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Abstract: We here present the results of photocurrent from BAs. The photocurrent in this system had been calculated by using the 
free-electron and muffin-tin potentials. Schrodingers’ equation has been solved by using these potentials to obtain the necessary 
initial and final state wave-functions for the electrons to evaluate the matrix element for transitions. From the calculations it is 
observed that variation of photocurrent showed trends obtained as in the case of metals like tungsten, aluminium, molybdenum, 
copper etc.  
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1. Introduction 

Boron Arsenide is a wide band gap semiconductor 

compound in the III-V family and occurs as cubic 

sphalerite. This compound crystallizes in zinc-blende 

structure [1]. It has a number of technological 

applications such as solar cells, space electronics and 

devices that produce electrical energy by coupling a 

radioactive beta emitter to a semiconductor junction. 

In this paper here, we present study of photoemission 

from BAs by using the muffin-tin potential model. In 

photoemission, the incident radiation excites the 

electrons lying at the Fermi level or below it. The 

photo-excited electrons gainsnow sufficient energy to 

overcome the work function of the metal and hence 

comes out into the vacuum to contribute to 

photocurrent. For evaluation of the vector potential 

involved in the matrix element for transition from 

initial to final state, we require real and imaginary 
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dielectric constants. These had been calculated by 

using the density functional theory (DFT) based on 

full-potential approximation which is implemented in 

wien2k code [2]. 

2. Methodology 

In our study of photoemission from BAs, the 

current density for photoemission is calculated by 

using the golden-rule approximations [3] as: 
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where, ߖ௜  and ߖ௙  are the initial and final states 

wave-function and ܪ′ ൌ ሺ݁ 2݉ܿ⁄ ሻሺܣ · ݌ ൅ ݌ · ሻܣ , A 

being the vector potential and p the one-electron 

momentum operator. In order to evaluate the matrix 

element, we need to construct ߖ௜  and ߖ௙  and 

determine A. Although the one-electron states are 

treated quite accurately in many photoemission 

calculations [4], the variation of the photon field in the 

surface region is usually neglected and hence we have 
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