
Optical Materials 38 (2014) 80–86
Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier .com/locate /optmat
Dispersion of the linear and nonlinear optical susceptibilities of Bismuth
subcarbonate Bi2O2CO3: DFT calculations
http://dx.doi.org/10.1016/j.optmat.2014.09.032
0925-3467/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: New Technologies – Research Centre, University of
West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic.

E-mail address: maalidph@yahoo.co.uk (A.H. Reshak).
A.H. Reshak a,b,⇑, S. Auluck c

a New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech Republic
b Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis, Malaysia
c Council of Scientific and Industrial Research – National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India

a r t i c l e i n f o
Article history:
Received 4 June 2014
Accepted 19 September 2014
Available online 7 November 2014

Keywords:
Bismuth subcarbonate Bi2O2CO3

Linear and nonlinear optical susceptibilities
Second harmonic generation
a b s t r a c t

The dispersion of the linear and nonlinear optical susceptibilities of bismuth subcarbonate Bi2O2CO3 are
calculated using density functional theory (DFT). We have employed the state-of-art all-electron full
potential linearized augmented plane wave (FP-LAPW) method. Calculations are performed within the
recently modified Becke–Johnson potential (mBJ) to obtain the self consistency conditions. The calculated
linear optical susceptibilities exhibit a considerable anisotropy which is useful for second harmonic gen-
eration (SHG) and optical parametric oscillation (OPO). The calculated absorption coefficient show good
agreement with the available experimental data. The values of calculated uniaxial anisotropy de = �0.168
and the birefringence Dn(0) = 0.166 indicate considerable anisotropy. The calculated SHG of the
dominant component vð2Þ322ðxÞ

��� ��� is about d32 = 5.3 pm/V at k = 1064 nm (1.165 eV) which is in excellent
agreement with the available experimental data (d32 = 5.49 pm/V) obtained using pulsed Nd:YAG laser
at wavelength k = 1064 nm (10 ns, 3 mj 10 kHz). To analyze the origin of the high SHG of bismuth
subcarbonate Bi2O2CO3 we have correlated the features of vð2Þ322ðxÞ

��� ��� spectra with the features of e2(x)
spectra as a function of x/2 and x.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The nonlinear optical (NLO) materials have been extensively
investigated because of their potential applications in nonlinear
optics and laser engineering, for example borate materials BaB2O4,
LiB3O5, CsB3O5, and YCa4(BO3)3O are all well-known NLO crystals
[1] which show excellent properties such as short growth period,
large effective nonlinear coefficient, high damage threshold, and
good mechanical properties. Borate crystals exhibit huge NLO
properties, particularly for second harmonic generation (SHG)
and third harmonic generation (THG) applications [2–5]. It has
been shown that anionic groups and chemical bonding structures
of B atoms have a major influence on the NLO properties of borate
crystals, that could be the reason of the high NLO properties [6,7].
Several other promising materials may also be found in more com-
plex borates incorporating bismuth together with other cationic
elements. For instance, several bismuth-containing borates crystal-
lize in non-centro-symmetric space groups have been synthesized,
including BaBiBO4, Bi2ZnB2O7, CaBiGaB2O7, Bi2CaB2O7, and
Bi2SrB2O7 [8–10]. These materials exhibit high NLO properties.

Further insight into the electronic structures and the physical
properties of materials can be obtained from the calculations of
interband optical functions. Bismuth subcarbonate Bi2O2CO3 is
particularly interesting for its high NLO properties, which could
be related to the existing of [CO3] groups [11–13] and the p-cations
with stereochemically active lone pairs [Bi3+] [14–16]. Also their
considerable anisotropy leads to increase in the optical susceptibil-
ities. Thus one requires reliable information about the optical func-
tions. Therefore, based on our previous works [17–23] we have
calculated the linear and nonlinear optical susceptibilities using
the state-of-the-art full potential linear augmented plane wave
(FPLAPW) method on several systems whose linear and nonlinear
optical susceptibilities are known experimentally. We find very
good agreement with the experimental data. Thus, we believe that
our calculations reported in this paper would produce very accu-
rate and reliable results.

