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a b s t r a c t

KMF3 (M = Mn, Fe, Co, Ni) compounds crystallize in the cubic perovskite structure with space group
Pm3m (#221) at ambient conditions. Structural, chemical bonding, electronic and magnetic properties
of these compounds are investigated using the full-potential linearized augmented plane wave
(FP-LAPW) method within the density functional theory (DFT). The calculated structural parameters
agree well with the experimental measurements. From the elastic properties, it is inferred that these
compounds are elastically stable. Moreover, KMnF3 is found to be ductile in nature while the remaining
compounds are brittle. The results of the electronic band structure show that KMnF3 and KNiF3 are
indirect band gap semiconductors in both spin channels, while KFeF3 and KCoF3 are half metallic, being
semiconductors with majority spin channel and metals with spin minority channel. The bonding behav-
ior of the studied compounds is expressed as a combination of covalent–ionic behavior. The magnetic
study reveals the ferromagnetic behavior for these compounds. The half metallicity and the ferromag-
netic behavior favor these compounds for spintronic applications.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The field of spintronics is concerned with the search of highly
spin polarized materials for enhancing the tunneling magneto
resistance (TMR) of magnetic tunnel junctions (MTJs), which are
active members for the magnetic random access memory (MRAM)
elements. There are two ways for achieving a spin polarization,
employing half metals or exploiting spin filtering effect. The half
metals, Heusler alloys, and magnetic perovskites have been inten-
sively studied for finding the electronic, magnetic and optoelec-
tronic properties [1]. First principles-based methods (ab initio
methods) which use only the atomic constants as input parameters
to solving the Schrödinger equation have now become the most
powerful probes for predicting the ground state properties of
materials without any adjustable parameters [2].

Materials possessing perovskite structure have received enor-
mous attention over the past two decades because of their interest-
ing properties such as high temperature superconductivity and
colossal magneto resistivity [3]. Perovskite materials show a high
degree of magnetic properties due to their particular ordering of
occupied d-orbital. The halogen-based cubic perovskite crystals
ABX3 (where A and B are cations and X is a monovalent halogen an-
ion) are a subject of numerous theoretical and experimental stud-
ies due to combination of their relatively simple crystal structure,
easiness of preparations and doping with different impurity ions
and variety of other electrical, optical and magnetic properties [4].

Among them, KMF3 (M = Mn, Fe, Co, Ni and Zn) perovskites have
been in the limelight in these days and have been actively re-
searched due to their high-temperature super-ionic behavior and
physical properties such as piezoelectric characteristics, ferromag-
netism, nonmagnetic insulator behavior [5–7]. It is well known
that alkali metal fluorides have wide applications in the organo
fluorine chemistry both as a fluorinating agent as well as a catalyst
in various reactions [8,9].

The alkali metal fluorides KMF3 (M = Mn, Fe, Co and Ni) have cu-
bic crystal structure, with space group Pm-3m (No. 221) [10–12].
Our calculations are based on the density functional theory using
generalized gradient approximation (GGA). Calculated ground-
state structural properties of the aforementioned crystals have
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been compared with the available theoretical and experimental
data.
2. Method of calculation

In the present work the Kohn–Sham equation [13] is solved to
calculate the structural, elastic, electronic and magnetic of the cu-
bic perovskites KMF3 (M = Mn, Fe, Co and Ni). The Kohn–Sham
equation in atomic units is;

½Ts½q� þ Vee½q� þ Ven½q� þ VXC½q��/ið~rÞ ¼ ei/ið~rÞ ð1Þ

The first term on the left hand side represents the kinetic energy
of non-interacting electrons and the second term is the classical
Coulomb interaction of electrons. The third term is the external
effective potential from the fixed nuclei and the fourth term is
the exchange correlation potential.

