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a b s t r a c t

We report ab initio density functional theory calculations of the structural, electronic and optical properties
of the spinel oxides SiMg2O4, SiZng2O4, and SiCd2O4 using the full-potential linearized augmented plane-
wave method. The structural parameters calculated using both the local density and generalized gradient
approximations to the exchange-correlation potential are consistent with the literature data. To calculate the
electronic properties, the exchange-correlation potential is treated with various functionals, and we find that
the newly developed Tran–Blaha-modified Becke–Johnson functional significantly improves the band gap.
We predict a direct band gap in all of the considered SiB2O4 compounds, and the band gaps continuously
decrease as the atomic size of the B element increases. The decrease in the fundamental direct band gap (Γ–
Γ) from SiMg2O4 to SiZn2O4 to SiCd2O4 can be attributed to p–d mixing in the upper valence bands of
SiZn2O4 and SiCd2O4. The lowest conduction band is well dispersive, similar to that found for transparent
conducting oxides such as ZnO. This band is mainly defined by the s and p electrons of the Si and B (B¼Mg,
Zn, Cd) atoms. The topmost valence band is considerably less dispersive and is defined by O-2p and B–d
electrons. The charge-carrier effective masses are evaluated at the topmost valence band and at the
bottommost conduction band that were calculated. The frequency-dependent complex dielectric function,
absorption coefficient, refractive index, extinction coefficient, reflectivity and electron energy loss function
were estimated. We find that the value of the zero-frequency limit of the dielectric function εð0Þ increases as
the band gap decreases. The origins of the peaks and structures in the optical spectra are determined in
terms of the calculated energy band structures.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Spinel oxides are a family of �120 compounds with the chemical
formula AB2O4. In spinel oxides (AB2O4), there are two cations, A and
B, in a 1:2 ratio, where A and B are either divalent and trivalent
(AIIBIII

2 O4:A
II¼Cd, Mg, Mn, Zn…, and BIII¼Al, Ga, In…) or tetravalent

and divalent cations (AIVBII
2O4:A

IV¼Si, Ge, Sn…, and BII¼Cd, Mg, Mn,
Zn…). Cation A is surrounded by four oxygen ions, which forms an

AO4 tetrahedron, whereas cation B is surrounded by six oxygen ions,
which forms an edge-sharing BO6 octahedron (see Fig. 1). This
structure has a cubic close packing (fcc) arrangement of oxide ions
with a large unit cell that contains eight formula units (A8B16O32)
[1,2]. These spinel oxides possess many interesting electronic,
mechanical, magnetic, and optical properties [3–36], which make
them potential candidate materials for numerous technological
applications. Consequently, these materials have been experimentally
and theoretically investigated to better understand their fundamental
properties. Among their interesting properties, the electronic and
optical properties have attracted considerable attention, mainly
because the knowledge of these properties is required to eventually
apply these materials in optoelectronic devices.
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The recent growing demand for high-performance, low-cost
transparent conducting oxides (TCOs) in optoelectronic devices,
such as flat-panel displays, windshield defrosters and solar cells
[3,4], has led to an extensive search for new TCO materials with
higher transparency and conductivity [5]. There has been consider-
able work involving both experimental and theoretical methods on
the AIIBV

2O4 spinel oxides, such as MgAl2O4, ZnAl2O4, and ZnGa2O4

[5–36], but there are very few reports on the AIVBII
2O4 spinel oxides,

such as SiMg2O4, SiZn2O4, and SiCd2O4. In particular, the only known
properties of the SiMg2O4, SiZn2O4, and SiCd2O4 materials are their
structural properties [6,37], elastic constants [37], lattice dynamics
(only for SiMg2O4) [38], and electronic structure properties [37]. We
are unaware of any studies of the optical properties of the spinels
considered herein. Previous theoretical studies [6,37,38] were per-
formed within the density functional theory (DFT) framework [39,40]
with the standard local density approximation (LDA) and the gen-
eralized gradient approximation (GGA), which are known to severely
underestimate the band gaps of semiconductor and insulator mate-
rials [41]. Indeed, DFT with the common LDA and GGA yields
satisfactory structural parameters that are fairly consistent with the
experimental values, but it provides unsatisfactory electronic proper-
ties (such as the band gap and effective masses). The band gaps
calculated using DFT with the common LDA and GGA are likely to be
approximately 30–50% smaller than the experimental values [42].

Currently, some approximations beyond the LDA and GGA,
such as GW, hybrid functionals (B3LYP, HSE…), LDAþU,
LDAþDMFT, etc., have been developed to accurately describe
the electronic structures of semiconductors and insulators. How-
ever, some of these methods are computationally expensive or
not satisfactory in all cases [43]; for example, the LDAþUmethod
can only be applied to correlated and localized electrons. For-
tunately, a very elegant approach to solve this dilemma has
recently been suggested by Tran and Blaha [44–46]; the so-
called Tran–Blaha-modified Becke–Johnson (TB-mBJ) potential
approximation is implemented in the new version of the WIEN2K
code [47]. The TB-mBJ is an alternative method to have a band
gap close to the experimental value, and it is computationally
cheaper than the other mentioned methods. For spinel oxides,
the TB-mBJ method has been demonstrated to obtain band gaps
that are consistent with the more accurate results obtained using
the GW method [36,48]. Tran and Blaha [43] demonstrated that
the TB-mBJ potential yields band gaps that are consistent with
the experimental values, which leads to typical errors of less than
10% for some semiconductors and insulators. The drawback of the
TB-mBJ potential is that it cannot be obtained as the derivative of
an exchange-correlation function [43]. Therefore, this potential
cannot be used to calculate properties that depend on energy,
such as the structural properties.

Fig. 1. Band structures of the spinel oxides SiMg2O4, SiZn2O4 and SiCd2O4 along the high-symmetry directions calculated using the GGA-PBEsol and TB-mBJ functionals. The
Fermi level is shifted to zero.
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In this work, we aim to calculate the electronic properties of
the SiMg2O4, SiZn2O4 and SiCd2O4 materials using the LDA [49],
GGA-PBEsol [50] and Engel–Vosko scheme of the GGA (GGA-EV)
[51] functionals. In addition, we aim to compare these properties
to the results obtained using the TB-mBJ functional [44–46] to
demonstrate the advantage of the TB-mBJ method for describing
the electronic structure of the considered materials. Another
objective of the present work is to explore in detail the optical
properties of the spinel oxides SiMg2O4, SiZn2O4, and SiCd2O4 for
this first time. This paper is organized as follows: in Section 2, the
calculation method is briefly outlined. The obtained results and
some discussions are presented in Section 3. Finally, some con-
cluding remarks are provided in Section 4.