To our knowledge no first-principles calculations on Bismuth
subcarbonate Bi2O2CO3 appeared so far in literature. Therefore a
detailed depiction of the linear and nonlinear optical properties of
bismuth subcarbonate Bi2O2CO3 is timely and will bring us impor-
tant insights to understand the electronic origins of huge linear and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.optmat.2014.09.032&domain=pdf
http://dx.doi.org/10.1016/j.optmat.2014.09.032
mailto:maalidph@yahoo.co.uk
http://dx.doi.org/10.1016/j.optmat.2014.09.032
http://www.sciencedirect.com/science/journal/09253467
http://www.elsevier.com/locate/optmat


A.H. Reshak, S. Auluck / Optical Materials 38 (2014) 80–86 81
nonlinear optical susceptibilities by employing first-principles cal-
culations using the full potential linear augmented plane wave (FP-
LAPW) method which has proven to be one of the most accurate
methods [24,25] for the computation of the electronic structure of
solids within density functional theory (DFT). In this paper we
address our selves to report these calculations based on the exper-
imental results [26] so as to make a meaningful comparison.

2. Details of calculation

As starting point for our calculations, we have used the X-ray
diffraction data taken from Huang et al. [26]. Bismuth subcarbon-
ate Bi2O2CO3 crystallizes in non-centro-symmetric orthorhombic
space group Imm2, the lattice parameters are a = 3.8658 (5) Å,
b = 3.8648 (5) Å, c = 13.6757 (5) Å and z = 2 [26]. The crystal struc-
ture of bismuth subcarbonate Bi2O2CO3 along a-, b-, c-axis are pre-
sented in Fig. 1. The structure was optimized by minimization of
the forces (1 mRy/au) acting on the atoms using Perdew–Burke–
Ernzerhof generalized gradient approximation (GGA) [27]. Once
the forces are minimized in this construction one can then find
the self-consistent density at these positions by turning off the
relaxations and driving the system to self-consistency. We have
employed the state-of-the-art full potential linear augmented
plane wave (FPLAPW) method in a scalar relativistic version as
embodied in the WIEN2k code [28]. This is an implementation of
the density functional theory (DFT) [29]. Exchange and correlation
potential was described by the modified Becke–Johnson potential
(mBJ) [30]. The Kohn–Sham equations are solved using a basis of
linear APW’s. The potential and charge density in the muffin-tin
(MT) spheres are expanded in spherical harmonics with lmax = 8
and nonspherical components up to lmax = 6. In the interstitial
region the potential and the charge density are represented by Fou-
rier series. Self-consistency is obtained using 200 k

*

points in the
irreducible Brillouin zone (IBZ). We have calculated the linear opti-
cal susceptibilities using 500 k

*

points in the IBZ, while for the non-
linear optical susceptibilities a mesh of 1500 k

*

points was used.
The orthorhombic symmetry allows only three non-zero com-

ponents of the second-order optical dielectric tensor components
corresponding to the electric field ~E being directed along a, b,
and c-crystallographic axes. We identify these with the x, y and z
Cartesian directions. Therefore, the complex tensor components
consist of exx(x), eyy(x) and ezz(x) for different incident light polar-
izations ([100], [010] and [001], with respect to the crystalline
axes). The imaginary part of the optical dielectric function’s disper-
sion exx

2 ðxÞ, e
yy
2 ðxÞ and ezz

2 ðxÞ completely defines the linear optical
properties. The imaginary part was calculated using the following
expression taken from Ref. [31]:
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Fig. 1. Crystal structure of bismuth subcarbonate Bi2O2CO
where m, e and �h are the electron mass, charge and Planck’s con-
stant, respectively. fc and fv represent the Fermi distributions of
the conduction and valence bands, respectively. The term pi

cvðkÞ
denotes the momentum matrix element transition from the energy
level c of the conduction band to the level v of the valence band at
certain k-point in the BZ and V is the unit cell volume.