The Kohn–Sham equation is solved iteratively till self-consis-
tency is achieved. Iteration cycles are needed because of interde-
pendency between orbitals and potentials. In the Kohn–Sham
scheme the electron density can be obtained by summing over
all the occupied states [13]. The electron density is given by the fol-
lowing expression [14];

qð~rÞ ¼
XN

i

fi /ið~rÞj j2 ð2Þ

where fi is the occupation and /ið~rÞ is the wave function of the ith
orbital. The full potential linearized augmented plane wave (FP-
LAPW) method [15,16] with Wu and Cohen generalized gradient
approximation [17] is used to solve Eq. (1). In the generalized gra-
dient scheme, the exchange–correlation energy (EXC) is a function
of the local electron spin densities and their gradients:

EGGA
XC q"; q#
� �

¼
Z

EXC q"ð~rÞ; q#ð~rÞ; rq"ð~rÞ; rq#ð~rÞ
� �

d3r ð3Þ

where q", q;, rq", rq; are the densities and the gradient of densi-
ties for spin up and spin down electrons. EXC is the exchange–corre-
lation energy per particle. The spin polarized FP-LAPW method used
for the computation of the ground state properties of materials [18]
was started by the structural optimization of the crystal structure of
the material using wien2k software [19]. In the full potential
scheme, the wave function, the potential and charge density are ex-
panded into two different basis. The wave function is expanded in
spherical harmonics in the atomic spheres while outside the
spheres (interstitial regions) it is expanded in plane wave basis.
The potential is also expanded in the same manner:

VðrÞ ¼

X
lm

VlmðrÞYlmðrÞ ðaÞ
X

k

VK eikr ðbÞ

8>><
>>:

ð4Þ

where Eqs. (4)(a) and (4)(b) are for inside and outside atomic
sphere, respectively. Inside the sphere the maximal value for the
wave function expansion l is set to be 10 and it is symmetric, while
outside the sphere it is constant. The muffin-tin radii (RMT) are cho-
sen in such a way that there is no charge leakage from the core. The
(RMT) were taken to be 2.5, 1.98, 1.95, 1.93, 1.90 and 1.72 (a.u.) for K,
Mn, Fe, Co, Ni and F, respectively. The wave functions in the
interstitial region were expanded in plane waves with a cut-off
RMT ⁄ Kmax = 7, where RMT denotes the smallest muffin-tin radius
and Kmax gives the magnitude of the largest K vector in the plane
wave expansion. For the structural properties the integrals over
the Brillouin zone are performed up to 35 k-points for GGA using
the modified tetrahedron method [20]. For the calculations of the
electronic and magnetic properties, a dense mesh of uniformly
distributed k-points is required. Hence, the Brillouin zone integra-
tion was performed with 2000 k-points.

3. Results and discussion

3.1. Structural properties

Our aim in this section is to calculate the total energy as a func-
tion of unit-cell volume to obtain the ground state properties of
KMF3 (M = Mn, Fe, Co and Ni) compounds. In the cubic unit cell of
the perovskites K is placed at (0, 0, 0), M at (1/2, 1/2, 1/2) and F at
(1/2, 1/2, 0), (1/2, 0, 1/2) and (0, 1/2, 1/2) sites. The volume of the
unit cell of each KMF3 (M = Mn, Fe, Co and Ni) is optimized to obtain
the structural properties such as the lattice constant a, the bulk
modulus B, and the ground state energy E0. In the optimization pro-
cedure, the total energy of each unit cell is calculated by varying the
unit cell volume and fitted by Birch–Murnaghan’s equation of state
[21]. The ground state energy (E0), is the minimum energy of the
unit cell and the volume corresponding to this energy is the ground
state volume. The calculated values of these parameters are
compared with the available theoretical and experimental results
in Table 1. Furthermore, the lattice constants are also calculated
by ionic radii using the following empirical formula [22];