2. Methodology

All of the electronic total energy calculations in this work were
performed in the framework of density functional theory (DFT)
and with an all-electron method with the linearized/augmented
plane waveþ local orbitals (L/APWþ lo) basis set as implemented
in the WIEN2k code [47]. In this method, the wave functions are
expanded in a linear combination of radial functions time sphe-
rical harmonics inside the non-overlapping muffin-tin spheres of
radius RMT surrounding each atom and in plane waves in the
interstitial region between the spheres. The radii of the muffin-tin
spheres were taken as large as possible without overlapping the
spheres. The maximum l of the expansion of the wave function in
spherical harmonics inside the muffin-tin spheres was lmax¼10.
A plane-wave cut-off of Kmax ¼ 4:0 a:u:�1 is chosen for the expan-
sion of the wave functions in the interstitial region. The k
integrations over the Brillouin zone (BZ) are performed up to
10�10�10 Monkorst–Pack mesh (MP) [52] (47 k-points in the
irreducible Brillouin zone (IBZ)). The self-consistent calculations
are considered converged when the total energy of the system is
stable within 10�5 Ry. The atomic positions were relaxed until the
forces were below 0:5 mRy a:u:�1. The exchange-correlation
potential for the structural properties was calculated using the
LDA [49] and the GGA based on Perdew et al. (GGA-PBEsol) [50].
For the electronic properties, in addition to the LDA and the GGA,
the GGA-EV [51] and the TB-mBJ [44–46], which better describe
many semiconductors and insulators, were applied.

3. Results and discussion

3.1. Structural properties

SiB2O4 (B¼Mg, Zn, and Cd) spinel oxides crystallize in the cubic
spinel structure with the space group Fd3m (No. 227). The unit cell
contains 56 atoms: 8 silicon atoms, which occupy the tetrahedral
sites of Wyckoff position 8a (0.125, 0.125, 0.125); 16 B atoms at the
octahedral sites of position 16d (0.5, 0.5, 0.5); and 32 oxygen
atoms at position 32e (u, u, u). Therefore, the cubic spinel structure
is characterized by two free structural parameters that are not
fixed by symmetry: the lattice constant (a) and the coordinate of
the oxygen atom (u). The optimized lattice constant and the
oxygen positional parameter were determined variationally using
the previously given calculation settings (Section 2).

In Table 1, we show the obtained results for the lattice constant
a, the internal coordinate u, the bulk modulus B and the pressure
derivative of the bulk modulus B0 using both the local density [49]
(LDA) and the generalized gradient [50] (GGA) approximations to
the exchange-correlation potential and compare these values with
the available experimental and theoretical data. As shown in
Table 1, our calculated lattice constant of SiMg2O4 (the only

compound for which experimental data are available in the
literature) is consistent with the reported measured one. The
LDA yields a lattice constant value that is slightly below (�0.8%)
the experimental value, whereas the GGA gives a value that is
slightly above (þ0.2%). In addition, the theoretical results reported
by other researchers [6,36,37] are also consistent with one
another. This consistency proves the reliability and the accuracy
of these present ab initio calculation findings and gives confidence
in the results of the following calculations of the electronic and
optical properties for the considered materials. We did not find
any experimental results for B and B0 in the literature to support
these theoretical results. Our B and B0 values obtained using the
FP-L/APWþ lo method are reasonably consistent with those
obtained using the pseudopotential plane-wave (PP-PW) method [36].

3.2. Electronic properties

Now, we discuss our results of the electronic properties of
SiMg2O4, SiZn2O4 and SiCd2O4 via the energy bands, density of
states and charge-carrier effective masses. The electronic band
structures are calculated with the optimized crystal structure
parameters for all three considered materials using four different
functionals: the LDA, the GGA-PBEsol, the GGA-EV and the TB-mBJ.
It is well known that the common LDA and GGA usually severely
underestimate the energy band gap [54]. Engel and Vosko [51]
considered this shortcoming and constructed a new functional
form of the GGA (denoted here as EV-GGA), which was designed to
provide a better exchange-correlation potential. This approach
(EV-GGA) yields better band splitting and some other properties
that mainly depend on the accuracy of the exchange-correlation
potential. The recently proposed Tran–Blaha-modified Becke–
Johnson (TB-mBJ) potential approximation [44–46] as implemented
in Wien2K [47] yields band gaps consistent with the experiment,
which leads to typical errors of less than 10% for some semicon-
ductors and insulators [43]. Note that because there is no
exchange and correlation energy term from which the mBJ
potential can be deduced, a direct optimization procedure is not
possible as in the usual theory [53]. The GGA-EV functional is
obtained by optimizing the exchange-correlation potential Vex

rather than the energy Vex, and it is designed to improve the band

Table 1
Calculated lattice constant a0 (in )̊, internal coordinate of the oxygen atom u, bulk
modulus B (in GPa), and the pressure derivative of the bulk modulus B0 for the
SiMg2O4, SiZn2O4 and SiCd2O4 compounds in comparison with the available
experimental and theoretical results in the literature [6,36,37].

SiMg2O4 SiZn2O4 SiCd2O4

Present Expt. Others Present others Present Others

a0 8.0877a 8.0709b 8.1318c 8.1526a 8.1718c 8.7048a 8.7504c

8.0006d 8.0351c 8.0644d 8.0499c 8.6132d 8.6164c

8.039e 8.0830e 8.6170e

8.1385b

u 0.2442a 0.2419c 0.2430a 0.2409c 0.2357a 0.2333c

0.2446d 0.24315c 0.2435d 0.2427c 0.2359d 0.2349c

0.2442e 0.2432e 0.2362e

B0 183.68a 169c 204.58a 186c 169.39a 155c

197.73d 193c 221.61d 206d 190.24d 191c

B0 3.95a 4.32c 4.21a 4.72a 5.0c

4.05d 3.80c 4.47d 4.62d 4.35c

a Present work using the GGA-PBEsol.
b Ref. [37].
c Ref. [36].
d Present work using the LDA.
e Ref. [6].
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gaps rather than the local energy. Consequently, the equilibrium
lattice constant calculated using this functional is considerably
larger than the experimental value [54]. Therefore, the band
structures using the TB-mBJ and GGA-EV functionals were calcu-
lated with the lattice parameter values that were obtained using
the GGA-PBEsol functional.

