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a b s t r a c t

In present paper, the structural, elastic, thermal, electronic, optical properties at ambient and high-pres-
sure study of Ag2O are performed using the full-potential linearized augmented plane wave (FP-LAPW)
method within the framework of Density functional theory (DFT) as implemented in Wien2k Code. We
have used the local density approximation (LDA), Generalized Gradient approximation (GGA) and
Engel–Vosko generalized gradient approximation (EV–GGA) for calculating structural properties at
0.0–20.0 GPa pressure. The lattice constant obtained at 0.0 GPa using GGA method, is in good agreement
with available experimental results. Decrease in lattice constant is observed with increase in pressure
from 0.0 to 20.0 GPa. The electronic, optical and band structure calculations are also carried out using
modified Becke–Johnson exchange correlation potential plus generalized gradient approximation
(mBJ–GGA). At zero pressure, the calculated band gap using mBJ potential is found to be narrow, direct
and comparatively better than calculated through LDA, GGA and EV–GGA. Also, the band gap increases
with increase in pressure from 0.0 to 20.0 GPa. From elastic calculations, it is noted that Ag2O is elastically
stable and have ductile nature. Moreover, it is revealed that Ag2O is suitable for optoelectronic devices.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Silver oxide (Ag2O) having direct band gap around 1.4 eV is a
p-type semiconductor [1], used in optical memory [2], photography
[3] and as solar energy converter [4]. It has been widely studied for
its important roles in fast-ion-conducting glasses of the type AgI–
Ag2O–B2O3, AgI–Ag2O–V2O3, and AgI–Ag2OP2O5 [5,6]. Bond nature
study between Ag and O is helpful to understand the ionic conduc-
tion mechanism and micro structure of glass [7]. Ag2O has cuprite
structure (like Cu2O) with space group pn-3m(#224) [7]. We should
emphasize that one of the main interesting properties of cuprite
Ag2O is its negative thermal expansion behavior [8,9], another note-
worthy property of Ag2O is the structural phase transition which oc-
curs at about 35 K [10–12]. The purpose of present work is to study
the structural, elastic, electronic, thermal, optical properties of Ag2O
compound at ambient and under high pressure using the full-poten-
tial linearized augmented plane wave (FP-LAPW) method.

In the present paper, a brief introduction is given in Section 1.
Method of calculation is presented in Section 2 of this paper. Re-
sults and discussions are given in Section 3 and finally concluding
remarks are presented in Section 4.
2. Method of calculation

In this paper, we have calculated the Structural, elastic, elec-
tronic, and optical properties of Ag2O compound in the cuprite
structure [7] at ambient and under pressure. These calculations
are carried out within the framework of the density functional the-
ory [13] using the full potential linearized augmented plane wave
(FP-LAPW) [14] method, as implemented in the Wien2k Code [15].
We have used the local density approximation (LDA) [16], General-
ized Gradient approximation (GGA) [17], Engel–Vosko generalized
gradient approximation (EV–GGA) [18] and the modified Becke–
Johnson exchange correlation potential plus Wu–Cohen version
of generalized gradient approximation (mBJ–GGA). The mBJ ex-
change potential [19] was developed from a semi-local exchange
potential proposed by Becke and Johnson (BJ-exchange potential)
[20]. In the generalized gradient approximation (GGA) [17], the ex-
change correlation potential was treated for the self consistent cal-
culations. Band structure calculations are carried out using LDA,
GGA, EV–GGA and mBJ methods at 0–20 GPa pressure. The modi-
fied Becke–Johnson exchange potential (TB-mBJ) [19] yields very
accurate electronic band structures and gaps for various types of
semiconductors and insulators (e.g., sp semiconductors, noble-
gas solids, and transition-metal oxides). As LDA and GGA underes-
timate band gaps and the electronic band dispersions, thus we will
demonstrate the results obtained by mBJ–GGA–WC technique.
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Fig. 2. Lattice constant (Å) verses Pressure (GPa) plot for Ag2O.
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In the FP-LAPW method, the wave function, charge density and
potential are expanded in spherical harmonic functions inside
muffin-tin spheres and by a plane-waves basis set in the interstitial
region. Plane wave cut-off of KMAX = 7.0/RMT (RMT is the plane wave
radii, and K-max is the maximum modulus for the reciprocal lattice
vectors) was chosen for Ag2O. Values of muffin-tin radii (RMT) are
considered to be equal to 1.94 and 1.72 Bohr for Ag and O respec-
tively. In the non-overlapping muffin-tin spheres surrounding the
atomic, the spherical harmonics are expanded up to lmax = 10.
The charge density was Fourier expanded up to Gmax = 12 (Ryd)1/2.
The band structures, electronic and optical calculations are carried
out using a number of 1000 k-points in the irreducible Brillouin
zone (IBZ). The self consistent calculations are converged since
the total energy of the system is stable within 10�5 Ry.

