# The electronic band structure of polar polymorph $\alpha / \beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phases 

A.H. Reshak ${ }^{\text {a, b, * }}$<br>${ }^{\text {a }}$ New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Czech Republic<br>${ }^{\mathrm{b}}$ Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis, Malaysia

## A R T I C L E I N F O

## Article history:

Received 23 June 2015
Received in revised form
10 August 2015
Accepted 18 August 2015
Available online 21 August 2015

## Keywords:

Polar polymorph
$\alpha / \beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$
mBJ
Electronic band structure


#### Abstract

Based on the reported experimental geometrical structure, a comprehensive theoretical calculations were performed to investigate the electronic band structure, the angular momentum projected density of states, the electronic charge density distribution and the chemical bonding characters of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$. Calculation reveals that in both phases the conduction band minimum (CBM) is located at $\Gamma$ point of first Brillouin zone $(B Z)$ whereas the valence band maximum (VBM) of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase is situated in the mid way between $Z$ and $\Gamma$ points of $B Z$, while it is located at $Z$ point for $\alpha$ $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase, resulting in an indirect band gap of about $2.93 \mathrm{eV}(\beta)$ and $3.12 \mathrm{eV}(\alpha)$ in good agreement with the measured values $2.95 \mathrm{eV}(\beta)$ and $3.12 \mathrm{eV}(\alpha)$. It has been noticed that the VBM is mainly formed by O-p states while the CBM is controlled by Mo-d state. The valence band's electronic charge density distribution reveals that $\beta-\mathrm{BaTe}_{\mathrm{Mo}}^{2} \mathrm{O}_{9}$ phase show there exists a strong covalent bonding between Mo and O also between Te and O atoms, while Ba atom forms mostly ionic and partially covalent bonding with O atom. The phase transition from $\beta \rightarrow \alpha$ cause to perturb the interaction between Mo and O atoms, Te and O atoms and Ba and O atoms which is attributed to the different arrangement between the atoms of the two phases, where the asymmetric unit of $\beta$-phase have a formula $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ while for $\alpha$-phase the asymmetric unit have the formula $\mathrm{Ba}_{2} \mathrm{Te}_{2} \mathrm{Mo}_{4} \mathrm{O}_{18}$. Due to the electro-negativity difference between the atoms we can see a charge transfer towards O atoms as indicated by the blue color around O atoms. The calculated bond lengths and angles show good agreement with the experimental values. The good agreement with experimental data in the matter of lattice parameters, energy gap values, the bond lengths and angles reveals the accuracy of the selected exchange correlation potentials used here.


© 2015 Elsevier B.V. All rights reserved.

## 1. Introduction

Due to their unique properties, the inorganic oxide became technologically important. The inorganic oxides are potential candidates for several applications, such as piezoelectricity, ferroelectricity and pyroelectricity [1]. Some of the inorganic oxide synthesized in noncentrosymmetric structure which give them considerable interest as second order nonlinear optical materials [2-7]. Therefore, several polar oxides single crystals have been synthesized [8-11]. The search for new polar materials is of current interest. Recently Zhang et al. [2] investigated the suitability of polar oxides containing cations susceptible to second order

[^0]Jahn-Teller distortions for nonlinear optical and piezoelectric application. They discovered a novel polar polymorph $\alpha$-BaTe$\mathrm{Mo}_{2} \mathrm{O}_{9}$ during the growing $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ single crystal, it has been found that at temperature below $570{ }^{\circ} \mathrm{C}$ the product is only $\beta$ $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ while at $570{ }^{\circ} \mathrm{C}$ a small amount of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ appears and above $570{ }^{\circ} \mathrm{C}$ the product was pure $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ [2]. Zhang et al., reported that both phases are thermally stabile and crystallized in noncentrosymmetric structure. After the discovery of $\alpha-\mathrm{BaTe}_{\mathrm{Mo}}^{2} 2 \mathrm{O}_{9}$ phase several research groups reported the unique properties of the newly discovered phase [3,7,12]. Liu et al. [12] have reported Raman spectra of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ using pulsed laser diode pumped Nd:YAG/Cr ${ }^{4+}:$ YAG. Majchrowski et al. [3] studied the optical second harmonic generation at fundamental wavelength of 1064 nm under photoinducing treatment of monoclinic piezoelectric $\beta$ - $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$. They have used two continuous wave lasers 808 and 1064 nm as photoinducing sources. Recently Gao et al. [7] theoretically investigated the refractive index and the birefringence
of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ in the spectral range of $0.4-5.0 \mu \mathrm{~m}$. They have used a plane-wave pseudopotential total energy package CASTEP within the generalized gradient approximation ( $P B E-G G A$ ).