a ¼ aþ bðrk þ rFÞ þ cðrX þ rFÞ ð5Þ

where a (0.06741), b (0.4905) and c (1.2921) [22] are constants and
rk is the ionic radius of K (1.64 Å) [22], rF is the ionic radius of F
(1.285 Å) and rX is the ionic radius of Mn (0.53 Å), Fe (0.78), Co
(0.745) and Ni (0.69) [22]. The calculated lattice constants for the
studied materials are also quoted in Table 1. As a common feature
with the previous results, it is seen that our calculated lattice con-
stants are slightly underestimated within 0.21%, 1.69%, 1.3% and
0.54% for KMnF3, KFeF3, KCoF3 and KNiF3, respectively, compared
to the experimental data [23]. These small discrepancies could be
attributed to the fact that the present calculation pertains to
T = 0 K, whereas the experimental measurement were performed
at room temperature. Our calculated values of lattice constants
for KMF3 (M = Mn, Fe, Co and Ni) are in good agreement with the
available theoretical results [12]. The bulk modulus B is a measure
of the crystal rigidity, thus a large B is for high crystal rigidity. In
view of Table 1, KFeF3 is harder and less compressible than KNiF3,
KCoF3 and KMnF3. Bond length plays an important role in the sym-
metry of perovskite structures. The calculated bond lengths from
cation to anions (M � F, K � F, K �M) are listed in Table 2. The cal-
culated bond length can help to compute the tolerance factor for
perovskite crystals using the following expression [24],

t ¼ 0:707 hK� Fið Þ
hM� Fið Þ ð6Þ

where hK – Fi and hM � Fi are the average bond lengths in these
perovskites. Our calculated tolerance factor values are in good
agreement to the analytically calculated-ones [25]. For cubic per-
ovskites the tolerance factor generally lies between 0.95 and 1.04
[26]. Our computed results listed in Table 2 are included in this en-
ergy range, revealing the cubic perovskite structure for KMF3

(M = Mn, Fe, Co and Ni) compounds. As a result our calculated val-
ues of structural parameters are in good agreement with the avail-
able experimental and theoretical results which confirms validity
and reliability of the performed calculations.

3.2. Elastic properties

The elastic constants are important parameters to describe the
response of the materials to an applied macroscopic stress. These
constants play an important role in providing valuable information



Table 1
Calculated lattice constants a (Å), bulk moduli B (GPa), elastic constants Cij (in GPa),
shear modulus G (GPa), Young’s modulus E (GPa), Poisson’s ratios, v, anisotropy factor
A, B/G ratio and Kleinman parameter, f, at equilibrium volume for KMF3 (M = Mn, Fe,
Co and Ni) compared with other theoretical and experimental results.

Present
work

Present work
(analytical)

Experimental
work

Other
work

KMnF3

a0 4.193 4.235 4.202a 4.188b

B 70.1
C11 69.26
C12 23.57
C44 8.36
E 35.28
G 13.08
m 0.35
A 0.37
B/G 2.97
n 0.48

KFeF3

a0 4.061 4.170 4.13a 4.124b

B 93.28
C11 94.48
C12 21.98
C44 30.88
E 79.81
G 32.93
m 0.21
A 0.85
B/G 1.40
n 0.38

KCoF3

a0 4.041 4.125 4.094a 4.076b

B 83.04
C11 116.80
C12 24.83
C44 40.53
E 102.91
G 42.64
m 0.20
A 0.88
B/G 1.37
n 0.41

KNiF3

a0 4.012 4.054 4.034a 4.0118b

B 89.26
C11 115.73
C12 53.85
C44 41.63
E 95.14
G 36.96
m 0.2
A 1.35
B/G 2.01
n 0.59

a Ref. [23].
b Ref. [12].

Table 2
Calculated bond lengths and tolerance factor for KMF3 (M = Mn, Fe, Co and Ni).