The complex second-order nonlinear optical susceptibility ten-
sor vð2Þijk ð�2x;x;xÞ generally written as [32–35]:
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From these formulae we can notice that there are three major

contributions to vð2Þijk ð�2x; x;xÞ: the inter-band transitions

vijk
interð�2x;x;xÞ, the intra-band transitions vijk

intrað�2x;x;xÞ and
the modulation of inter-band terms by intra-band terms

vijk
mod ð�2x;x;xÞ, where n – m – l. Here n denotes the valence

states, m the conduction states and l denotes all states (l – m, n).
There are two kinds of transitions that can take place, one of them
vcc0, involves one valence band (v) and two conduction bands (c
and c0), and the second transition vv0c, involves two valence bands
(v and v0) and one conduction band (c). The symbols are defined as

Di
nmð~kÞ ¼ #

i
nnð~kÞ � #

i
mmð~kÞ with ~#i

nm being the i component of the

electron velocity given as #i
nmð~kÞ ¼ ixnmð~kÞri

nmð~kÞ and
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. The position matrix

elements between band states n and m, ri
nmð~kÞ, are calculated from

the momentum matrix element Pi
nm using the relation [36]:

ri
nmð~kÞ ¼

Pi
nmð~kÞ

imxnmð~kÞ
, with the energy difference between the states n

and m given by �hxnm = �h(xn �xm). fnm = fn � fm is the difference
of the Fermi distribution functions. i, j and k correspond to carte-
sian indices. It has been demonstrated by Aspnes [37] that only
the one-electron virtual transitions (transitions between one
valence band state and two conduction band states, vcc0) give a
b-axisa long c-axis 

3; (a) along a-axis; (b) along b-axis; (c) along c-axis.
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significant contribution to the second-order tensor. We ignore the
virtual-hole contribution (transitions between two valence band
states and one conduction band state, vv0c) because it was found
to be negative and more than an order of magnitude smaller than
the virtual-electron contribution for this compound. For simplicity

we denote vð2Þijk ð�2x;x;xÞ by vð2Þijk ðxÞ. The subscripts i, j, and k are
cartesian indices.
3. Results and discussion

3.1. Salient features of the electronic band structures

Since the optical properties is natural output of the calculated
electronic band structure, therefore let us recall some salient fea-
tures of the electronic band structure of bismuth subcarbonate Bi2-

O2CO3. The calculated electronic structure along the optical
transitions depicted on a generic band structure is represented in
Fig. 2. It suggest that the conduction band minimum (CBM) and
the valence band maximum (VBM) are situated at the centre of
the BZ resulting in a direct band gap. The CBM is formed from
Bi-s/p, O-p, C-p with negligible contribution from Bi-d/f, C-s and
O-s states, whereas the VBM is formed by O-p, Bi-s/p, C-s/p with
very small contribution of Bi-d/f and O-s states.

3.2. Linear optical response

The optical properties can provide detailed information about
the electronic structure of the materials. The optical properties of
solids are a major topic, both in basic research as well as for indus-
trial applications. While for the former the origin and nature of dif-
ferent excitation processes is of fundamental interest, the latter
can make use of them in many optoelectronic devices. Fig. 3a
shows the calculated imaginary part of the dielectric function
Fig. 2. The optical transitions depicted on a generic band structure of the bismuth
subcarbonate Bi2O2CO3.
versus the photon energy. The calculated optical spectra only
include the direct inter-band transitions. Broadening is taken to
be 0.1 eV which is traditional for oxide crystals and is typical of
the experimental accuracy. All the optical properties are scissors
corrected [38], more details about the scissors correction is give
in Ref. [38]. Basically this increases the separation between the
valence and conduction bands rigidly by the difference between
the calculated (0.8 eV) and measured energy gaps (3.42 eV) [26].
It is a consequence of a fact that DFT calculations usually underes-
timate the energy gaps with respect to the experimental ones. A
very simple way to overcome this drawback is to use the scissors
correction factor, which merely brings the calculated energy gap
close to the experimental one. The scissors correction can have a
significant effect on the magnitude, peaks positions and the struc-
ture in general. This could arise from differences in the band struc-
tures and wave-functions. Following Fig. 3a one can see that the
edge of optical absorption (fundamental absorption edge) for
exx