Even though there exists some experimental and theoretical investigation on $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}[2,3,10-12]$ we feel that there is a dearth information on the electronic band structure, the electron charge density distribution, density of states and the contributions of each atom in $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha$ -
$\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phases and the influence of the phase transition from $\beta \rightarrow \alpha$ on the ground states properties of these phases. To the best of our knowledge no comprehensive work neither experimental data or first principles calculations to investigate the influence of the phase transition from $\beta \rightarrow \alpha$ on the electronic band structure, density of states and the electronic charge distribution of the two phases $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ have appeared in the literature. Therefore, we thought it is worthwhile to perform


Fig. 1. (a)-(b) The crystal structure of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$. In the unit cell of $\alpha$-phase the length of two axes are almost double of that in $\beta$-phase. $\beta$ - $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha-$ $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ are 2D layered structures. $\beta$-phase consist of two symmetry independent $\mathrm{MoO}_{6}$ octahedra and one $\mathrm{TeO}_{4}$ polyhedra which interconnect to form the 2D anionic layer, while $\alpha$-phase contains $\mathrm{TeO}_{3}, \mathrm{TeO}_{4}$ polyhedra and $\mathrm{MoO}_{6}$ octahedra, the $\mathrm{MoO}_{6}$ combine with three nearest neighbor $\mathrm{MoO}_{6}$ through the corners to form 1 D -zigzag chain of the
 $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$; (e) The asymmetric unit of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ with formula $\mathrm{BaTeMo}_{\mathbf{2}} \mathrm{O}_{9}$. In $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase the $\mathrm{Te}(1) \mathrm{O}_{4}$ polyhedra is formed between $\mathrm{Te}(1)$ with $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(3)$ and $\mathrm{O}(4)$, and the two $\mathrm{Mo}(1) \mathrm{O}_{6}$ octahedra is formed between $\mathrm{Mo}(1)$ and $\mathrm{O}(1), \mathrm{O}(3), \mathrm{O}(4), \mathrm{O}(5), \mathrm{O}(6), \mathrm{O}(7)$, the second $\mathrm{Mo}(2) \mathrm{O}_{6}$ octahedra is formed between $\mathrm{Mo}(2)$ and $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(3)$, $\mathrm{O}(7), \mathrm{O}(8), \mathrm{O}(9)$; (f) The asymmetric unit of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ with formula $\mathbf{B a}_{\mathbf{2}} \mathbf{T e}_{\mathbf{2}} \mathbf{M o}_{\mathbf{4}} \mathbf{O}_{\mathbf{1 8}}$. In $\alpha-\mathrm{BaTeMo} \mathbf{O}_{2}$ the $\mathrm{Te}(1) \mathrm{O}_{4}$ polyhedra is formed between $\mathrm{Te}(1)$ with $\mathrm{O}(2), \mathrm{O}(9), \mathrm{O}(10)$ and $\mathrm{O}(11)$, the second $\mathrm{Te}(1) \mathrm{O}_{4}$ polyhedra is formed between $\mathrm{Te}(1)$ with $\mathrm{O}(7), \mathrm{O}(8), \mathrm{O}(10)$ and $\mathrm{O}(11)$, the $\mathrm{Te}(2) \mathrm{O}_{3}$ polyhedra is formed between $\mathrm{Te}(2)$ with $\mathrm{O}(2)$, $\mathrm{O}(7)$ and $\mathrm{O}(18)$, the three $\mathrm{Mo}(1) \mathrm{O}_{6}$ octahedra is formed between $\mathrm{Mo}(1)$ and $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(3), \mathrm{O}(4), \mathrm{O}(8), \mathrm{O}(9)$, the second $\mathrm{Mo}(2) \mathrm{O}_{6}$ octahedra is formed between $\mathrm{Mo}(2)$ and $\mathrm{O}(9), \mathrm{O}(11), \mathrm{O}(12), \mathrm{O}(13), \mathrm{O}(14)$, $\mathrm{O}(17)$, the third $\mathrm{Mo}(3) \mathrm{O}_{6}$ octahedra is formed between $\mathrm{Mo}(3)$ and $\mathrm{O}(10), \mathrm{O}(13), \mathrm{O}(15), \mathrm{O}(16), \mathrm{O}(17), \mathrm{O}(18)$ and the fourth $\mathrm{Mo}(4) \mathrm{O}_{6}$ octahedra is formed between $\mathrm{Mo}(4)$ and $\mathrm{O}(1), \mathrm{O}(5)$, $O(6), O(7), O(8), O(18)$.

Table 1
The optimized atomic position of $\alpha-\mathrm{BaTe}_{\mathrm{Mo}}^{2} \boldsymbol{O} \mathrm{O}_{9}$ phase in comparison with the experimental data [2].