In Fig. 1, we compare the band structures calculated using the
GGA-PBEsol and TB-mBJ functionals for the SiMg2O4, SiZn2O4 and
SiCd2O4 compounds along the high symmetry lines in the corre-
sponding Brillouin zone. In general, the TB-mBJ potential causes a
rigid displacement of the conduction bands toward higher energy
with small differences in the dispersion at some regions of the
Brillouin zone. Both the maximum of the valence band (VBMa) and
the minimum of the conduction band (CBMi) are located at the Γ
point (the Brillouin zone center) for the three studied compounds,
which allows us to classify these spinel oxides as direct band gap
materials. The calculated fundamental band gaps of the three
considered materials using four different functionals (LDA, GGA-
PBEsol, GGA-EV and TB-mBJ) are listed in Table 2 along with a
comparison with previous theoretical results. Our direct energy
band gap (Γ–Γ) calculated using the LDA and the GGA-PBEsol
methods compares favorably with that obtained using the same
functional [36]. The experimental band gap values for these oxides
are not yet available for comparison with our predicted values.
However, we can assess the obtained results using the published
material regarding the accuracy of each different functional.
Because the band gaps that were calculated using the DFT with
the common LDA and GGA are likely approximately 30–50%
smaller than the experimental values [55], it is clear from
Table 2 that our band gaps calculated using the TB-mBJ potential
are significantly improved compared to the other exchange-
correlation functionals. The fundamental band gaps for the con-
sidered oxides calculated using the TB-mBJ approach are in the
range of 3.43–7.73 eV. Hence, these materials are classified as
wide-band-gap solids and are consequently transparent in the
visible spectra. From the band structures, one can observe that the
maxima of the valence bands are flat, which indicates that they
have large hole effective masses. Thus, the p-type materials should
have some unusual transport properties.

To study the nature of the energy band structures of the
SiMg2O4, SiZn2O4 and SiCd2O4 compounds in the TB-mBJ func-
tional, the total density and the atomic site projected density of
states (TDOS and PDOS) of these compounds are explored. The
TDOS and PDOS diagrams of SiMg2O4, SiZn2O4 and SiCd2O4 are
depicted in Fig. 2. Because the DOS diagrams of the three
considered compounds are similar, we detailed only the density
of electronic states of SiMg2O4 as an example. The lower group of
valence bands, which are not shown here for clarity, extending
around �39.0 to �38.53 eV, is due to the Mg-2p states. The
structure localized between �18.49 and �16.12 eV below the
Fermi level mainly consists of the O-2s states with contributions
from the Mg-3s and Si-3s3p states. The region near the Fermi
level, i.e., the top of the valence band, extends to approximately
�7.45 to 0 eV and has predominantly O-2p-like character. The

substitution of Mg by Zn (Cd) in the SiZn2O4 (SiCd2O4) compound
introduces a contribution from the Zn-3d (Cd-4d) states to the
upper valence band. Rather than the O-2p-dominated states in
SiMg2O4, the zinc 3d states (cadmium 4d states) appear in the
upper valence band of SiZn2O4 (SiCd2O4); consequently, its width
broadens to 8.53 eV. Therefore, changes in the electronic proper-
ties of SiZn2O4 (SiCd2O4) compared with those of SiMg2O4 would
be solely because of the mixing of the Zn-3d (Cd-4d) and O-2p
orbitals. In the three compounds, the bottom of the conduction
band is composed of the s and p states of Si and B (B¼Mg, Zn, and
Cd) atoms.

Generally, a decrease in the band gap is expected with the
substitution of cations by heavier cations (e.g., Zn for Mg and Cd
for Zn) in a series of structurally isomorphous compounds [15].
The calculated results show a decrease in the gap in the following
sequence: EgðSiMg2O4Þ4EgðSiZn2O4Þ4EgðSiCd2O4Þ (see Table 2).
The role of the d states in defining the electronic properties of the
II–VI semiconductors [56], zinc aluminates [6], zinc aluminates,
zinc gallate [15] and cubic spinels AB2O4, where A¼Si and Ge, and
B¼Mg, Zn and Cd [37,57], has been discussed. It has been reported
that the p–d hybridization at Γ repels the valence band maximum
upwards without affecting the conduction band minimum. Hence,
the decrease of the calculated direct gap Γ–Γ from 7.43 eV in
SiMg2O4 to 4.70 eV in SiZn2O4 and to 3.43 eV in SiCd2O4 (using TB-
mBJ) can be attributed to the presence of the 3d and 4d states in
SiZn2O4 and SiCd2O4, respectively.

The pressure dependence of the size of the fundamental energy
band gaps of SiMg2O4, SiZn2O4 and SiCd2O4 was investigated. The
calculated band gaps for the three considered materials are well
fitted to a quadratic polynomial: EgðPÞ ¼ Egð0ÞþαPþβP2, where
Egð0Þ is the band gap at zero pressure, P is the pressure, and α and β
are the linear and the quadratic pressure coefficients, respectively.
The obtained coefficients are as follows:

αðSiMg2O4Þ ¼ 5:36� 10�2 eV=GPa;

βðSiMg2O4Þ ¼ �1:535� 10�4 eV=GPa2;

αðSiZng2O4Þ ¼ 3:04� 10�2 eV=GPa;

βðSiZng2O4Þ ¼ �0:885� 10�4 eV=GPa2;

αðSiCd2O4Þ ¼ 3:64� 10�2 eV=GPa and

βðSiCd2O4Þ ¼ �1:445� 10�4 eV=GPa2:

The energy band gaps of the studied compounds increase as the
pressure is increased.