2 ðxÞ, eyy
2 ðxÞ and ezz

2 ðxÞ are situated at 3.42 eV. These edges of
optical absorption give the threshold for direct optical transitions
between the VBM and CBM. The electronic band structure suggests
that the first spectral structure in exx

2 ðxÞ, e
yy
2 ðxÞ and ezz

2 ðxÞ is due to
the transition from Bi-s/p/d, C-s/p and O-p to Bi-s/p, C-p/d and O-p
states. The second structure corresponds to transition between Bi-
s/p/d, C-s and O-p to Bi-s/d, C-s/p and O-p states. A remarkable fact
regarding the first peak in exx

2 ðxÞ, e
yy
2 ðxÞ and ezz

2 ðxÞ is that its width
is essentially determined by the width of the highest occupied
valence band. We should emphasize that there exists a consider-
able anisotropy between the three principal complex tensor
components, the anisotropy favors an enhanced phase matching
conditions necessary for observation of the second harmonic gen-
eration (SHG) and optical parametric oscillation (OPO).

From the calculated imaginary part exx
2 ðxÞ, e

yy
2 ðxÞ and ezz

2 ðxÞ the
real part exx

1 ðxÞ, e
yy
1 ðxÞ can be obtained by means of Kramers–Kro-

nig transformation [39] as shown in Fig. 3b. The vanishing fre-
quency value in the dielectric function defines the static
electronic dielectric constant by e1 = e1(0). These are
exx

1 ð0Þ ¼ 3:75, eyy
1 ð0Þ ¼ 4:30 and ezz

1 ð0Þ ¼ 3:55. The uniaxial anisot-
ropy de ¼ ðejj0 � e?0 Þ=etot

0

h i
is �0.168 indicating the existence of the

considerable anisotropy. For more details about the optical proper-
ties and with the help of the existing information on the imaginary
and real parts of the optical functions, we evaluate the reflectivity
spectra R(x), absorption coefficient I(x), refractive indices n(x)
and the birefringence Dn(x).

The reflectivity spectra for different incident light polarizations
[100], [010] and [001], with respect to the crystalline axes is rep-
resented in Fig. 3c. At low energies the optical reflectivity starts at
about 15% in the [100] direction, 16% along [010] direction and
18% along [001] direction. At the higher energies around 10.0 eV
the investigated compound exhibits the higher reflectivity which
forms the first reflectivity maximum by transition of s-states of
VB to p-states of CB. At around 13.5 eV there existing an abrupt
reduction in the reflectivity spectrum confirming the occurrence
of a collective plasmon resonance. The depth of the plasmon min-
imum is determined by the imaginary part of the dielectric func-
tion at the plasma resonance and is representative of the degree
of overlap between the inter-band absorption regions.

Fig. 3d represent the calculated absorption coefficient along
[100], [010] and [001] directions, it shows the fundamental opti-
cal absorption edge located at 3.42 eV matching the experimental
value of the absorption edge [26], see the small box inside
Fig. 3d present the measured fundamental optical absorption edge
which exhibit good agreement with our calculation. Then after
there is a abrupt increases in the optical absorption to reach its
maximum value at around 14.0 eV. It is necessary to mention that
this compound possess wide optical transparency region
(885–3625 Å).



Fig. 3. (a) Calculated exx
2 ðxÞ (dark solid curve-black color online), eyy

2 ðxÞ (light dashed curve-red color online) and ezz
2 ðxÞ (light solid curve-blue color online) spectra. (b)

Calculated exx
1 ðxÞ (dark solid curve-black color online), eyy

1 ðxÞ (light dashed curve-red color online) and ezz
1 ðxÞ (light solid curve-blue color online) spectra. (c) Calculated