3. Results and discussions

3.1. Structural properties

Structural properties of Ag2O compound are calculated using
the volume optimization method. The total energy of Ag2O is calcu-
lated using LDA, GGA and EV–GGA approaches. Volume optimiza-
tion is performed by minimizing the total energy of the unit cell
with respect to the volume of unit cell and total energy was calcu-
lated that fitted to the Murnaghan equation of state [21]. It is clear
from Fig. 1, that using GGA method, initially energy of unit cell de-
creases with increase the volume of unit cell, the minimum energy
state which is called the ground state energy E0 of the system is ob-
tained. The volume at the ground state energy E0, is called the opti-
mum volume or ground state volume of the system. After optimum
volume point, the energy then increases with further increase in
volume and the system is again in un-relaxed state. Moreover,
the variations in lattice constant with the pressure between 0.0
and 20.0 GPa using LDA, GGA and EV–GGA approaches are depicted
in Fig. 2. It can be seen from Fig. 2 that the lattice constant de-
creases with increase the pressure. Also, it is clear from Fig. 1 that
using GGA method, the lattice constant (a0 = 4.73 Å) obtained at
0.0 GPa is in good agreement with available experimental data
(4.74 Å) [22] and better than that calculated with LDA, EV–GGA
and other theoretical results (4.83 Å) [22], (4.81 Å) [23]. As crystal
rigidity is measured from Bulk modulus B0 and thus large value of
B0 is responsible for high crystal rigidity. For Ag2O, the calculated
B0 is 86.73 GPa greater than 74.0 GPa [23] which show that the
Ag2O is soft semiconductor.

3.2. Elastic properties

The elastic properties define the properties of materials, when it
undergo stress, deform and then recover and return to its original
Fig. 1. Volume optimization curve for Ag2O.
shape after stress ceases. These properties play an important role
in providing valuable information about binding characteristics be-
tween the adjacent atomic plane, structural stability, specific heat,
thermal expansion, Debye temperature and many other properties.

Idea of elastic constants Cij is important to study elastic nature
of Ag2O. Since Ag2O has cubic symmetry therefore to understand
and describe its mechanical behavior, we have calculated only
three independent elastic parameters C11, C12 and C44. Knowledge
of these constants is helpful for information about stability and
stiffness of materials. The calculated elastic parameters C11, C12

and C44 are 132.36, 70.94 and 56.18 GPa respectively. To the best
of our knowledge there is no experimental data or theoretical re-
sults for the elastic properties of Ag2O are available in the
literature.

It is clear that C11, which is related to the unidirectional com-
pression along the principal crystallographic directions is greater
than C44, representing that Ag2O offer a weaker resistance to the
pure shear deformation compared to the resistance and to the uni-
directional compression. Following restrictions are imposed on
elastic constants in order to have mechanical stability in a cubic
structure:

1
3
ðC11 þ 2C12Þ > 0; C44 > 0;

1
2
ðC11 � C12Þ > 0; C12 < B < C11 ð1Þ

Thus Ag2O is elastically stable as satisfying these restrictions.
The elastic anisotropy (A) has an important implication in

industrial science to detect the micro cracks in materials. To detect
micro cracks, we have calculated the anisotropy factor (A) by
A = 2C44/(C11–C12). A material is completely isotropic for A = 1 and
anisotropic for any value less or greater than unity. As value of
anisotropy factor is greater than unity (i.e. A = 1.829). Hence,
Ag2O shows anisotropy.