The effective charge-carrier mass is one of the main factors that
determine the transport properties and electrical conductivity of a
material. In general, smaller effective masses of the carriers
correspond to the faster photogenerated carriers. Consequently, a
low effective mass can promote carrier migration and suppress
carrier recombination. Here, the effective charge-carrier mass mn

was evaluated by fitting the E–k diagram near the valence-band
maximum (VBMa) and the conduction-band minimum (CBMi)
with a paraboloid. The effective mass mn (in unit of m0, where
m0 denotes the electron rest mass) at a given point along the
direction given by k

!
is

1
mn

¼m0

h2
∂2EðkÞ
∂2k

The evaluated effective charge-carrier masses at the Γ point from
the band dispersions of the VBMa and CBMi towards the X and L
directions in the Brillouin zone are summarized in Table 3 for the
three considered materials. The effective electron mass, the heavy-
hole mass and the light-hole mass are indicated by the subscripts
“e” ðmn

e Þ,''hh'' ðmn

hhÞ, and ''hl'' ðmn

hlÞ, respectively. The calculated CB
electron effective masses of the considered oxides are slightly
higher than those of some known transparent conducting oxides
(TCOs). For example, the CB electron effective mass is 0.23 [58] and

Table 2
Calculated fundamental band gap energy Eg (in eV) using four different approaches
for the exchange-correlation potential: LDA, GGA-PBEsol, GGA-EV and TB-mBJ in
comparison with the available theoretical results.

System Present work Other [36]

LDA GGA-PBEsol GGA-EV TB-mBJ LDA GGA

SiMg2O4 5.26 4.90 5.92 7.43 5.01 5.19
SiZn2O4 2.84 2.56 3.43 4.70 2.77 2.90
SiCd2O4 1.36 1.18 1.98 3.43 1.17 1.34
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0.24 [59] for ZnO, 0.35 for SnMg2O4, 0.23 for SnZn2O4 and 0.20 for
SnCd2O4 [60]. Consequently, the mobility of the CB electrons and
the electrical conductivity in the considered materials should be
slightly small. From Table 3, we note that (i) the electronic states at
the conduction-band minimum are much more dispersive than
the topmost valence-band states; consequently, the conduction-
band electrons have lower effective masses than the valence-band
holes, and the influence of the latter on the electrical conductivity
is minimal; (ii) the effective masses of electrons in the considered
materials for the Γ-X and Γ-L directions in the BZ are practically
equal; hence, the conduction-band electron mobility and the
electrical conductivity of the studied materials should be isotropic;
(iii) the heavy holes have higher effective masses than the light
holes, which indicates the anisotropy between heavy- and light-
hole masses; (iv) the valence-band maximum is flat, which
represents the rather large effective masses of the heavy holes;
and (iiv) the dependence of the effective masses of the holes on
the crystallographic direction demonstrates the anisotropy of this
property; hence, the valence-band hole conductivity should also
be anisotropic.

3.3. Optical properties

The optical properties of a material are usually described by the
complex dielectric function εðωÞ ¼ ε1ðωÞþ iε2ðωÞ, which charac-
terizes the linear response of a material to electromagnetic
radiation and governs the propagation behavior of radiation in a
medium. The imaginary part of the dielectric function ε2ðωÞ
represents the absorption in the crystal, which can be calculated

from the momentum matrix elements between the occupied and
the unoccupied wave functions [61]. Then, the real part of the
dielectric function ε1ðωÞ, which determines how the electromag-
netic energy is dispersed when it penetrates a medium, is
evaluated from the imaginary part ε2ðωÞ using the Kramers–Kronig
transformation. Using both the real part and the imaginary part of
the dielectric function, one can calculate the other important
linear optical properties, such as the refractive index n(ω), the
extinction coefficient k(ω), the optical reflectivity R(ω), the absorp-
tion coefficient α(ω) and the electron energy-loss spectrum L(ω).
The optical property calculation requires a dense mesh of energy
eigenvalues and the corresponding eigenvectors; therefore, a
dense mesh of uniformly distributed k-points must be used to
calculate the optical constants. Because ε2ðωÞ is usually calculated
first, we chose it to be a reference to assess the convergence. The
calculation converges for a 30�30�30 Monkhorst–Pack k-point
sampling procedure [52]; therefore, a 30�30�30 k-mesh was
used to calculate the optical properties. We used the Tran–Blaha-
modified Becke–Johnson functional alone to calculate the optical
properties because of the improved band gap.

The calculated imaginary part ε2ðωÞ of the frequency-dependent
dielectric function for the studied compounds using the TB-mBJ
functional in the energy range of 0–30 eV is presented in Fig. 3.
It would be useful to attempt to identify the electronic transitions
that are responsible for the spectral structures in the optical spectra.
The imaginary part of the dielectric function is determined by the
allowed electronic transitions between each pair of occupied and
unoccupied bands. Therefore, the origins of different peaks and
features of the optical spectra are determined by decomposing each
spectrum to its individual pair contribution, i.e., the contribution
from each electronic transition from the occupied valence state Vi to
the empty conduction state Cj ðVi-CjÞ and plotting the electronic
transition energy EijðkÞ ¼ ECj

ðkÞ�EVi
ðkÞ band structures along the

high-symmetry directions in the Brillouin zone. These techniques
inform us about the bands that contribute more to the peaks of the
ε2ðωÞ spectrum and their locations in the Brillouin zone. The main
contributions to the optical spectra originate from the top valence
bands to the lower conduction bands. In Fig. 4, the top panel shows
the dominant contributions to ε2ðωÞ from the interband transitions,
and the bottom panel shows the locations of these transitions in the
Brillouin zone for SiMg2O4. The first critical point E0 of ε2ðωÞ is the
edge of the optical absorption. This point is the ΓV �ΓC splitting,

Fig. 2. Diagrams of the total and the site-projected density of state for the spinel oxides SiMg2O4, SiZn2O4 and SiCd2O4 as calculated using the TB-mBJ functional. The Fermi
level is shifted to zero.

Table 3
Calculated effective masses of the electron mn

e , the heavy hole mn

hh , and the light
hole mn

lh (in units of the free electron mass m0) for the SiMg2O4, SiZn2O4 and
SiCd2O4 compounds using the TB-mBJ functional.