RxxðxÞ (dark dashed curve-black color online), Ryy(x) (light solid curve-red color online), and Rzz(x) (light solid curve-blue color online), along with our measured total R(x)
(dark solid curve-black color online). (d) Calculated absorption coefficient Ixx(x) (dark solid curve-back color online), Iyy(x) (light dashed curve-red color online) and Izz(x)
(light solid curve-blue color online) spectrum. The absorption coefficient in 104 sec�1. We should mention here that we compare our calculated results with the experimental
data [26]. (e) Calculated refractive indices nxx(x) (dark solid curve-black color online), nyy(x) (light dashed curve-red color online) and nzz(x) (light solid curve-blue color
online) spectrum. (f) Calculated birefringence Dn(x). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.3. Refractive indices and birefringence

We have calculated the refractive indices nxx(x), nyy(x) and
nzz(x) along [100], [010] and [001] directions as a function of
photon energy as illustrated in Fig. 3e. It can be seen that nxx(0),
nyy(0) and nzz(0) at zero frequency show the static refractive index.
They increase beyond the zero frequency limits and reached to
their maximum values. Beyond the maximum value they start to
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decrease and with few oscillations they go beyond unity. In this
region (n < 1) the phase velocity of the photons increases to univer-
sal constant (C). However the group velocity always less than the C,
therefore the relativity relations not effected [40]. To the best of
our knowledge, there are no previous experimental or theoretical
data for the refractive indices available in literature to make a
meaningful comparison. Future experimental work will testify
our calculated results. However we have done similar calculations
on many compounds using DFT calculation within different
exchange and correlation potentials. We find that the calculated
refractive indices are in good agreement with experiment. In our
recent publication on KTiOPO4 (KTP) [41] BaBiBO4 [42], Na3La9O3

(BO3)8 [17], BiB3O6 [43], CuInX2 (X = S, Se, Te) [44], LiGaX2 (X = S,
Se) [45] we have compared the calculated refractive indices and
the birefringence with experiment. For example we find that
nxx(x) for KTP (at 1064 nm is calculated to be 1.746 and the exper-
imental value varies from 1.738 to 1.782. Similar results are
obtained for the other two directions. The calculated birefringence
at 1064 nm is found to be 0.074. This is in good agreement with the
experimental value of 0.084. Thus we can see that the obtained
refractive indices are in good agreement with experiment. The
refractive indices obtained using mBJ are expected to be much clo-
ser to the experimental values. The refractive indices show consid-
erable anisotropy among nxx(x), nyy(x) and nzz(x) which is
important for SHG and OPO as it is defined by the phase-matching
condition. One can obtain the phase matching angle for the SHG
(the angle between the optical beam and the optical axis for which
the x and 2x beams are phase matched).

The birefringence can be evaluated from the linear response
functions from which the anisotropy of the index of refraction is
determined. The calculated birefringence is illustrated in Fig. 3f.
The birefringence is defined as a difference between the extraordi-
nary and ordinary refraction indices, Dn(x) = ne(x) � no(x), where
no(x) is the index of refraction for an electric field oriented along
the c-axis (ordinary index of refraction) and ne(x) is the index of
refraction for an electric field perpendicular to the c-axis (extraor-
dinary index of refraction). It is clear that the birefringence is cru-
cial only in the non-absorbing spectral range, which is below the
energy gap. The value of the birefringence and the corresponding
refractive indices at the static limit and at k = 1064 nm (1.165 eV)
are given in Table 1.
3.4. Second harmonic generation

The non-centro-symmetric orthorhombic space group Imm2, has
several NLO parameters which are equal to zero. This symmetry
allows only seven nonzero complex second-order nonlinear

optical susceptibility tensors; vð2Þ113ð�2x;x;xÞ ¼ vð2Þ131ð�2x;x;xÞ,
vð2Þ223ð�2x;x;xÞ¼vð2Þ232ð�2x;x;xÞ, vð2Þ311ð�2x;x;xÞ, vð2Þ322ð�2x;x;xÞ
and vð2Þ333ð�2x;x;xÞ. For simplicity we can write the complex

second-order nonlinear optical susceptibility tensor as vð2Þijk ðxÞ. The
Table 1
The calculated exx

1 ð0Þ, e
yy
1 ð0Þ, ezz

1 ð0Þ, nxx(0), nyy(0), nzz(0), and Dn(0), at static limit and at
k = 1064 nm.