We have applied the Voigt–Reuss–Hill approximation [24] to
evaluate the Shear moduli (G) from the elastic constants Cij. For this
purpose we have taken the arithmetic mean of the two well-
known bounds for monocrystals according to Voigt and Reuss
[24–26]. In this way the moduli for the cubic structure are defined
as:

GV ¼
1
5
ðC11 � C12 þ 3C44Þ ð2Þ

GR ¼
5C44ðC11 � C12Þ

4C44 þ ðC11 � C12Þ
ð3Þ

BV ¼ BR ¼
ðC11 þ 2C12Þ

3
ð4Þ
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Thus shear modulus G is written as:

G ¼ ðGV þ GRÞ
2

ð5Þ

The calculated GV, GR and G are 45.992, 42.194 and 44.093 GPa
respectively. We have also predicted the Young’s modulus (Y), and
the Poisson’s ratio (m), which is related to the bulk modulus B and
the shear modulus G by the following equations.

Y ¼ 9BG
ð3Bþ GÞ ð6Þ
m ¼ ð3B� 2GÞ
2ð3Bþ GÞ ð7Þ

Young’s moduli (Y) measure the stiffness of a material. The material
shows high stiffness for large value of Y = 113.111 GPa. Poisson’s ra-
tio (m) provides information about the bonding forces than any of
the other elastic property [25]. The upper and lower limits for cen-
tral force in solids are 0.5 and 0.25 respectively. Hence, the force is
central as Poisson’s ratio (m) for Ag2O is 0.2826.

The ductile or brittle nature of a material is calculated from (B/G)
and Poisson’s ratio (m). According to Pugh’s [26] ratio, higher B/G
ratio is responsible for ductile nature while smaller B/G ratio show
brittle behavior of the material. The critical number separating
ductile from brittle was found to be 1.75. Ductility and brittleness
of materials are distinguished in terms of Poisson’s ratio (m) and
have calculated critical value as 0.26. Materials show brittle nature
if Poisson’s ratio is less than 0.26 while ductile nature for Poisson’s
ratio higher than 0.26. Thus, Ag2O show ductile nature as clear
from values of B/G = 1.967 > 1.75 and m = 0.2826.
3.3. Thermal property

Debye temperature (hD), representing the effective cutoff fre-
quency of the material was calculated using elastic constants in
terms of the following relations [27,28]:

hD ¼
h
k

3n
4p

qNA

M

� �� �1=3

Vm ð8Þ

where h and k are the Plank’s and Boltzmann’s constants respec-
tively, n is the number of atoms per formula unit, NA is the Avoga-
dro’s number, q is the density of compound, M is the molecular
mass per formula unit, and Vm is the average wave velocity
[27,29] and is given by:

Vm ¼
1
3

2
V3

t

þ 1
V3

l

 !" #�1=3

ð9Þ

where Vl and Vt, are the longitudinal and transverse elastic wave
velocities, respectively, which are obtained from Navier’s equations
[27,29]:

Vl ¼
3Bþ 4G

3q

� �1=2

ð10Þ
Fig. 3. Electronic charge density of Ag2O.
Vt ¼
G
q

� �1=2

ð11Þ

These calculated Debye temperature, longitudinal, transverse and
average elastic wave velocities at zero pressure for Ag2O are
432 K, 4489.5, 2471.25 and 4332.09 m/s respectively. To the best
of our knowledge there is no other theoretical and experimental
data exist for comparison.
3.4. Electronic properties

Knowledge about the nature of bonding among different atoms
can be explained from charge density distribution of a compound.
Transfer of charge between anion and cation can be used to explain
ionic character of a material while sharing of charge between the
anion and cation is related to the covalent character. We have cal-
culated the charge density of Ag2O compound at 0.0 GPa in (110)
crystallographic plane, in 3D as displayed in Fig. 3. It is clear from
Fig. 3 that the bonding nature between Ag and O is partially cova-
lent and partially ionic and most of the charge density around Ag
atom is due to the d orbital while p orbital mainly contributes to
the density around Oxygen atom.
3.5. Band structures