Direction SiMg2O4 SiZn2O4 SiCd2O4

me
n=m0 (Γ–X) 0.46 0.45 0.40

me
n=m0 (Γ–L) 0.47 0.41 0.40

mlh
n=m0 (Γ–X) 1.23 1.04 1.09

mlh
n=m0 (Γ–L) 3.96 1.21 1.19

mhh
n=m0 (Γ–X) 8.36 4.80 4.01

mhh
n=m0 (Γ–L) 4.09 2.40 2.49
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which gives the threshold of the direct optical transition between
the topmost valence band V1 and the bottommost conduction band
C1 (V1-C1 transition); the counting of the bands is down (up) from
the top (bottom) of the valence (conduction) band. This edge is
known as the fundamental absorption edge. This first critical point is
followed by a broad shoulder at approximately 7.5–11 eV because of
the V3-C1, V1-C1, V4-C1 and V2-C1 transitions and some
structures centered at the Ei points. The previously described
techniques were applied for the ε2ðωÞ spectra of all three investi-
gated compounds. Because the results are notably similar, we show
only the decomposition of the ε2ðωÞ spectrum of SiMg2O4 in Fig. 4.
The locations of the major peaks Ei with the dominant contributions
from the interband transitions to each peak and their locations
in the Brillouin zone for all three compounds are reported in
Tables 5–7. We note that all structures in the ε2ðωÞ spectrum are
shifted toward lower energy as we observe from SiMg2O4 to SiZn2O4

to SiCd2O4. This trend may be directly inferred from the band
structure results because the band gap energy decreases from
SiMg2O4 to SiZn2O4 to SiCd2O4.

The dispersive part ε1ðωÞ of the dielectric function for SiMg2O4,
SiZn2O4 and SiCd2O4 is calculated from the imaginary part ε2ðωÞ of
the frequency-dependent dielectric function according to the

Kramers–Kronig dispersion relation and is also shown in Fig. 3.
The intensity of the highest peak in the ε1ðωÞ spectrum decreases
from SiMg2O4 to SiZ2O4 to SiCd2O4. The static dielectric constant
ε1ð0Þ is given by the low energy limit of ε1ðωÞ. The calculated static
dielectric constants ε1ð0Þ of the considered materials are listed in
Table 4. We find that the values of ε1ð0Þ increases as the energy gap
Eg decreases. This result can be explained based on the Penn model
[62,63]. The Penn model is based on the expression ε1ð0Þ � 1þ
ðℏωp=EgÞ2, where ℏωp is the plasma energy. It is clear that ε1ð0Þ is
inversely proportional to Eg. Hence, a smaller Eg yields a larger
ε1ð0Þ.

When these materials are compressed, the positions of all
previously mentioned critical points are shifted with an enhanced
energy comparable to that at zero pressure. The reason for this
behavior is the enhancement of the direct band gaps under
pressure. Although their positions are shifted under pressure,
these points still have the same type as that at zero pressure.
Fig. 5 shows the pressure dependence of the static dielectric
constant ε1ð0Þ for the SiMg2O4, SiZn2O4 and SiCd2O4 materials.
The symbols show the ab initio results for the given pressures. The
lines are the second-order polynomial fit to the results. The fitting
results (quadratic equations) for the static dielectric constant ε1ð0Þ
are given by the following expressions:

SiMg2O4 : ε1ð0Þ ¼ 2:1951�0:00789Pþ4:57143� 10�5P2

SiZn2O4 : ε1ð0Þ ¼ 2:3956�0:01089Pþ3:2857� 10�5P2

SiCd2O4 : ε1ð0Þ ¼ 2:4825�0:01055Pþ2:57143� 10�5P2

The calculated refractive index nðωÞ and the extinction coeffi-
cient kðωÞ as functions of the photon energy are displayed in Fig. 6.
For lower energies, the refractive index values are almost constant
and begin to increase at energies near the absorption edge to

Fig. 3. Real (left panel; ε1ðωÞ) and imaginary (right panel; ε2ðωÞ) parts of the dielectric function of the spinel oxides SiMg2O4, SiZn2O4 and SiCd2O4 as calculated using the
TB-mBJ functional.

Fig. 4. Decomposition of the imaginary part ε2ðωÞ of the dielectric function into the
band-to-band contributions (upper panel) and the transition energy band structure
(lower panel) for SiMg2O4.

Table 4
Calculated static dielectric constant ε1ð0Þ, static refractive index nð0Þ, and pressure
coefficients of the refractive index nð0Þ for the SiMg2O4, SiZn2O4 and SiCd2O4

compounds.

System ε1ð0Þ nð0Þ Eðn¼ 1Þ 1
n0

dn
dp ð10�5 GPa�1Þ

SiMg2O4 2.195 1.479 18.88 �2.43
SiZn2O4 2.396 1.548 16.62 �2.56
SiCd2O4 2.483 1.682 19.82 �2.68
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attain a maximum value; then, they decrease for higher energy
values. The static refractive index nð0Þ values for SiMg2O4, SiZn2O4

and SiCd2O4 and the energy when dispersion is null Eðn¼ 1Þ are
shown in Table 4. The static refractive index nð0Þ value increases
from SiMg2O4 to SiCd2O4, which follows an opposite trend from
the band gap (the band gap decreases from SiMg2O4 to SiCd2O4).
The refractive index attains a maximum value of 2.030, 2.089 and
2.087 at 11.52, 10.24 and 8.97 eV for SiMg2O4, SiZn2O4 and SiCd2O4,
respectively. The pressure derivative of the static refractive index
nð0Þ of these compounds is determined using a linear fit, and the
results are listed in Table 4. As shown in this table, an increase in
pressure leads to a decrease in the refractive index.

The absorption coefficient reveals the radiation absorbing
mechanism of the medium. Fig. 7 displays the absorption coeffi-
cient αðωÞ of the three considered compounds as a function of the
photon energy. The SiMg2O4 compound (SiZn2O4 and SiCd2O4) has
an absorption band from approximately 7.5 to 28 eV (5.5–28 eV
and 3.5–28 eV, respectively), which reaches its maximum at
approximately 20.8 eV (at approximately 16.5 eV and 17.8 eV,
respectively). These materials are transparent in the visible region
and absorptive in the ultraviolet region. In the high-energy region
(above 28 eV), these compounds are transparent because it
becomes progressively more difficult for the electrons to respond.

Table 5
Peak positions of the imaginary part of the dielectric function ε2ðωÞ with the
dominant interband transition contributions to every peak and their locations in
the Brillouin zone for SiMg2O4.