Present work Other work

KMnF3

Bond length K–F 2.9503
Mn–F 2.0862
K–Mn 3.6134
Tolerance factor 0.9998 0.978a

KFeF3

Bond length K–F 2.9139
Fe–F 2.0604
K–Fe 3.5688
Tolerance factor 0.9999 1.002a

KCoO3

Bond length K–F 2.8299
Co–F 2.0009
K–Co 3.4683
Tolerance factor 0.9999 1.019a

KNiF3

Bond length
K–F 2.3009
Ni–F 1.9731
K–Ni 3.4322
Tolerance factor 0.8244 1.047a

a Ref. [26].
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on the stability and stiffness of materials. Since the studied com-
pounds have cubic symmetry, we need to calculate only three
independent elastic parameters namely C11, C12, and C44 to com-
pletely characterize the mechanical properties. Hence, a set of
three equations is needed to determine all these constants.

The first equation involves calculating the bulk modulus (B),
which is given by [27]:

B ¼ 1=3ðC11 þ 2C12Þ ð7Þ

The second equation involves performing volume-conserving
tetragonal strain tensor e.

~e ¼
e 0 0
0 e 0
0 0 1

ð1þeÞ2
� 1

0
B@

1
CA ð8Þ
Application of this strain changes the total energy from its un-
strained value to:

EðeÞ ¼ C11 � C12ð Þ3V0e2 þ Oðe2Þ ð9Þ

where V0 is the volume of the unit cell.
Lastly, we used the volume-conserving rhombohedral strain

tensor given by:

~e ¼ e
3

1 1 1
1 1 1
1 1 1

0
B@

1
CA ð10Þ

which change the total energy to

EðeÞ ¼ Eð0Þ þ 1
6

C11 þ 2C12 þ 4C44ð ÞV0e2 þ Oðe3Þ ð11Þ

The computed values of the elastic constants for KMnF3

(M = Mn, Fe, Co and Ni) compounds are given in Table 1. In view
on Table 1, one can notice that the unidirectional elastic constant
C11, which is related to the unidirectional compression along the
principal crystallographic directions, is about 87.93% higher than
C44 for KMnF3, 67.32% for KFeF3, 65.29% for KCoF3 and 64.04% for
KNiF3, indicating that these compounds present a weaker resis-
tance to the pure shear deformation compared to the resistance
to the unidirectional compression. It is known that the elastic con-
stants are related to the bulk modulus value by the relation (7) and
since the true experimental values of the bulk modulus and the
elastic constants of the herein studied compounds are not avail-
able, the magnitude of the deviation of our calculated elastic mod-
uli is difficult to estimate. It may be assumed to be small, since the
calculations are performed with a large number of k-points and a
large number of plane waves. It is worthy to mention here that
in general, it is far to say that the experimental data are well repro-
duced by the calculation. On reason for this difference is that in the
theoretical calculations the crystal is assumed to be at T = 0 K and
thus do not include contributions from lattice vibrations that are
present at room temperature measurements. Finite temperature
generally tends to reduce the elastic constant values due to the
thermal expansion, as also found theoretically and experimentally
for fluoro-perovskites KZnF3, KMgF3 and CsCdF3 [44–46]. To the
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best of our knowledge no experimental or theoretical value for the
elastic constants has been reported; hence our results can serve as
a prediction for future investigations.

The requirement of mechanical stability in a cubic structure
leads to the following restrictions on the elastic constants [31]:

1
3
ðC11 þ 2C12Þ > 0; C44 > 0;

1
2
ðC11 � C12Þ > 0; C12 < B < C11

ð12Þ

These criteria are satisfied, indicating that these compounds are
elastically stable.

As a matter of fact, the elastic anisotropy of crystals has an
important implication in engineering science since it is highly cor-
related with the possibility to induce micro cracks in materials
[32]. To quantify the elastic anisotropy, we have computed the
anisotropy factor ‘‘A = 2C44/(C11 � C12)’’ from the present values of
the elastic constants. The anisotropy factor A gives information
about the anisotropy: for A = 1, the material is considered to be a
completely isotropic, while any value smaller or larger than 1 indi-
cates anisotropy of these compounds. The magnitude of the devia-
tion from 1 is a measure of the degree of elastic anisotropy
possessed by the crystal. From the computed anisotropy values
listed in Table 1, one can conclude that KNiF3 is highly isotropic,
while KMnF3 shows large elastic anisotropy and KFeF3, KCoF3 show
small anisotropy.