We have calculated the electronic band structure for Ag2O at
zero pressure using LDA, GGA EV–GGA and mBJ as shown in
Fig. 4. At zero pressure, a narrow and direct band gap occurs for
Ag2O at C-symmetry point of the Brillouin zone and the band
gap values are found to be 0.155, 0.176, 0.41 and 0.63 eV using
LDA, GGA, EV–GGA and mBJ respectively. At 0.0 GPa, the band
gap (0.63 eV) obtained with mBJ is in agreement with experimen-
tal band gap (1.4 eV) [1] and better than other calculated band gap
(0.40 eV) [7]. It is clear from Fig. 5 that while using mBJ plus GGA,
an increase in the band gap was observed for Ag2O at different
pressures from 5.0 to 20.0 GPa. Furthermore, the variations in band
gap (in eV) of Ag2O verses pressure (in GPa) is plotted in Fig. 6,
clear increases in the band gap with applying pressure between
0.0 and 20.0 GPa is observed. At 20.0 GPa, a slightly large and direct
band gap (0.91 eV) is obtained using mBJ and found to be better
than that calculated with LDA, GGA and EV–GGA as depicted in
Fig. 6.

Density of states (DOS) provides more information about the
electronic nature of the material. For Ag2O, total and partial density
of states (DOS) plots at 0.0 GPa and 20.0 GPa pressure are shown in
Fig. 7. One can see that at zero pressure, the TDOS below Fermi-level
mainly consists of three regions. First region occurs in the energy
range from �7.0 eV to �6.3 eV, is dominated by p-state of oxygen
atom, while the second region between �4.6 eV and �2.8 eV, is
mainly contributed by d-state of Ag. The third region occurring just
below the Fermi-level in the energy range from �1.0 eV to 0.0 eV is
due to hybridization of Ag–d and O–p states. With increase in pres-
sure from 5.0 GPa to 20.0 GPa, increase in band gap above Fermi-
level was observed. At 20.0 GPa, a narrow and direct band gap
can be predicted from TDOS of Ag2O which is comparable to one
as depicted in Fig. 5(e).



Fig. 4. Electronic band structure of Ag2O at zero pressure (a) LDA, (b) GGA, (c) EV–GGA and (d) mBJ.
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3.6. Optical properties

In this section, we have calculated frequency dependent optical
properties such like complex dielectric function, reflectivity and
optical conductivity at a pressure between 0.0 and 20.0 GPa using
mBJ plus GGA approach. Photons interaction with a material is de-
scribed by the real and imaginary parts of complex dielectric func-
tion. The real and imaginary parts of dielectric function at pressure
between 0.0 and 20.0 GPa for Ag2O is shown in Fig. 8a. Maximum
absorption is observed in energy range from 3.65 eV to 5.78 eV at
the pressure between 0.0 and 20.0 GPa. It is clear from Fig. 8a that
the zero pressure absorption edge starts from small energy and
reaches a maximum peak value of e2(x) is 8.23 at 4.17 eV. With in-
crease in pressure from 5.0 to 20.0 GPa, variations in peak values of
e2(x) are found. Maximum peak values are 8.74, 8.95, 8.71 and
8.45 for a pressures of 5.0 GPa, 10.0 GPa, 15.0 GPa and 20.0 GPa
respectively. Due to electron transition from top of valence band
to lower part of conduction band, absorption threshold occurs at
C-symmetry point. A material with band gap less than 3.1 eV is
very suitable for devices operating in visible region of light. On
the other hand, a material with band gap larger than 3.1 eV is best
for ultraviolet (UV) purposes [30–34]. Hence, the material is suit-
able for optoelectronic purposes in the infrared (IR) energy range.
For Ag2O, variation of real part of dielectric function e1(x) for
pressures (0.0–20.0 GPa) in energy range from 0.0 to 12.0 eV is also
calculated as shown in Fig. 8b. At zero frequency, e1(0) has value of
about 4.91 for 0.0 GPa pressure and is found to be increased with
increasing the pressure. While at 20.0 GPa, the value of e1(0)
reaches up to 5.34. This trend in under pressure study of Ag2O re-
veal the inverse behavior of e1(0) with the electronic band gap,
which has also been observed for other materials [35,36]. It is clear
from Fig. 8b that e1(x) increases with increase in energy till
reaches to its maximum. At 0.0 GPa, the peak value of e1(x) is
found to be 9.53 at 3.58 eV and then decreases with increase in en-
ergy. It becomes negative at 7.90 eV and then increases at higher
energies. Also at high pressure, e1(x) decreases after peak value
and becomes negative (i.e. light is completely attenuated). Nega-
tive values of e1(x) occurs at 5.22, 5.32, 5.35 and 5.50 eV for
5 GPa, 10 GPa, 15 GPa and 20 GPa respectively. Frequency depen-
dent reflectivity for Ag2O at 0.0–20.0 GPa is shown in Fig. 9. The
maximum of reflectivity occurs in the energy range from 3.8 to
5.8 eV. At zero pressure, the zero frequency reflectivity R(0) of
Ag2O is 14% and then increases to 16% on increasing pressure to
20 GPa. The highest peaks of the reflectivity are observed at
5.42 eV, 5.48 eV and the smallest at 5.18 eV and 5.53 eV. Pressure
encounter broadening of the maximum reflectivity range, is in