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E0 7.43 (V1–C1) Γ–Γ

E1 11.88 (V1–C1) W–L, Γ–X 9.96, 10.21
(V1–C2) W–L, Γ–X–W–K 10.50, 10.98
(V1–C3) W–L–Γ–X–W 11.36
(V1–C4) W–L–Γ–X–W–K 11.71
(V1–C5) L–Γ–X 11.94
(V1–C6) Γ–X–W 12.27
(V2–C2) W–L, Γ–X–W 10.31, 10.92
(V2–C3) W–L–Γ–X–W 11.59
(V2–C4) W–L–Γ–X–W–K 11.71
(V2–C5) W–L, Γ–X 12.04
(V2–C6) L–Γ, X–W 12.63
(V3–C1) W–L, Γ–X, W–K 11.00
(V3–C2) W–L, Γ–X–W 10.36, 11.36
(V3–C3) W–L–Γ–X–W 11.59
(V3–C4) W–L, Γ–X –W–K 11.93
(V3–C5) W–L, Γ–X 12.04
(V4–C2) W–L, Γ–X–W–K 11.23
(V4–C3) Γ–X–W 11.94
(V5–C2) W–L–Γ–X–W 10.67,11,46
(V5–C3) W–L–Γ–X –W 11.71

E2 14.04 (V1–C7) L–Γ–X 13.67
(V1–C8) L–Γ–X 13.67
(V1–C9) L–Γ–X 13.78
(V1–C10) W–L, Γ–X–W 14.93
(V2–C7) W–L, Γ–X 13.78
(V2–C8) Γ–X–W 14.14
(V2–C9) W–L, Γ–X 14.01
(V2–C10) W–L, Γ–X–W 15.05
(V3–C7) W–L, Γ–X 14.01
(V3–C8) W–L, Γ–X 14.13
(V3–C9) W–L, Γ–X 14.36
(V4–C7) W–L, Γ–X 13.90
(V4–C8) W–L, Γ–X–W–K 14.24
(V4–C9) W–L, Γ–X 14.24
(V5–C7) L–Γ–X 14.14
(V5–C8) Γ–X–W–K 14.36
(V5–C9) L–Γ–X 14.16

E3 15.71 (V1–C11) L–Γ–X 15.05
(V1–C12) W–L, Γ–X–W 15.64
(V1–C13) W–L–Γ–X–W–K 15.97
(V1–C14) W–L, Γ–X–W–K 13.78
(V1–C15) W–L, Γ–X–W–K 16.20
(V2–C11) L–Γ–X 15.18
(V2–C12) W–L, Γ–X 15.74
(V2–C13) W–L–Γ–X–W–K 15.87
(V3–C11) W–L, Γ–X 15.28
(V3–C12) W–L, Γ–X, W–K 15.74
(V3–C13) W–L–Γ–X–W–K 15.98
(V4–C12) W–L, Γ–X, W–K 15.74
(V4–C13) W–L–Γ–X 15.64
(V5–C9) W–L, X–W 15.30
(V5–C10) W–L–Γ–X–W 15.28

E4 16.95 (V1–C16) W–L–Γ–X, W–K 16.33
(V1–C17) W–L, Γ–X, W–K 16.66
(V1–C18) W–L 16.56
(V2–C14) W–L, Γ–X, W–K 16.10
(V2–C15) W–L, Γ–X, W–K 16.20
(V2–C16) W–L–Γ–X 16.43
(V2–C17) Γ–X, W–K 16.56
(V2–C18) W–L–Γ–X 17.02
(V2–C19) W–L–Γ–X 17.25
(V3–C17) W–L–Γ–X, W–K 16.91
(V3–C18) W–L–Γ–X–W 17.14
(V3–C19) W–L–Γ–X–W–K 17.25
(V4–C14) W–L, Γ–X, W–K 16.33
(V4–C15) W–L, Γ–X, W–K 16.43
(V4–C16) L–Γ–X 16.91
(V5–C14) W–L–Γ–X–W–K 16.33, 16.87

Table 5 (continued )

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

(V5–C15) W–L–Γ–X–W–K 16.52, 17.00
(V5–C16) W–L, Γ–X 16.79
(V5–C17) W–K 16.79

E5 17.89 (V1–C19) W–L–Γ–X, W–K 17.14
(V1–C20) W–L, Γ–X 17.60
(V1–C21) W–L, Γ–X–W–K 17.94
(V2–C20) W–L, Γ–X 17.52
(V2–C21) W–L–Γ–X–W–K 17.94
(V3–C20) L–Γ–X 17.83
(V3–C21) W–L–Γ–X–W 17.94
(V3–C22) Γ–X–W 18.17
(V3–C23) W–L–Γ 18.52
(V4–C18) W–L–Γ–X 17.25
(V4–C19) L–Γ–X 17.48
(V4–C20) W–L, Γ–X 17.77
(V4–C21) W–L–Γ–X–W 18.06
(V5–C18) W–L, Γ–X–W 17.25
(V5–C19) W–L–Γ–X–W–K 17.29, 17.64
(V5–C20) W–L, Γ–X, W–K 17.48, 17.96

E6 18.63 (V1–C22) W–L, Γ–X 18.17
(V1–C23) W–L–Γ, W–K 18.65
(V1–C24) W–L–Γ–X, W–K 19.21
(V2–C22) W–L, Γ–X 18.17
(V2–C23) W–L–Γ, W–K 18.52
(V2–C24) W–L–Γ–X, W–K 19.11
(V2–C25) W–L, Γ–X 19.44
(V4–C22) W–L, Γ–X 18.29
(V4–C24) W–L–Γ–X 19.44
(V5–C21) W–L, Γ–X–W 18.29
(V5–C22) W–L–Γ–X–W–K 18.52
(V5–C23) W–L, Γ–X, W–K 18.88
(V5–C24) W–L–Γ–X, W–K 19.27

E7 20.70 (V1–C25) W–L, Γ–X 19.44, 20.13
(V1–C26) W–L–Γ 20.72
(V3–C25) W–L–Γ–X–W–K 19.69, 20.36
(V3–C26) W–L–Γ 21.07
(V4–C24) L–Γ–X 19.94
(V4–C25) W–L–Γ–X–W 19.69, 20.34
(V4–C26) W–L–Γ 21.07
(V5–C24) L–Γ–X 19.82
(V5–C25) W–L–Γ–X 19.75, 20.61
(V5–C26) W–L–Γ 20.95
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Table 6
Peak positions of ε2ðωÞ with the dominant interband transition contributions to
every peak and their location in the Brillouin zone for SiZn2O4.