| $\underline{\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | x exp. | x opt. | y exp. | y opt. | z exp. | z opt. |
| Mo1 | 0.74289 | 0.7401 | 0.51943 | 0.5192 | 0.57244 | 0.5722 |
| Mo2 | 0.6627 | 0.6611 | 0.52207 | 0.5221 | 0.35036 | 0.3504 |
| Mo3 | 0.50978 | 0.5100 | 1.01397 | 1.0140 | 0.39096 | 0.3911 |
| Mo4 | 0.58844 | 0.5880 | 1.02435 | 1.0240 | 0.6131 | 0.6132 |
| Ba1 | 0.83844 | 0.8391 | 0.02469 | 0.0245 | 0.70106 | 0.7012 |
| Ba2 | 0.59128 | 0.5912 | 0.50931 | 0.5089 | 0.76276 | 0.7629 |
| Te1 | 0.78801 | 0.7881 | 0.14791 | 0.1480 | 0.42582 | 0.4259 |
| Te2 | 0.96657 | 0.9664 | 0.35712 | 0.3572 | 0.53877 | 0.5397 |
| 01 | 0.66938 | 0.6691 | 0.17201 | 0.1722 | 0.5575 | 0.5573 |
| 02 | 0.84435 | 0.8439 | 0.25779 | 0.2580 | 0.55351 | 0.5533 |
| 03 | 0.739 | 0.7391 | 0.44052 | 0.4401 | 0.66835 | 0.6682 |
| 04 | 0.82445 | 0.8240 | 0.73645 | 0.7360 | 0.57134 | 0.5712 |
| 05 | 0.64849 | 0.6481 | 0.95307 | 0.9532 | 0.69464 | 0.6944 |
| 06 | 0.51715 | 0.5169 | 1.24985 | 1.2495 | 0.64237 | 0.6424 |
| 07 | 0.99483 | 0.9941 | 0.24633 | 0.2460 | 0.63791 | 0.6378 |
| 08 | 0.6413 | 0.6413 | 0.67947 | 0.6789 | 0.56148 | 0.5613 |
| 09 | 0.74308 | 0.7429 | 0.45303 | 0.4532 | 0.45316 | 0.4533 |
| 010 | 0.90867 | 0.9085 | 0.25366 | 0.2531 | 0.41005 | 0.4101 |
| 011 | 0.7571 | 0.7572 | 0.25523 | 0.2550 | 0.32612 | 0.3260 |
| 012 | 0.59894 | 0.5988 | 0.44974 | 0.4498 | 0.27085 | 0.2709 |
| 013 | 0.58481 | 0.5849 | 0.67902 | 0.6792 | 0.40732 | 0.4072 |
| 014 | 0.734 | 0.7342 | 0.74223 | 0.7422 | 0.31736 | 0.3172 |
| 015 | 0.51293 | 0.5128 | 0.94387 | 0.9439 | 0.29492 | 0.2942 |
| 016 | 0.42422 | 0.4241 | 1.22269 | 1.2225 | 0.39342 | 0.3931 |
| 017 | 0.60892 | 0.6088 | 0.18337 | 0.1832 | 0.40212 | 0.4021 |
| 018 | 0.5089 | 0.5090 | 0.94993 | 0.9493 | 0.5116 | 0.5117 |

Table 2
The optimized atomic position of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase in comparison with the experimental data [2,17].

| $\beta$ - $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | x exp. | x opt. | y exp. | y opt. | z exp. | z opt. |
| Te1 | 0.61819 | 0.6185 | 0.51462 | 0.5146 | 0.42583 | 0.4257 |
| Mo1 | 0.22569 | 0.2257 | 0.27524 | 0.2750 | 0.22768 | 0.2277 |
| Mo2 | -0.2078 | 0.7922 | 0.95108 | 0.9511 | 0.32593 | 0.3258 |
| Ba1 | 0.27776 | 0.2777 | 0.7445 | 0.7439 | 0.06721 | 0.0672 |
| 01 | 0.2899 | 0.2889 | 0.4313 | 0.4311 | 0.4392 | 0.4390 |
| 02 | 0.5395 | 0.5391 | 0.7318 | 0.7316 | 0.3326 | 0.3329 |
| 03 | 0.5472 | 0.5470 | 0.5946 | 0.5942 | 0.6309 | 0.6310 |
| 04 | 0.5038 | 0.5040 | 0.3952 | 0.3949 | 0.1895 | 0.1891 |
| 05 | 0.0152 | 0.0150 | 0.4316 | 0.4315 | 0.1644 | 0.1641 |
| 06 | 0.2227 | 0.2224 | 0.1182 | 0.1180 | 0.082 | 0.0822 |
| 07 | -0.0284 | 0.9716 | 0.1531 | 0.1528 | 0.3596 | 0.3592 |
| 08 | 0.0194 | 0.0190 | 0.7937 | 0.7932 | 0.3334 | 0.3333 |
| 09 | -0.2797 | 0.7203 | 0.9651 | 0.9650 | 0.1337 | 0.1336 |



Fig. 2. Calculated electronic band structure of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ using mBJ.


Fig. 3. Calculated total and partial density of states of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ using mBJ.
comprehensive theoretical calculation based on the density functional theory within full potential method to investigate the influence of the phase transition on the electronic band structure, the angular momentum projected density of states, the electronic charge density distribution and the chemical bonding characters. In the recent years due to the improvement of the computational technologies, it has been proven that the first-principles calculation is one strong and useful tool to predict the crystal structure and its properties related to the electron configuration of a material before its synthesis [13-16].

