
can be identified in seconds, enabling a rapid assessment of the surface hygiene [180]. 

Despite rapid hygiene monitoring using ATP tests, recent studies by Bakke and Suzuki [181] 
who reported that ATP could be hydrolyzed by heat treatment, acidic factors or alkaline conditions 
to ADP and AMP. Consequently, the values of collected RLU will not be accurate. Bakke and 
Suzuki [181] have developed a novel hygiene monitoring based on the detection of total adenylate 
(A3) in a wide variety of foods such as fermented foods, dairy, vegetables, meat, nuts, seafood, and 
fruits. After thorough washing with detergent and rinsing the stainless steel, the amount of 
collected RLU of A3 was 200. In contrast, less than 200 RLU was seen on a traditional ATP system. 
In conclusion, the A3 assay seems to be a successful approach and more sensitive for detecting 
adenylates from food residues that are not identified by traditional ATP assays [181]. 

7.2. Milk and Dairy Products 

The shelf life of milk depends on its initial microbial load, the form and distribution of 
microbes, and how well such microbes grow under different storage conditions. Conventional 
qualitative and quantitative methods were applied in microbiological analysis of food to detect 
microbial contamination using a selective media, non-selective media and biochemical screening 
[182]. These approaches are time-consuming and require additional confirmation and interpretation 
by qualified technicians, which can take several days. Therefore, an alternate, fast, efficient, and 
lower cost method for real-time identification of milk spoilage is warranted [183]. Recently, the 
bioluminescence-based ATP technique has been developed to monitor the presence of 
microorganisms and can easily be applied to determine both somatic cell counts (SCC) and 
microbial counts for controlling raw milk production quality [178,184]. After treatment with a non-
ionic detergent, an indication of the somatic cell concentration in milk can be obtained from the 
ATP concentration level. This result can be considered as an indicator for infection with mastitis 
[178]. Indeed, Moore et al. [185] reported that ATP bioluminescence procedures were performed in 
5–10 min to detect as few as 4 log CFU/ml of milk bacteria which undoubtedly resulted in faster and 
better-informed decisions regarding the status of incoming milk tankers the milk processing 
industries. 

Other studies have examined the use of the bioluminescence -based ATP technique compared 
to total bacterial count (TBC) cultivation for rapid microbial identification to monitor ultra-high 
temperature (UHT) milk quality [186]. ATP bioluminescence was suitable for detecting very low 
concentrations of microbial content compared to results for conventional total bacterial counts, and 
the analysis time was only 20 min. Similarly, Lomakina and others used a bioluminescence ATP 
assay to ascertain the quality of milk within 20 min with a detection limit of approximately 1.11 log 
CFU/ml [168]. 

7.3. Meat and Meat Products 

Meat and meat products can be used effectively as rich media for growing several microflora 
(bacteria, yeasts, and molds), some of which are pathogens [187]. The ATP bioluminescence method 
was used to monitor the microbial content of meat. The study reported that there was a significant 
correlation between the content of ATP and total bacteria counts of vacuum-packed cooked cured 
meat products, and a detection limit of 5–6 log CFU/g was sufficient for screening purposes [188]. 
Similarly, Siragusa and colleagues established a quick ATP assay to quantify total bacteria counts in 
beef and pork carcasses in commercial food industries and to compare findings with the standard 
method of viable plate counts using correlation analysis [189]. The results of this research showed 
that the correlation coefficient between the conventional microbiological assay and the ATP method 
was 0.91 for beef and 0.93 for pork carcass samples. The ATP test applied linearly to microbial 
contamination rates > log 2.0 aerobic CFU/cm2 in carcasses of beef and > log 3.2 aerobic CFU/cm2 in 
carcasses of pork. The ATP test including sampling took approximately 5 min [190]. 

However, one concern with this approach is the presence of ATP in meat and in all living cells. 
Therefore, ATP must be destroyed before an ATP bioluminescence method can be performed to 
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measure only the microbial ATP produced [190,191]. Hence, Cheng et al. [190] conducted an 
experiment to combine an ATP bioluminescence assay with functional magnetic nanoparticles 
(FMNPs) for rapid isolation and detection of Escherichia coli from artificially contaminated ground 
beef. To release the target bacterial ATP in the presence of luciferin–luciferase mechanism, immune 
particles were used to precisely capture and separate the bacteria to generate the luminescence 
signal. E. coli bacteria can be calculated with a detection limit of 1.30 log CFU/mL in the range of 
1.30–6.30 log CFU/ml. The whole process used to identify E. coli took approximately 1 h. The range 
of identification and assay time obtained in this study has been shown to be superior to that of 
other techniques [190]. 