At static limit At k = 1064 nm

exx
1 ð0Þ 3.75 3.82

eyy
1 ð0Þ 4.30 4.35

ezz
1 ð0Þ 3.55 3.63

nxx(0) 1.935 1.959
nyy 2.074 2.088
nzz 1.881 1.981

Dn(0) 0.166 0.118
complex second-order nonlinear optical susceptibility tensors are
more sensitive to the value of the band gap than the linear optical
properties due to higher power energy differences in the denomina-
tors of the complex second-order nonlinear optical susceptibility
tensors formalism given in Eqs. (2)–(4). To avoid the DFT drawback
we consider a quasi-particle self-energy corrections at the level of
scissors operators in which the energy bands are rigidly shifted to
merely bring the calculated energy gap closer to the experimental
gap. We should emphasize that the scissors corrections has a pro-

found effect on the magnitude of vð2Þijk ðxÞ
��� ���. Fig. 4a represent the cal-

culated vð2Þ113ðxÞ
��� ���, vð2Þ223ðxÞ

��� ���, vð2Þ311ðxÞ
��� ���, vð2Þ322ðxÞ

��� ��� and vð2Þ333ðxÞ
��� ���, which

exhibit that the vð2Þ322ðxÞ
��� ��� tensor component give the highest value

among the others, thus it is the dominant component at both the sta-
tic limit and at 1.165 eV (k = 1064 nm). These values are listed in
Table 2, we noticed that the calculated SHG of the dominant compo-

nent vð2Þ322ðxÞ
��� ��� is about d32 = 5.3 pm/V at k = 1064 nm (1.165 eV)

which is in excellent agreement with the available experimental
data (d32 = 5.49 pm/V) using pulsed Nd:YAG laser at wavelength
k = 1064 nm (10 ns, 3 mj 10 kHz) [26]. The high SHG of Bismuth sub-
carbonate Bi2O2CO3 could be related to the existing of [CO3] groups
which have planer structure with p-orbitals [11–13] and the p-cat-
ions with stereo-chemically active lone pairs [Bi3+] which exhibit
large distortion of Bi–O polyhedron [14–16]. Also due to their con-
siderable anisotropy which led to increase the corresponding optical
susceptibilities. We should emphasize that the anisotropy in the lin-
ear optical susceptibilities favors an enhanced phase matching con-
ditions necessary for observation of the SHG. The static values of the
second order susceptibility tensor are very important which can be
use to estimate the relative SHG efficiency. We have calculated the

dispersions of the imaginary and real parts of vð2Þ322ðxÞ as a function
of photon energy (Fig. 4b). The imaginary and real parts consists of
inter-band and intra-band contributions, in additional x and 2x
resonances can be further separated into inter-band and intra-band

contributions. Fig. 4c illustrated the total Im vð2Þ322ðxÞ a long with the
2x/x inter-/intra-band contributions. The imaginary part clearly

show that vð2Þijk ðxÞ is zero below half the band gap, then after
increases since the 2x resonance begin to contribute at energies
above half the band gap due to E � 2x terms in the denominator
of the above mentioned formalism (2)–(4). The x resonance begins
to contribute for energy values above the fundamental energy gap.
We will use the absolute value of the dominant component

vð2Þ322ðxÞ
��� ��� as prototype to analyze the features of the calculated

vð2Þ113ðxÞ, v
ð2Þ
223ðxÞ, v

ð2Þ
311ðxÞ, v

ð2Þ
322ðxÞ and vð2Þ333ðxÞ. To achieve that, the

absorptive part of the corresponding dielectric function e2(x) as a

function of both x/2 and x will be compare to vð2Þ322ðxÞ
��� ��� as shown

in Fig. 4d. For simplicity we will divide the energy region into three
parts. The first part from 1.71 up to 4.0 eV, contains the first struc-

ture of vð2Þ322ðxÞ
��� ���which is originated from 2x resonance. The second

energetic part extended from 4.0 till 8.0 eV represents the second

structure of vð2Þ322ðxÞ
��� ��� is associated with interference between 2x

and x resonances (the threshold of e2(x). Finally, the third part from

8.0 till 3.5 eV represent the spectral structure of vð2Þ322ðxÞ
��� ��� which is

mainly due to x resonance and is associated with the second struc-
ture in e2(x).
4. Conclusions