## 2. Calculation methodology

It has been reported that during the synthesized of the polycrystalline $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ a phase transition from $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ to $\alpha-$ $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ occurs at $570^{\circ} \mathrm{C}$ [2]. The X-ray diffraction explore that, $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ crystallized in monoclinic structure with space group $\mathrm{P}_{1}$, while $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ crystallizes in orthorhombic $\mathrm{Pca}_{1}$ space group [2,17]. The crystal structure of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha$-BaTe$\mathrm{Mo}_{2} \mathrm{O}_{9}$ are shown in Fig. 1. More details about the crystals structures were presented in the captions of Fig. 1. The figure illustrated the $\mathrm{MoO}_{6}$ and $\mathrm{TeO}_{4}$ polyhedra of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase and the asymmetric unit with formula $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$, while for $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase it shows the $\mathrm{Mo}_{4} \mathrm{O}_{20}$ tetramer and the asymmetric unit with formula $\mathrm{Ba}_{2} \mathrm{Te}_{2} \mathrm{Mo}_{4} \mathrm{O}_{18}$. To investigate the electronic structure of
the two phases, the X-ray diffraction data obtained by Zhang et al. [2] were used as input data for comprehensive theoretical calculation. The experimental geometrical structure was optimized. The optimization were performed using the all-electron full potential linear augmented plane wave plus local orbitals (FPLAPW + lo) method as implemented in WIEN2k code [18] within generalized gradient approximation (PBE-GGA) [19]. The optimized geometrical structure exhibit good agreement with the experimental crystallographic data [2] as shown in Tables 1 and 2. The resulting relaxed geometry was used to calculated the electronic band structure, the angular momentum projected density of states, the electronic charge density distribution and the chemical bonding characters using PBE-GGA and the recently modified Beck-e-Johnson potential (mBJ) [20]. The modified Becke-Johnson potential allows the calculation with accuracy similar to the very expensive GW calculations [20]. It is a local approximation to an atomic "exact-exchange" potential and a screening term. Since the $m B J$ approach succeed by large amount in bringing the calculated energy gap closer to the experimental one therefore, we chose to present the results obtained by mBJ. The spherical harmonic expansion was used inside the non-overlapping spheres of muffintin radius ( $R_{M T}$ ) and the plane wave basis set was chosen in the interstitial region (IR) of the unit cell. The $R_{M T}$ for $\mathrm{Ba}, \mathrm{Mo}, \mathrm{Te}$ and O atoms were chosen in such a way that the spheres did not overlap, these values are 2.44 (2.47) a.u. for Ba $\beta(\alpha)$, 1.79 (1.83) a.u. for Te


Fig. 4. Calculated electronic charge density distribution of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha$ - $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ using mBJ; (a) crystallographic plan ( 100 ) for $\beta$ - $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$; (b) crystallographic plan ( 1 00 ) for $\alpha$ - $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$; (c) crystallographic plan (101) for $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$; (d) crystallographic plan (101) for $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$.
$\beta(\alpha), 1.61$ (1.62) for Mo $\beta(\alpha)$ and 1.46 for $\beta(\alpha)$ O. To achieve the total energy convergence, the basis functions in the $I R$ were expanded up to $R_{M T} \times K_{\max }=7.0$ and inside the atomic spheres for the wave function. The maximum value of $\boldsymbol{l}$ was taken as $\boldsymbol{I}_{\max }=10$, while the charge density is Fourier expanded up to $G_{\max }=12.0(\text { a.u })^{-1}$. A self-consistency is obtained using $300 k$ points in the irreducible Brillouin zone (IBZ). The self-consistent calculations are converged since the total energy of the system is stable within 0.00001 Ry . The electronic band structures calculation are performed within $1500 k$ points in the IBZ.

## 3. Results and discussion

In order to explore and exploit the phase transition from $\beta \rightarrow \alpha$, the electronic band structure of the two phases were calculated and illustrated in Fig. 2(a,b). It has been found that both phases exhibit indirect band gap of about $2.93 \mathrm{eV}(\beta)$ and $3.12 \mathrm{eV}(\alpha)$ in good agreement with the measured values $2.95 \mathrm{eV}(\beta)$ and $3.12 \mathrm{eV}(\alpha)$ obtained from UV-Vis diffuse reflectance spectroscopy [2] (see Fig. 1S in the supplementary materials). Its clear that the $m B J$ approach succeed by large amount in bringing the calculated energy gap closer to the experimental one as we expected from this approach [21-23]. In both phases the conduction band minimum (CBM) is located at $\Gamma$ point of the first $B Z$ whereas the valence band maximum (VBM) of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase is situated in the mid way between Z and $\Gamma$, while it is located at Z point for $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase. We set the zero-point of energy (Fermi level) at the valence band maximum. It is interesting to mention here that the phase transition from $\beta \rightarrow \alpha$ turn the structure to be more complicated due to the appearance of $\mathrm{Mo}_{4} \mathrm{O}_{20}$ tetramer in $\alpha$ phase and the symmetric unit in $\alpha$-phase became twice of that in $\beta$-phase as shown in Fig. 1. To carefully investigate the electronic structure and the role of the orbitals of each atom in both phases, the angular momentum projected density of states were investigated. Fig. 3(a) illustrated the total density of states of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\alpha$ - $\mathrm{BaTe}-$ $\mathrm{Mo}_{2} \mathrm{O}_{9}$ phases which confirm the occurrence of the band gap enlargement. It has been noticed that the $\alpha$-phase exhibits more pronounced structure in comparison to $\beta$-phase.