The knowledge of the single-crystal elastic constants Cij allows
the calculation of some polycrystalline elastic moduli, such as,
the shear modulus G, the Young’s modulus E and the Poisson’s ratio
m, using the Voigt–Reus–Hill approximations by the following
expression [33–36]:
Fig. 1. Electronic band structure (spin up is represented by up arrow
E ¼ 9BG
3Bþ G

ð13Þ

m ¼ 3B� 2G
2ð3Bþ GÞ ð14Þ

GV ¼
1
5

C11 � C12 þ 3C44ð Þ ð15Þ

GR ¼
5C44ðC11 � C12Þ

4C44 þ 3 C11 � C12ð Þ ð16Þ

Another important elastic parameter is that of Kleinman param-
eter f which describes the relative positions of cation and anion
sub-lattices under the volume-conserving strain distortions for
which positions are not fixed by symmetry [37]. This parameter
is calculated by the following equation;

f ¼ C11 þ 8C12

7C11 þ 2C12
ð17Þ

The calculated values of the mentioned elastic moduli for poly-
crystalline KMF3 (M = Mn, Fe, Co and Ni) compounds are quoted in
Table 1. The Young’s modulus (E) is a good indicator about the stiff-
ness of the material. When it is higher for a given material, the
material seems to be stiffer. From the present results of E, we
can state that KCoF3 is stiffer than KNiF3, KFeF3 and KMnF3. Pois-
son’s ratio provides further information for dealing with the char-
acteristic of the bonding forces than any of the other elastic
property. 0.25 and 0.5 values are the lower and the upper limits
for central force in solids, respectively [38]. The calculated values
of Poisson’s ratio for KMnF3, KFeF3, KCoF3 and KNiF3 are 0.35,
and vice versa) for KMnF3 (a), KFeF3 (b), KCoF3 (c) and KNiF3 (d).
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0.21, 0.21 and 0.20, respectively. Thus, the high Poisson’s value for
KMnF3 indicates that interatomic forces in this compound are
central.

It is known that a small value of Kleinman parameter implies
there is a large resistance against bond bending or bond angle dis-
tortion and vice versa [39,40]. From Table 1 this value is 0.48, 0.38,
0.41 and 0.59 KMnF3, KFeF3, KCoF3 and KNiF3, respectively, maim-
ing that KFeF3 is more resistant to bond bending or bond angle dis-
tortions compared to KCoF3, KMnF3 and KNiF3. Cauchy pressure
(C12 � C44), Pugh’s index of ductility (B/G) and Poisson’s ratio (m)
are factors which allow us to know the ductile/brittle nature of a
given material. The Cauchy’s pressure, defined as the difference be-
tween the two particular elastic constants C12 � C44 is considered
to serve as an indication of ductility: if the pressure is positive
(negative), the material is expected to be ductile (brittle) [41]. Here
the value of the Cauchy’s pressure is positive for KMnF3 and KNiF3

and it is negative for KFeF3 and KCoF3 which clearly highlights the
ductile and brittle nature of these compounds, respectively. An-
other index of ductility is the (B/G) ratio. According to Pugh’s
[42] ratio, the high (low) B/G ratio is associated with the ductile
Fig. 2. Spin dependent total and partial density of sta
(brittle) nature of the materials. The critical value which separates
the ductile and brittle was found to be 1.75. As displayed in Table 1,
the calculated B/G ratio is larger than the critical value for KMnF3

and KNiF3 and smaller for KFeF3 and KCoF3 which also confirms
that latter compounds are brittle in nature. We may also refer to
Frantsevich et al. [43] who distinguish the ductility and brittleness
of materials in terms of Poisson’s ratio (m). According to Frantsevich
rule, the critical value of material is 0.26. For brittle materials, the
Poisson’s ratio is less than 0.26; otherwise the material behaves in
a ductile manner as recently demonstrated in a study of brittle ver-
sus ductile transition in some perovskites compounds from first-
principle calculations [28–30]. Here, the calculated Poisson’s ratio
for KMnF3 is larger than (0.26) while it is less than (0.26) for KNiF3,
KFeF3 and KCoF3 categorizing the latter compounds as ductile brit-
tle materials.