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E0 4.70 (V1–C1) Γ–Γ

E1 8.15 (V1–C1) W–L, Γ–X 7.51, 7.68
(V1–C2) W–L, Γ–X–W–K 7.95, 8.10, 8.16
(V1–C3) W–L–Γ–X, W–K 9.62
(V2–C1) L–Γ–X 7.18
(V2–C2) W–L–Γ–X–W–K 7.76, 8.33
(V2–C3) W–L–Γ–X, W–K 9.73
(V3–C1) W–L–Γ–X 7.47, 8.35
(V3–C2) W–L, X–W–K 8.58
(V4–C1) W–L–Γ–X 7.72, 7.84
(V4–C2) W–L–Γ–X–W–K 8.03, 8.76
(V5–C1) L–Γ–X 7.72
(V5–C2) W–L–Γ–X–W–K 8.05, 8.91

E2 10.60 (V11–C1) L–Γ–X 9.18
(V13–C1) L–Γ–X 9.54
(V14–C1) L–Γ–X 9.41, 10.62
(V15–C1) L–Γ–X 8.97, 10.60
(V15–C2) W–L–Γ–X 11.04
(V16–C1) W–L–Γ–X 10.21, 10.80
(V16–C2) W–L, Γ–X 11.08
(V17–C1) W–L–Γ–X 10.45, 10.64

E3 11.20 (V11–C1) W–L, Γ–X 11.42, 11.79
(V11–C2) W–L–Γ–X–W–K 11.65,11.92
(V12–C1) W–L–Γ–X 11.27, 11.54
(V13–C1) W–L, Γ–X 11.46
(V13–C2) W–L, Γ–X–W–K 11.29, 11.84
(V14–C1) W–L, Γ–X 11.63
(V14–C2) W–L, Γ–X 11.27, 11.56
(V15–C2) W–L, Γ–X, W–K 11.69
(V15–C5) L–Γ–X 11.88
(V16–C2) W–L, Γ–X, W–K 11.50, 11.67
(V17–C1) W–L, Γ–X 11.24
(V17–C2) W–L 11.46
(V18–C1) W–L, Γ–X 11.23
(V18–C2) W–L, Γ–X–W 11.36

E4 12.69 (V13–C3) L–Γ–X 12.50
(V13–C4) L–Γ–X 12.42
(V13–C5) L–Γ–X 12.19
(V14–C3) L–Γ–X 12.21
(V14–C4) L–Γ–X 12.30
(V14–C5) L–Γ–X 12.17

E5 13.33 (V13–C3) W–L–Γ–X, W–K 13.19
(V13–C4) W–L–Γ–X–W–K 13.51
(V13–C5) L–Γ–X 13.82
(V14–C3) L–Γ–X, W–K 13.01
(V14–C4) W–L–Γ–X–W–K 13.51
(V15–C4) W–L–Γ–X–W–K 13.55
(V15–C5) W–L, Γ–X–W 13.74, 13.99
(V15–C6) W–L–Γ 13.78
(V16–C4) W–L, Γ–X 13.44
(V16–C5) L–Γ–X 13.38, 13.61

E6 15.22 (V11–C9) W–L–Γ 14.93
(V11–C10) L–Γ–X 16.01
(V12–C8) Γ–X–W 14.49
(V12–C9) W–L–Γ 15.20
(V12–C10) W–L–Γ–X 16.01
(V13–C8) W–L, Γ–X–W 14.49, 14.93
(V13–C9) W–L–Γ, X–W–K 15.18, 15.51
(V14–C9) W–L–Γ 15.28
(V15–C8) W–L, Γ–X 14.74
(V15–C9) W–L–Γ 15.39
(V16–C8) W–L, Γ–X 14.74
(V16–C9) L–Γ–X 15.64

E7 16.27 (V13–C10) W–L, Γ–X 16.33
(V13–C11) W–L–Γ, X–W 16.56
(V14–C10) W–L–Γ–X 16.20
(V14–C11) W–L 16.33
(V15–C10) W–L, Γ–X 16.10

Table 6 (continued )

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

(V15–C11) W–L–Γ, X–W–K 16.33
(V15–C12) L–Γ–X–W–K 17.02
(V16–C10) L–Γ–X 16.10
(V16–C11) W–L–Γ, X–W 17.36, 16.79

Table 7
Peak positions of ε2ðωÞ with the dominant interband transition contributions to
every peak and their location in the Brillouin zone for SiCd2O4.

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

E0 3.43 (V1–C1) Γ–Γ

E1 6.068 (V3–C1) W–L–Γ–X 5.80
(V3–C2) W–L, X–W–K 6.51
(V4–C1) W–L, Γ–X 5.92
(V4–C2) W–L, X–W–K 6.51
(V5–C1) L–Γ–X 5.80
(V5–C2) W–L, Γ–X–W–K 6.74
(V13–C1) L–Γ–X 6.40
(V14–C1) Γ–X–W 5.80

E2 7.73 (V3–C3) W–L–Γ–X 8.43
(V4–C3) W–L–Γ–X, W–K 8.58
(V5–C3) W–L–Γ–X 8.70
(V13–C1) W–L, Γ–X 7.72
(V13–C2) W–L–Γ–X–W–K 7.41, 8.12
(V14–C1) W–L, Γ–X 8.03
(V14–C2) W–L–Γ–X–W–K 7.24, 8.26

E3 9.25 (V3–C4) W–L–Γ–X–W–K 9.04
(V3–C5) W–L, Γ–X 9.29, 9.77
(V3–C6) L–Γ–X 9.50
(V4–C4) W–L, Γ–X–W–K 9.10
(V4–C5) W–L, X–W 9.83
(V4–C6) L–Γ–X–W 9.98
(V5–C4) W–L, Γ–X–W–K 9.27
(V13–C3) L–Γ–X 9.29
(V13–C4) L–Γ–X 9.66
(V14–C3) L–Γ–X 8.87, 9.18
(V14–C5) L–Γ–X 8.93

E4 10.99 (V4–C7) W–L–Γ–X 10.73, 11.10
(V4–C8) L–Γ–X 11.02
(V5–C5) W–L, X–W 10.31
(V5–C6) L–Γ–X 10.21
(V5–C7) L–Γ–X 10.94
(V5–C8) L–Γ–X 10.62
(V13–C3) W–L–Γ–X, W–K 10.12
(V13–C4) W–L–Γ–X–W–K 10.62
(V13–C5) W–L, Γ–X 10.92
(V14–C3) W–L–Γ–X, W–K 10.12
(V14–C4) Γ–X–W–K 10.90
(V14–C5) W–L, Γ–X–W 11.71
(V25–C1) L–Γ–X 11.00
(V25–C2) W–L–Γ–X 11.46