The angular momentum character of the various structures for the two phases can be obtained from calculating the angular momentum projected density of states (PDOS) as shown in Fig. 3(b-i). The structures confined between -10.0 and -9.0 eV are mainly belong to Ba-p, Ba-s states with small contribution of $\mathrm{O}-\mathrm{s} / \mathrm{p}$ states which show strong hybridization between $\mathrm{Te}-\mathrm{s}$ and $\mathrm{O}-\mathrm{s} / \mathrm{p}$ states. The structure between -5.0 eV up to Fermi level ( $\mathrm{E}_{\mathrm{F}}$ ) consist of Mod , Te-p/d and $\mathrm{O}-\mathrm{s} / \mathrm{p}$ states with insignificant contribution from Mo$\mathrm{s} / \mathrm{p}$ and Ba-s states, where Te-d state hybridized with O-s state while Ba-s state hybridized with Mo-s/p states. From the CBM and above there exists admixture of Mo-d, Ba-d, Te-s/p/d, O-s/p states with small contribution of Ba-s and Mo-s/p states. Due to shift the CBM towards higher energies during the phase transition from $\beta \rightarrow \alpha$, the whole structure of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase shifts towards higher energies by around 0.19 eV and the strong hybridization between Te-p and O-p states in $\beta$-phase become weaker in $\alpha$-phase and the same for the hybridization between Te -d and O-s states. The strong hybridization may lead to form covalent bonding. Covalent bonding is more favorable for the transport of the carriers than ionic one [24].

The origin of chemical bonding can be elucidated from the angular momentum decomposition of the atoms projected electronic density of states. Integrating the latter from -6.0 eV up to $\mathrm{E}_{\mathrm{F}}$ we obtain the total number of electrons $/ \mathrm{eV}(\mathrm{e} / \mathrm{eV})$ for the orbitals in each atom of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}\left(\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}\right)$ phases, Mo-d state $2.0 \mathrm{e} / \mathrm{eV}(1.0 \mathrm{e} / \mathrm{eV})$, O-p state $1.8 \mathrm{e} / \mathrm{eV}(2.9 \mathrm{e} / \mathrm{eV})$, Te-p state $0.24 \mathrm{e} / \mathrm{eV}$ ( $0.25 \mathrm{e} / \mathrm{eV}$ ), Mo-p state $0.07 \mathrm{e} / \mathrm{eV}(0.085 \mathrm{e} / \mathrm{eV})$, Mo-s $0.03 \mathrm{e} / \mathrm{eV}$
( $0.035 \mathrm{e} / \mathrm{eV}$ ), O-s state $0.02 \mathrm{e} / \mathrm{eV}(0.02 \mathrm{e} / \mathrm{eV})$, Te-d state $0.015 \mathrm{e} / \mathrm{eV}$ ( $0.03 \mathrm{e} / \mathrm{eV}$ ) and Ba-s state $0.01 \mathrm{e} / \mathrm{eV}(0.031 \mathrm{e} / \mathrm{eV})$. The contributions of these orbitals to the valence bands exhibit that there are some electrons from $\mathrm{Ba}, \mathrm{Te}, \mathrm{Mo}$ and O atoms are transferred into valence bands and contribute in covalence interactions between the atoms. The covalent bond arises due to the degree of the hybridization and the electronegativity differences between the atoms. It is clear that there is an interaction of charges between the atoms due to the existence of the hybridization, showing that there is a strong/weak covalent bonding between these atoms. Thus the angular momentum decomposition of the atoms projected electronic density of states help us to analyze the nature of the bonds according to the classical chemical concept. This concept is very useful to classify compounds into different categories with respect to different

Table 3
The calculate bond lengths of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phases using mBJ in comparison with the experimental data [2].