3.3. Electronic properties

To illustrate the corresponding electronic properties, the spin
resolved band structure, total and partial density of states are given
tes KMnF3 (a), KFeF3 (b), KCoF3 (c) and KNiF3 (d).



Table 3
Calculated total (MT), local and interstitial (minst) magnetic moments in the units of
(lB) for KMF3 (M = Mn, Fe, Co and Ni).

Site KMnF3 KFeF3 KCoF3 KNiF3

minst 0.3327 0.1523 0.0566 0.0176
mK 0.0006 �0.0016 �0.0012 �0.0009
mM 4.4336 3.5605 2.6561 1.7308
mF 0.0779 0.0964 0.0963 0.0841
MT 5.0006 4.0004 3.0004 1.9999
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in Figs. 1 and 2, respectively. From Fig. 1, a semiconductor behavior
can be seen in KMnF3 and KNiF3 with majority and minority spin
channels while KFeF3 and KCoF3 are half metallic and being semi-
conductors with majority spin channel and metals with spin
minority channel. This situation in KFeF3 and KCoF3 indicates typ-
ical half-metallic ferromagnetism with 100% spin polarization at
Fermi level (EF). Our results show that the band gap increases in
going from Mn to Ni. The increase in the band gap from Mn to Ni
is due to the decrease in the hybridization of 3d orbital of M
(M = Mn, Fe, Co and Ni) and F-2p.

The densities of states (Fig. 2) of these compounds are plotted in
the energy range from �20 eV to 20 eV. The main contributions in
the total density of states are due to K: 3s,3p,3d, Mn: 3s,3p,3d, Fe:
3s,3p,3d, Co: 3s,3p,3d, Ni: 3s,3p,3d and F: 2s,2p states. Following
Fig. 2, we should emphasize that there are four distinct bands in
the density of electronic states separated by gaps. The lowest band
from the left is composed by K-3p states. The bands below the Fer-
mi level (EF) are known as valence bands. The upper and lower va-
lence bands are mainly composed of M-d states. The main spin
polarization of the upper valence band takes place across the Fermi
level. The conduction band, which is above the Fermi level, is
mainly composed of K-3d, M-d and F-2p states.

In the cubic structure of KMF3 (M = Mn, Fe, Co and Ni), M atom
is situated at the center of the octahedron surrounded by six oxy-
gen ions, forming MF6 octahedral. In the octahedron, the positively
charged M atom attracts the negatively charged fluorine atoms.
The electrons are arranged in the octahedron in such a fashion that
F-2p states are completely filled and the M-3d states are partially
filled. The densities of states for M-eg and M-t2g states in KMF3

(M = Mn, Fe, Co and Ni) are shown in Fig. 2. It is clear from Fig. 2
that t2g states are lower in energy than eg states and hence the
overlapping of eg with F-2p is stronger. Crystal fields are generated
in these compounds because of the Columbic repulsion between
the electrons of M-3d states and F-2p states [44]. In cubic symme-
try this repulsion causes splitting by degenerating M-3d states into
two non-degenerate t2g and eg states.