E5 12.89 (V4–C9) W–L–Γ, W–K 12.07
(V4–C10) W–L, X–W–K 12.27
(V4–C11) L–Γ–X–W 12.90
(V4–C12) W–L, X–W–K 12.71, 12.96
(V5–C9) W–L–Γ–X–W 12.00, 12.48
(V5–C10) W–L–Γ, X–W–K 12.50
(V5–C11) W–L–Γ 12.84
(V5–C12) W–L–Γ, X–W–K 12.96
(V13–C6) L–Γ, X–W–K 11.84, 12.63
(V13–C7) W–L–Γ–X 11.81, 12.65
(V14–C7) L–Γ–X 12.04

E6 13.69 (V4–C13) W–L–Γ–X, W–K 13.67
(V4–C14) W–L, Γ–X 13.74
(V4–C15) W–L, Γ–X, W–K 14.24
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In Fig. 8, we show the calculated reflectivity spectrum RðωÞ and
the electron energy loss spectra LðωÞ for the SiMg2O4, SiZn2O4 and
SiCd2O4 compounds. The reflectivity RðωÞ values begin to increase
from a relatively small value (3.74% for SiMg2O4, 4.63% for SiZn2O4,
and 4.98% for SiCd2O4) to attain a maximum value (62.25% for
photon energy at approximately 22.92 eV for SiMg2O4, 62.97% at

21.84 eV for SiZn2O4, and 41.14% at 20.38 eV for SiCd2O4). Then, the
reflectivity quickly decreases for higher energy values. The elec-
tron energy loss function LðωÞ is an important optical factor that
describes the energy loss of a fast traversing electron in a material.
The peaks in the LðωÞ spectrum are interpreted as Plasmon peaks,
which denote the electronic charge collective oscillations in the
crystal, and the corresponding frequencies are the so-called
plasma frequencies. The peaks of LðωÞ overlap the trailing edges
in the reflection spectra. For instance, the peaks of the LðωÞ spectra
for SnMg2O4, SnZn2O4 and SnCd2O4 are at approximately 24.5,
22.2 and 21.8 eV, respectively, which correspond to the abrupt
reduction of RðωÞ.

4. Conclusions

We have used an ab initio FP-L/APWþ lo method to explore the
structural, electronic and optical properties of the spinel oxides
SnMg2O4, SnZn2O4 and SnCd2O4. The computed structural para-
meters are consistent with the available experimental findings and
previous theoretical results, which validates the method that we
used. We investigated the electronic properties using four differ-
ent functionals: LDA, GGA-PBEsol, GGA-EV and TB-mBJ. We found
that the TB-mBJ functional improved these properties the most.
We found that these spinel oxides were direct band gap insulators
with VBMa and CBMi at the Γ point. The fundamental energy band
gaps of all of the considered compounds increase with increasing
pressure and fit well to a quadratic function. The bottommost of
the CB is dispersive, whereas the topmost of the VB is dispersion-
less, which predicts a higher hole effective mass. Consequently, the
mobility of the VB holes in these materials should be small. The
fundamental band gap decreases from SiMg2O4 to SiZn2O4 to
SiCd2O4. The dielectric function and the optical parameters, such
as the refractive index, extinction coefficient, absorption coeffi-
cient, reflectivity and electron energy loss function, were predicted
for a wide range between 0 and 30 eV. The decomposition of the
dielectric functions into individual band-to-band contributions
and the plotting of the transition band structures allowed us to
identify the microscopic origin of the features in the optical
spectra and the contributions of different regions in the Brillouin

Table 7 (continued )

Optical structures Dominant interband transition contributions

Structure Peak position Transition Region Energy (eV)

(V5–C13) W–L, Γ–X, W–K 13.70, 13.86
(V5–C14) W–L, Γ–X, W–K 13.86, 14.16
(V5–C15) W–L, Γ–X 14.41
(V13–C7) Γ–X–W 13.49
(V13–C8) Γ–X–W–K 13.15, 13.57
(V13–C9) W–L, Γ–X, W–K 13.49
(V14–C7) W–L, Γ–X–W 13.00, 13,57
(V14–C8) Γ–X–W–K 13.26, 13.61
(V14–C9) W–L, Γ–X, W–K 13.67
(V14–C10) Γ–X 13.67
(V24–C5) L–Γ–X 13.90

E7 15.47 (V4–C18) L–Γ 15.41
(V4–C19) W–L–Γ–X 15.28
(V4–C20) W–L, Γ–X, W–K 15.28
(V4–C21) W–L–Γ–X–W–K 15.43, 15.85
(V5–C17) W–L–Γ–X 14.89, 15.26
(V5–C18) L–Γ–X 14.70, 15.41
(V5–C19) W–L–Γ–X–W–K 15.41
(V5–C20) L–Γ–X–W 15.43
(V14–C13) W–L–Γ–X, W–K 15.41
(V14–C14) L–Γ–X 15.41
(V14–C15) L–Γ–X 15.41

E8 15.79 (V4–C22) W–L–Γ–X–W–K 16.10
(V4–C23) W–L, Γ–X, W–K 16.33
(V5–C21) L–Γ–X–W 15.62
(V5–C22) W–L–Γ–X–W–K 16.20
(V5–C23) L–Γ 16.41
(V14–C15) W–L, Γ–X, W–K 15.87
(V14–C16) L–Γ–X 16.20
(V14–C17) L–Γ–X 16.10

E9 17.38 (V4–C23) W–L, Γ–X 17.00, 17,16
(V4–C24) W–L, Γ–X 17.37
(V5–C23) W–L, Γ–X 17.44
(V13–C22) W–L, Γ–X–W–K 17.60
(V13–C23) Γ–X–W–K 17.69, 18.06
(V14–C19) W–L–Γ 17.02
(V14–C21) L–Γ, X–W–K 17.48
(V14–C22) W–L, Γ–X–W–K 17.71
(V14–C23) Γ–X, W–K 17.96

Fig. 5. Pressure dependence of the static dielectric constant εð0Þ of the spinel
oxides SiMg2O4, SiZn2O4 and SiCd2O4.

Fig. 6. Refractive index nðωÞ and extinction coefficient kðωÞ of the spinel oxides
SiMg2O4, SiZn2O4 and SiCd2O4 as calculated using the TB-mBJ functional.
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zone. We found that the values of ε1ð0Þ increased when the energy
gap decreased, which could be explained using the Penn model.
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