| Bond distances ( $\AA$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ |  |  | $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ |  |  |
|  | Exp. | This work |  | Exp. | This work |
| Ba1-02 | 2.925681997 | 2.9255 | Mo1-01 | 2.225129892 | 2.2250 |
| Ba1-03 | 2.840259831 | 2.8422 | Mo1-03 | 2.214887592 | 2.2147 |
| Ba1-04 | 2.823452444 | 2.8243 | Mo1-04 | 1.816390444 | 1.8164 |
| Ba1-05 | 2.85532476 | 2.8556 | Mo1-05 | 1.734504233 | 1.7344 |
| Ba1-06 | 3.248935203 | 3.2488 | Mo1-06 | 1.739812255 | 1.7396 |
| Ba1-07 | 2.868854636 | 2.8689 | Mo1-07 | 2.053413137 | 2.0530 |
| Ba1-011 | 2.934993449 | 2.9350 | Mo2-01 | 2.13562646 | 2.1353 |
| Ba1-012 | 2.861002968 | 2.8611 | Mo2-02 | 2.152835459 | 2.1522 |
| Ba1-014 | 2.819479296 | 2.8192 | Mo2-03 | 2.199895839 | 2.1999 |
| Ba1-015 | 2.801490995 | 2.8021 | Mo2-07 | 1.826182531 | 1.8259 |
| Ba2-03 | 2.786285884 | 2.7860 | Mo2-08 | 1.720623555 | 1.7200 |
| Ba2-05 | 2.914002338 | 2.9151 | Mo2-09 | 1.741607882 | 1.7411 |
| Ba2-06 | 2.811971612 | 2.8120 | Te1-01 | 1.925602132 | 1.9255 |
| Ba2-07 | 2.97437665 | 2.9741 | Te1-02 | 1.865217501 | 1.8651 |
| Ba2-010 | 2.980174922 | 2.9811 | Te1-03 | 1.953020274 | 1.9531 |
| Ba2-011 | 2.899708292 | 2.8979 | Te1-04 | 2.347580339 | 2.3472 |
| Ba2-012 | 2.841345649 | 2.8420 | Ba1-02 | 2.739434972 | 2.7392 |
| Ba2-014 | 3.069378205 | 3.0693 | Ba1-04 | 3.078264767 | 3.0780 |
| Ba2-015 | 3.05152139 | 3.0514 | Ba1-04A | 2.819174067 | 2.8190 |
| Ba2-016 | 2.774240224 | 2.7741 | Ba1-05 | 2.88593126 | 2.8860 |
| Te1-O2 | 2.487646365 | 2.4874 | Ba1-05A | 2.94351182 | 2.9431 |
| Te1-09 | 1.914757755 | 1.9146 | Ba1-06 | 3.221055998 | 3.2212 |
| Te1-010 | 1.911795147 | 1.9116 | Ba1-06A | 3.192056172 | 3.1922 |
| Te1-011 | 1.920800578 | 1.9209 | Ba1-06B | 2.805831505 | 2.8056 |
| Te2-02 | 1.920208559 | 1.9201 | Ba1-08 | 2.794255172 | 2.7944 |
| Te2-07 | 1.908995235 | 1.9088 | Ba1-09 | 2.736942151 | 2.7370 |
| Te2-018 | 1.910796233 | 1.9108 | Ba1-09A | 3.001210142 | 3.0010 |
| Mo1-01 | 2.266280466 | 2.2665 |  |  |  |
| Mo1-02 | 2.140925903 | 2.1407 |  |  |  |
| Mo1-03 | 1.755002126 | 1.7551 |  |  |  |
| Mo1-04 | 1.726743054 | 1.7265 |  |  |  |
| Mo1-08 | 1.772189524 | 1.7725 |  |  |  |
| Mo1-09 | 2.142715858 | 2.1429 |  |  |  |
| Mo2-09 | 2.210507209 | 2.2100 |  |  |  |
| Mo2-011 | 2.106590187 | 2.1069 |  |  |  |
| Mo2-012 | 1.74462386 | 1.7449 |  |  |  |
| Mo2-013 | 1.773708314 | 1.7731 |  |  |  |
| Mo2-014 | 1.737578422 | 1.7372 |  |  |  |
| Mo2-017 | 2.270906676 | 2.2711 |  |  |  |
| Mo3-010 | 2.161429271 | 2.1610 |  |  |  |
| Mo3-013 | 2.219661619 | 2.2192 |  |  |  |
| Mo3-015 | 1.74487134 | 1.7444 |  |  |  |
| Mo3-016 | 1.737120563 | 1.7373 |  |  |  |
| Mo3-017 | 1.771040067 | 1.7711 |  |  |  |
| Mo3-018 | 2.164155621 | 2.1643 |  |  |  |
| Mo4-01 | 1.764790351 | 1.7641 |  |  |  |
| Mo4-05 | 1.743439633 | 1.7432 |  |  |  |
| Mo4-06 | 1.738550204 | 1.7391 |  |  |  |
| Mo4-07 | 2.116563242 | 2.1160 |  |  |  |
| Mo4-08 | 2.294844088 | 2.2946 |  |  |  |
| Mo4-018 | 2.190510874 | 2.1901 |  |  |  |

Table 4
The calculated bond angles of $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ and $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phases using mBJ in comparison with the experimental data [2].

| Bond angles ( ${ }^{\circ}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ |  |  | $\underline{\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}}$ |  |  |
| Bond angles | Exp. | This work | Bond angles | Exp. | This work |
| $\mathrm{O}(8)-\mathrm{Mo}(1)-\mathrm{O}(2)$ | 159.63(15) | 159.59 | $\mathrm{O}(4)-\mathrm{Mo}(1)-\mathrm{O}(7) \# 7$ | 156.01(9) | 156.02 |
| $\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{O}(9)$ | 155.07(16) | 155.00 | $\mathrm{O}(5)-\mathrm{Mo}(1)-\mathrm{O}(3) \# 8$ | 164.34(10) | 164.30 |
| $\mathrm{O}(4)-\mathrm{Mo}(1)-\mathrm{O}(1)$ | 162.82(15) | 162.77 | $\mathrm{O}(6)-\mathrm{Mo}(1)-\mathrm{O}(1)$ | 166.58(10) | 166.60 |
| $\mathrm{O}(13)-\mathrm{Mo}(2)-\mathrm{O}(11)$ | 155.52(16) | 155.53 | $\mathrm{O}(9)-\mathrm{Mo}(2)-\mathrm{O}(1) \# 10$ | 154.51(10) | 154.48 |
| $\mathrm{O}(12)-\mathrm{Mo}(2)-\mathrm{O}(9)$ | 156.22(17) | 156.25 | $\mathrm{O}(7)-\mathrm{Mo}(2)-\mathrm{O}(2) \# 11$ | 166.85(10) | 166.80 |
| $\mathrm{O}(14)-\mathrm{Mo}(2)-\mathrm{O}(17) \# 2$ | 163.02(14) | 163.03 | $\mathrm{O}(8)-\mathrm{Mo}(2)-\mathrm{O}(3) \# 10$ | 161.90(11) | 161.91 |
| $\mathrm{O}(17)-\mathrm{Mo}(3)-\mathrm{O}(10) \# 7$ | 160.40(15) | 160.35 |  |  |  |
| $\mathrm{O}(15)-\mathrm{Mo}(3)-\mathrm{O}(18)$ | 157.17(17) | 157.10 |  |  |  |
| $\mathrm{O}(16)-\mathrm{Mo}(3)-\mathrm{O}(13)$ | 161.15(16) | 161.11 |  |  |  |
| $\mathrm{O}(1) \# 8-\mathrm{Mo}(4)-\mathrm{O}(7)$ | 155.12(16) | 155.09 |  |  |  |
| $\mathrm{O}(5)-\mathrm{Mo}(4)-\mathrm{O}(18)$ | 155.47(16) | 155.41 |  |  |  |
| $\mathrm{O}(6)-\mathrm{Mo}(4)-\mathrm{O}(8)$ | 162.27(15) | 162.23 |  |  |  |