Charge density of KMF3 (M = Mn, Fe, Co and Ni) for (110) planes
is displayed in Fig. 3. Our predictions show that the Mn, Fe, Co and
Ni charge density is spherical for spin up states, which illustrates
that the M-3d levels are partially filled (shown in Fig. 2(a–d)). In
the case of spin down states, the shape of M shifts from approxi-
mately spherical to dumbly, which indicates ionic interactions
with F. Electron density distribution indicates overlapping of states
in Mn, Fe, Co and fluorine and explains the covalent nature of bond,
while the nature of bond between Mn–F, Fe–F, Co–F, Ni–K is ionic.
Fig. 2 shows that the eg and t2g states of M (M = Mn, Fe, Co and Ni)
hybridizes strongly with the 2p state of F.
Fig. 3. Charge density for the spin-up and spin-down states of (110) p
3.4. Magnetic properties

To study the magnetic properties of KMF3 (M = Mn, Fe, Co and
Ni) compounds, their ferromagnetic and anti-ferromagnetic struc-
tures are optimized by minimizing the total energy of the unit cell
with respect to the variation in the unit cell volume. We have
found that the ferromagnetic state is energetically lower than the
anti-ferromagnetic state. Furthermore, the magnetic properties of
cobalt based perovskites depends on the spin state of Co2+, Co3+,
Co4+ (HS, IS or LS) and the existence of indirect exchange interac-
tion [45,46].

The calculated total, local and interstitial magnetic moments for
KMF3 (M = Mn, Fe, Co and Ni) are given in Table 3. Our calculations
show that the magnetic moments of Mn, Fe, Co and Ni are 4.41 lB,
3.56 lB, 2.65 lB, 1.73 lB for KMnF3, KFeF3, KCoF3 and KNiF3,
respectively. The difference in the magnetic moments is due to
the transfer of electrons from M to F atoms. One can also note that
the magnetic moments decrease in going from Mn to Ni. Hence, the
magnetic behavior becomes stronger in going from Ni to Mn. The
magnetic moments of potassium for KMF3 (M = Mn, Fe, Co and
Ni) are 0.0007 lB, �0.0016 lB, �0.0012 lB and �0.0009 lB,
respectively. The negative signs of the magnetic moments of the
K atom in KFeF3, KCoF3 and KNiF3 demonstrate that they are
anti-parallel to Fe, Co and Ni and consequently reduce the net mag-
netic moments of the compounds. The positive values of the mag-
netic moments of the interstitial sites and F atoms confirm that
they are parallel to the magnetic moments of transition metal ele-
ments M. The interstitial magnetic moments increase the overall
magnetic nature of the compounds. The decrease in the magnetiza-
tion from KMnF3 to KNiF3 is due to the hybridization of M-3d and
F-2p states. The integer magnetic moment is also an important
characteristic for half-metallic ferromagnets (HMFs). According to
Slater–Pauling rule [47], the saturation magnetic moment of the
HMFs is an integer and scales with the number of valence elec-
trons. The calculated values of magnetic moment for KMnF3, KFeF3,
lane of KMnF3 (a), KFeF3 (b), KCoF3 (c) and KNiF3 (d) perovskites.
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KCoF3 and KNiF3 are 5.00 lB, 4.00 lB, 3.00 lB and 1.99 lB, respec-
tively, which clearly indicates the ferromagnetic behavior of the
herein studied compounds.

4. Conclusion

Structural, elastic, chemical bonding, electronic and magnetic
properties of the KMnF3, KFeF3, KCoF3 and KNiF3 compounds are
predicted by using the full-potential linearized augmented plane
wave (FP-LAPW) method within the density functional theory
(DFT). Calculated structural parameters through DFT and analytical
method are in excellent agreement to the experimental measure-
ments. Compounds are elastically stable, while KMnF3 is ductile
and the remaining compounds are found to be brittle. KMnF3 and
KNiF3 are indirect band gap semiconductors in both spin channels
while KFeF3 and KCoF3 are half metallic and being semiconductors
with majority spin channel and metals with spin minority channel.
The band gap increases from Mn to Ni in KMF3. Compounds show
mixed ionic and covalent bonding. All the compounds show ferro-
magnetic behavior. Due to half metallicity and ferromagnetic
behavior these compounds can be used for spintronic applications.
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