As starting point for our calculation of the linear and nonlinear
optical susceptibilities of bismuth subcarbonate Bi2O2CO3 we have



Fig. 4. (a) Calculated vð2Þijk ðxÞ
��� ��� for the five components using EVGGA with scissors correction. (b) Calculated Imaginary vð2Þ322ðxÞ (dark solid curve-black color online) and real

vð2Þ333ðxÞ (light dashed curve-red color online) spectra, using mBJ with scissors correction; (c) calculated total Re vð2Þ322ðxÞ spectrum (dark solid curve-black color online) along
with the intra (2x)/(1x) (light solid curve-blue color online)/(light dashed doted curve-cyan color online) and inter (2x)/(1x) (light long dashed curve-red color online)/
(light doted curve-green color online)-band contributions, here all Re vð2Þ333ðxÞ are multiplied by 10�7, in esu units; (d) -upper panel- calculated jvð2Þ322ðxÞj (dark solid curve-
black color online) using mBJ with scissors correction; -lower panel- calculated exx

2 ðxÞ (dark solid curve-black color online); calculated exx
2 ðx=2Þ (dark dashed curve-red color

online). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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used the X-ray diffraction data taken from recently synthesized
bismuth subcarbonate Bi2O2CO3 single crystal by Huang et al. Bis-
muth subcarbonate Bi2O2CO3 crystallizes in non-centro-symmetric
orthorhombic space group Imm2, this symmetry allows only three
non-zero components of the second-order optical dielectric tensor
components. Whereas for the nonlinear optical susceptibilities it
allows seven nonzero complex second-order nonlinear optical sus-
ceptibility tensors. The calculations were performed using the
state-of-the-art full potential linear augmented plane wave
(FPLAPW) method within the recently modified Becke–Johnson
potential (mBJ). We present results for the imaginary, real parts
of optical function’s dispersion, reflectivity, absorption coefficient
and the refractive indices spectra for different incident light polar-
izations [100], [010] and [001], with respect to the crystalline
axes. From the calculated refractive indices we obtained the bire-
fringence. The obtained values of the uniaxial anisotropy and the
birefringence confirm the considerable anisotropy of bismuth sub-
carbonate Bi2O2CO3 which is important for SHG as it is defined by



Table 2
Calculated vð2Þijk ðxÞ

��� ��� in pm/V at k = 1064 nm along with measured values of dijk [26], where 1 pm/V = 2.387 � 10�9 esu.

Tensor
components

Theory vð2Þijk ðxÞ in (pm/V) at

static limit

Theory dijk = 0.5 vð2Þijk ðxÞ
in (pm/V)

Theory vð2Þijk ðxÞ in (pm/V) at

k = 1064 nm

Theory dijk = 0.5 vð2Þijk ðxÞ in (pm/V)

at k = 1064 nm

Experiment at
k = 1064 nm in (pm/V)

vð2Þ113ðxÞ
��� ��� 2.3 d15 = 1.15 3.4 d15 = 1.7

vð2Þ223ðxÞ
��� ��� 7.3 d24 = 3.65 6.6 d24 = 3.3

vð2Þ311ðxÞ
��� ��� 4.7 d31 = 2.35 6.0 d31 = 3.0

vð2Þ322ðxÞ
��� ��� 9.6 d32 = 4.8 10.6 d32 = 5.3 d32 = 5.49a

vð2Þ333ðxÞ
��� ��� 3.3 d33 = 1.65 3.2 d33 = 1.60

a Ref. [26].
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the phase-matching condition. We have calculated the nonlinear
optical susceptibilities namely the SHG, the obtained value
of the dominant component (d32 = 5.3 pm/V) at k = 1064 nm
(1.165 eV) show excellent agreement with the measured value
(d32 = 5.49 pm/V) using pulsed Nd:YAG laser at wavelength
k = 1064 nm (10 ns, 3 mj 10 kHz).
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