chemical and physical properties.
With the aid of the calculated valence band's electronic charge density distribution, we obtained an image of the electron clouds that surround the molecules in the unit cell. We hope that this image will allow us to discuss the chemical bonding features. Therefore, we have taken a careful look at valence band's electronic charge density distribution to visualize the charge transfer and the chemical bonding characters of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase and the influence of the phase transition on the bonds characters of the resulting phase $\alpha-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$. For this purpose the total valence charge density distribution in two crystallographic planes (1000) and (1 01 ) were illustrated in Fig. $4(a-d)$. The crystallographic plane (1 00 ) of $\beta-\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase (Fig. 4a) show there exists a strong covalent bonding between Mo and O atoms due to small electronegativity differences between them. Also we can see the Ba atom forms mostly ionic and partially covalent bonding with O atom due to the large electronegativity difference. The phase transition from $\beta \rightarrow \alpha$ cause to perturb the interaction between Mo and O atoms and between Ba and O atoms due to the different arrangement between the atoms, as it is clear from Fig. 4b. Deep insight into the electronic structure can be obtained from the crystallographic plane (101), $\beta$-phase exhibit a covalent bonding between Te and O atoms in addition to that between Mo and O atoms (Fig. 4c), the transition from $\beta$-to $\alpha$-phase lead to weaken this interaction due to change the atoms arrangement (Fig. 4d). Due to the electronegativity difference between the atoms we can see a charge transfer towards O atoms as indicated by the blue color (in the web version) around O atoms (according to the thermoscale the blue color exhibit the maximum charge accumulation).

Since the unit cell of $\beta$-phase consists of two symmetry independent $\mathrm{MoO}_{6}$ octahedra and one $\mathrm{TeO}_{4}$ polyhedra and the asymmetric unit is $\mathrm{BaTe}_{2} \mathrm{Mo}_{2} \mathrm{O}_{9}$, while $\alpha$-phase contains $\mathrm{TeO}_{3}, \mathrm{TeO}_{4}$ polyhedra and $\mathrm{MoO}_{6}$ octahedra. It has been noticed that the $\mathrm{MoO}_{6}$ octahedra combine with three unique $\mathrm{MoO}_{6}$ nearest neighbors through the corners to form the tetramer $\mathrm{Mo}_{4} \mathrm{O}_{20}$ and the asymmetric unit is doubled in comparison to that of $\beta$-phase which make the structure complicated and influence the bond length, angles and characters in comparison to that of $\beta$-phase. Therefore, we have calculated the bond lengths and angles of the two phases as shown in Tables 3 and 4 and 5 in comparison with the measured one [2], good agreement was found.

## 4. Conclusions

A comprehensive ab-initio calculations were performed to investigate the electronic band structure, the angular momentum
projected density of states, the electronic charge density distribution and the chemical bonding characters. We have used the reported experimental geometrical structure as input data for this calculation. The experimental geometrical structure was optimized by minimizing the forces acting on each atom. The optimization were performed using FPLAPW + lo method within PBE-GGA. The optimized geometrical structure show good agreement with the experimental crystallographic data. The resulting relaxed geometry was used to calculate the above mentioned properties using $P B E-G G A$ and the recently modified Becke-Johnson potential $(m B J)$. Both phases exhibit an indirect band gap of about $2.93 \mathrm{eV}(\beta)$ and $3.12 \mathrm{eV}(\alpha)$ in good agreement with the measured values $2.95 \mathrm{eV}(\beta)$ and $3.12 \mathrm{eV}(\alpha)$. In both phases the O-p state form the VBM while Mo-d state exhibit the main contribution to the CBM.

It is interesting to mention here that the phase transition from $\beta \rightarrow \alpha$ turn the structure to be more complicated due to the appearance of $\mathrm{Mo}_{4} \mathrm{O}_{20}$ tetramer in $\alpha$ phase and the symmetric unit in $\alpha$-phase became twice of that in $\beta$-phase. The angular momentum projected density of states were calculated to investigated the role of the orbitals of each atom in both phases. The valence band's electronic charge density distribution reveals that the $\beta$ $\mathrm{BaTeMo}_{2} \mathrm{O}_{9}$ phase show there exists a strong covalent bonding between Mo and O atoms also between Te and O atoms, while Ba atom forms mostly ionic and partially covalent bonding with O atom. The phase transition from $\beta \rightarrow \alpha$ cause to perturb the interaction between Mo and O atoms, Te and O atoms and between Ba and O atoms due to the different arrangement between the atoms. Due to the electro-negativity difference between the atoms we can see a charge transfer towards $O$ atoms as indicated by the blue color around O atoms. The calculated bond lengths and angles show good agreement with the experimental values. The good agreement with experimental data in the matter of lattice parameters, energy gap values, the bond lengths and angles reveals the accuracy of the selected exchange correlation potentials used here.