Fig. 5. Electronic band structures of Ag2O using mBJ at (a) P = 5 GPa (b) P = 10 GPa (c) P = 15 GPa (d) P = 20 GPa.

Fig. 6. Band gap (eV) verses pressure (GPa) plot for Ag2O using mBJ.

Fig. 7. Total density of states (TDOS) of Ag2O using mBJ at 0.0 GPa and 20.0 GPa
pressure.
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accordance to the negative values of real part of dielectric function
e1(x) [30]. At 0.0 GPa, maximum reflectivity was found to be
36.07% at 5.18 eV which is also in agreement to the maximum neg-
ative value of e1(x) at 7.95 eV.
The optical conductivity for Ag2O at pressure between 0.0 and
20.0 GPa in the energy range from 0.0 to 13.0 eV is shown in



Fig. 8a. Calculated imaginary part of dielectric function of Ag2O using mBJ at
0.0–20.0 GPa pressure.

Fig. 8b. Calculated real part of dielectric function of Ag2O using mBJ at 0.0–20.0 GPa
pressure.

Fig. 9. Calculated frequency dependent reflectivity of Ag2O using mBJ at
0.0–20.0 GPa pressure.

Fig. 10. Calculated optical conductivity of Ag2O using mBJ at 0.0–20.0 GPa pressure.
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Fig. 10. Threshold of optical conductivity at zero pressure start
from 2.3 eV. After threshold point, the optical conductivity in-
creases and different peaks are observed for 0.0–20.0 GPa pressure.
Maximum peak values of optical conductivity are 5163.36,
5414.16, 5518.03, 5462.45 and 5468.82 X�1 cm�1 for 0.0 GPa,
5.0 GPa, 10.0 GPa, 15.0 GPa and 20.0 GPa respectively.

4. Conclusions

In this paper, the structural, elastic, thermal, electronic and
optical properties of Ag2O are performed using density functional
theory within LDA, GGA, EV–GGA and the modified Becke Johnson
potential plus GGA (mBJ–GGA). Using GGA, the calculated struc-
tural properties at 0.0 GPa pressure are in good agreement with
the available experimental data. To the best of our knowledge
there is no experimental data or theoretical results for elastic, ther-
mal and optical properties of Ag2O, are available in the literature,
hence, our calculated results can be serve as a prediction for future
investigation. It is concluded that the material is elastically stable,
soft semiconductor, ductile and show covalent nature. It is summa-
rized that mBJ presents better band gap values than obtained with
LDA, GGA and EV–GGA. Also, a slightly large narrow and direct
band gap was found at high pressure using mBJ plus GGA. From
optical properties, it is predicted that Ag2O is suitable for optoelec-
tronic devices. Above 30% of reflectivity occurs in the 3.8–5.8 eV
energy. The peak values of optical conductivity are observed above
5000 X�1 cm�1 for 0–20 GPa.
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