7.4. Fish and Fish Products 

For more than 50 years, ATP and associated compounds have been used for the quality 
evaluation of fish and shellfish [192]. Bioluminescence is the production and release of light by a 
living entity and exists commonly in aquatic vertebrates and invertebrates. Shim et al. [193] 
measured the ATP content in the muscle of olive flounder (Paralichthys olivaceus) by calculating the 
intensity of light released using luciferase provided by American fireflies. The findings of 
bioluminescence were nearly equal to high-performance liquid chromatography (HPLC). Indeed, 
the results of the study showed a high correlation of r2 = 0.98 between luminometer-measured RLU 
and HPLC-based ATP content. Tanaka et al. [194] have established a bioluminescence system for 
the identification of AMP in the Atlantic bonito (Sarda sarda). Polyphosphate (polyP)-AMP 
phosphotransferase (PPT) and adenylate kinase (ADK) were utilized from the Acinetobacter johnsonii 
strain conjugated with firefly luciferase. With this approach, the researchers were able to identify 
high-sensitivity AMP in food residues [194]. Regarding the evaluation of different microbiological 
methods, Gram [195] found that the correlation between bacterial ATP levels and plate counts was 
0.97–0.99 for four fish species. During storage trials, the ratio of bacterial ATP to total count bacteria 
remained constant and did not vary significantly among fish species [195]. As the amount of ATP 
per cell varies based on nutritional conditions, stress, etc., it is advised that a standard curve for 
each specific product be generated [196]. 

Other experiments conducted by Miettinen et al. [197] reported the presence of Listeria in 28 
fish processing factories and the extent of surface contamination utilizing specific approaches such 
as total aerobic heterotrophic and enterobacteria, yeast and mold tests and ATP levels. ATP tests 
and the total bacteria contact agar slide methods were negatively associated (r = 0.21). However, for 
both methods, 68 percent of the samples were rated as decent to fair or unacceptable. The 
microbiological limit of 1 RLU using an ATP assay was exceeded in 43.3% of the samples. The 
results of this study confirmed that the ATP system recognized 18.1% of the samples that were 
considered contaminated per the results of the contact agar slide process, and 13.6% of the samples 
allowed by the contact agar slide system were rejected by the ATP process [197]. 

8. Advantages and Disadvantages of ATP Bioluminescence 

ATP bioluminescence provides a better image of the reaction to the contaminant by presenting 
physiologically relevant data. Bioluminescence is fast and simple to calculate, resulting in the in-
situ detection of a wide range of microorganisms. The bioluminescent sensors of whole cells have 
benefits over conventional approaches by being faster, more cost effective, easy to carry out and less 
labor-intensive [198]. While not an alternative to traditional approaches, an ATP-bioluminescence-
assay can also be a valuable tool for determining the efficacy of environmental cleanliness 
procedures even with very low microbial counts [199]. Moreover, bioluminescent techniques often 
possess several benefits compared to fluorometric techniques mainly because no wavelength of 
excitation is required for the representation of light. In addition, unlike the fluorescent labeling of 
bacterial species, there is a total energy reliance on the emission of bioluminescents, which enables 
the capability to distinguish between living and dead cells. Consequently, bioluminescence is a 
highly valuable instrument for regulating in situ microbial deterioration and is thus a desirable tool 
for hygiene efficacy [200]. 
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Luminescent approaches often pose some general disadvantages. The most significant 
disadvantage is the quenching of released light, which negatively influences measurements. The 
sum of light determined photometrically may be greatly decreased by molecules from the biological 
samples. However, the biological samples produce certain luminescent non-microbial substances 
that increase the intensity of the measured light. Bacterial bioluminescent assays are thus capable of 
being a liability in the food microbiology industry. For example, the results of bacterial 
bioluminescent assays can be false negatives or false positives by using phage or plasmid host 
ranges that are either too specific or too extensive [177]. Another disadvantage of bacterial 
bioluminescent assays is their unreliability about efficiently identifying gram-negative bacteria due 
to the incomplete lysis of the cells [201]. 

9. Conclusion and Future Directions 

Developing biosensors with the necessary properties for reliable and effective use in routine 
applications is challenging. Despite the great effort spent on the development of various types of 
biosensors over the past few years, only a few for bacterial detection are commercially available or 
are approaching commercialization. Requirements for ideal sensors include the specificity to 
distinguish the target bacteria in a complex food product, sensitivity to detect bacteria directly, and 
the ability to provide real-time results within a reasonable time. Detection of pathogen or toxic 
chemicals in food matrix is not a simple and rapid approach. Indeed, it requires additional 
preparation steps before detection. This includes sample preparation and harvesting the target 
microbial cells or chemical. The development of any rapid biosensors for detection of pathogens 
also relies on the type of food products and the nutrients present in these products, such as fat, 
proteins, and fibers. Hence, there might be a need to develop a specific sensor for each food product 
or specific analytical tools and sampling methods. 

This review highlights potentially reliable biosensor methods to expand research in this area 
and to address the need for the development of more economical and cost-effective methods. In 
addition, there is a need to develop a portable bioluminescence-based ATP unit that can be utilized 
on farms to detect pathogens on the surface of fresh produce. Moreover, such biosensors should 
provide reliable results in addition to being easy and simple to use without the need for consumer 
training. 
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