## Acknowledgments

The result was developed within the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, cofunded by the ERDF as part of the Ministry of Education, Youth and Sports OP RDI programme and, in the follow-up sustainability stage, supported through CENTEM PLUS (LO1402) by financial means from the Ministry of Education, Youth and Sports under the National Sustainability Programme I. Computational resources were provided by MetaCentrum (LM2010005) and CERIT-SC (CZ.1.05/3.2.00/08.0144) infrastructures.

## Appendix A. Supplementary data

Supplementary data related to this article can be found at http:// dx.doi.org/10.1016/j.jallcom.2015.08.142.

## References

[1] (a) A. Authier, International Tables for Crystallography. Physical Properties of Crystals, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003 (Vol. D);
(b) J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, New York, 1985;
(c) S.R. Marder, G.D. Stucky, J.E. Sohn, Materials for nonlinear optics: chemical perspectives, in: ACS Symposium Series, vol. 455, American Chemical Society, Washington, DC, 1991;
(d) R. Waser, U. B€ottger, S. Tiedke, Polar Oxides: Properties, Characterization, and Imaging, Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2005.
[2] J. Zhang, Z. Zhang, W. Zhang, Q. Zheng, Y. Sun, C. Zhang, X. Tao, Chem. Mater 23 (2011) 3752-3837.
[3] A. Majchrowski, B. Sahraoui, A.O. Fedorchuk, L.R. Jaroszewicz, E. Michalski, A. Migalska-Zalas, I.V. Kityk, J. Mater. Sci. 48 (2013) 5938-5945.
[4] V. Kapustianyk, B. Turko, A. Kostruba, Z. Sofiani, B. Derkowska, S. DabosSeignon, B. Barwinski, Yu Eliyashevskyi, B. Sahraoui, Opt. Commun. 269 (2007) 346-350.
[5] S. Zongo, A.P. Kerasidou, B.T. Sone, A. Diallo, P. Mthunzi, K. Iliopoulos, M. Nkosi, M. Maaza, B. Sahraoui, Appl. Surf. Sci. 340 (2015) 72-77.
[6] A.H. Reshak, Xuean Chen, I.V. Kityk, S. Auluck, K. Iliopoulos, S. Couris, R. Khenata, Curr. Opin. Solid State Mater. Sci. 12 (2009) 26-31.
[7] Z.L. Gao, Q. Wu, X.T. Liu, Y.X. Sun, X.T. Tao, Opt. Express 23 (2015) 3851.
[8] (a) W. Zhang, X. Tao, C. Zhang, H. Zhang, M. Jiang, Cryst. Growth Des. 9 (2009)

2633-2636;
(b) W. Zhang, X. Tao, C. Zhang, Z.L. Gao, Y.Z. Zhang, W.T. Yu, X.F. Cheng, X.S. Liu, M.H. Jiang, Cryst. Growth Des. 8 (2008) 304-307.
[9] W. Zhang, F. Li, S.-H. Kim, P.S. Halasyamani, Cryst. Growth Des. 10 (2010) 4091-4095.
[10] J. Zhang, X. Tao, Y. Sun, Z. Zhang, C. Zhang, Z. Gao, H. Xia, S. Xia, Cryst. Growth Des. 11 (2011) 1863-1868.
[11] J. Zhang, Z. Zhang, Y. Sun, C. Zhang, X. Tao, CrystEngComm 13 (2011) 6985.
[12] Shan-De Liu, Ze-Liang Gao, Jun-Jie Zhang, Bai-Tao Zhang, Jing-Liang He, XuTang Tao, IEEE Photonics Tech. Lett. 26 (2014) 15.
[13] A.H. Reshak, A. Majchrowski, M. Swirkowicz, A. Kłos, T. Łukasiewicz, I.V. Kityk, K. Iliopoulos, S. Couris, M.G. Brik, J. Alloys Compd. 481 (2009) 14-16.
[14] A.H. Reshak, S. Auluck, I.V. Kityk, J. Alloys Compd. 473 (2009) 20-24.
[15] K.J. Plucinski, I.V. Kityk, J. Kasperczyk, B. Sahraoui, Semicond. Sci. Technol. 16 (2001) 467-470.
[16] M. Malachowski, I.R. Kityk, B. Sahraoui, Phys. Lett. A 242 (1998) 337-342.
[17] W.G. Zhang, X.T. Tao, C.Q. Zhang, Z.L. Gao, Y.Z. Zhang, W.T. Yu, X.F. Cheng, X.S. Liu, M.H. Jiang, Cryst. Growth Des. 8 (2008) 304-307.
[18] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001.
[19] J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[20] F. Tran, P. Blaha, Phys. Rev. Lett. 102 (2009) 226401.
[21] A.H. Reshak, RSC Adv. 5 (2015) 22044.
[22] A.H. Reshak, Hongwei Huang, H. Kamarudin, S. Auluck, J. Appl. Phys. 117 (2015) 085703.
[23] A.H. Reshak, RSC Adv. 5 (2015) 33632.
[24] Fang Wu, Hong zhang Song, Jian feng Jia, Xing Hu, Prog. Nat. Sci. Mater. Int. 23 (4) (2013) 408-412.


[^0]:    * New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 30614 Pilsen, Czech Republic.

    E-mail address: maalidph@yahoo.co.uk.

