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ABSTRACT: Exploring new perovskite-related solid-state materials
and the investigating composition-dependent structural and physical
properties are highly important for advanced functional material
development. Herein, we present the successful hydrothermal synthesis
of tetragonal CsPb2Cl5 and the anion-exchange phase formation of
CsPb2(Cl1−xBrx)5 (x = 0−1) solid solutions. The CsPb2(Cl1−xBrx)5
crystal structures, which crystallize in the tetragonal system, space
group I4/mcm, with parameters similar to those of CsPb2Cl5, have
been determined by Rietveld analysis. The optical band gap was
obtained by UV−vis spectroscopy, and the band structure was further
calculated by the full-potential method within the generalized gradient
approximation. It was revealed that the band gap in CsPb2(Cl1−xBrx)5
solid solutions can be tuned over the range of 4.5−3.8 eV by anion
substitution.

■ INTRODUCTION

The discovery of new solid-state materials for emerging
applications is extremely important, and many crystals with
such specific characteristics as nonlinear-optical properties,
wide transparency range, low compressibility, negative thermal
expansion, photoluminescence properties, and promising
electronic and magnetic parameters were designed and
evaluated in the past few years.1−11 Recently, inorganic lead
halide perovskite-related compounds have become promising
functional materials for optoelectronic applications because of
their remarkable spectroscopic and electronic properties,
including tunable band gap and appropriate chemical
stability.12−16 Earlier, cesium lead halides and other closely
related compounds were obtained in the macroscopic forms of
thin films, powders, and bulk crystals using different

technological approaches, and many key physical properties
were measured, which yields a basis for a wide comparison and
selection of optimal materials for use at a nanoscale.17−22

Intrinsically, the specific physical properties of lead halides
originate from the PbX6 basic functional units existing in the
perovskite-related crystals. From a structural point of view, on
the basis of the PbX6 octahedra connection, the lead perovskite
dimensionality was classified into zero-dimensional (0D), two-
dimensional (2D), and three-dimensional (3D) structures.
Colloidal quasi-2D semiconductor nanoplatelets are an
interesting type of nanocrystal because of their unique
spectroscopic properties, such as increased exciton binding
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energies, reduced fluorescence decay times, and notable optical
nonlinearity.23 Therefore, there are intensive investigations on
the metal halides with perovskite or close-to-perovskite
structures as attractive semiconductors. Among them, perov-
skite-related metal halide colloidal nanoplatelets are an
important type of nanomaterials because they not only enrich
the diversity of the available semiconducting nanomaterials,
but also potentially possess a platform for exploring new
photophysical properties of 2D semiconducting materials.
The present study is aimed at the hydrothermal synthesis of

solid solutions CsPb2(Cl1−xBrx)5 (x = 0, 0.2, 0.4, 0.6, 0.8, and
1) and evaluation of their electronic and optical parameters as
a function of the Cl/Br ratio. It should be pointed out that the
end compound CsPb2Br5 is actively used in modern photonic
structures.24−27 First, the compound CsPb2Cl5 was prepared
by the ion-exchange reaction between Cs2PbCl2(NO3)2 and
NaCl (or KCl) in an aqueous solution, and the tetragonal
crystal structure was determined in space group I4/mcm.28 The
2D structure is formed by the layers of PbCl4 tetrahedra, and
Cs+ ions are positioned between the layers. To our best
knowledge, information about the crystal structure of related
bromide CsPb2Br5 is absent in the literature, although the
CsPb2Br5 cell parameters were reported recently.29 On the
basis of the available structural information shown in Table
S1,18,29−36 the same structure type can be reasonably assumed
for CsPbCl5 and CsPbBr5. The wide-range tuning of the
physical properties could be possible in CsPb2(Cl1−xBrx)5 solid
solutions without phase transition singularities.
As of now, three structural types are known for lead halides

with the general composition APb2X5 (A = Ag, NH4, K, Rb,
Cs, Tl; X = Cl, Br, I), and the available structural parameters
are summarized in Table S1. The specific monoclinic structure
was reported for AgPb2Br5, which is the only known Ag-
containing compound with the composition APb2X5

30. The
most numerous set of monoclinic compounds includes
KPb2Cl5, KPb2Br5, K0.94Tl0.06Pb2Cl4.87Br0.13, NH4Pb2Cl5,
Tl0.86K0.14Pb2Cl5, Tl0.96K0.04Pb2Cl4.82Br0.18, and TlPb2Cl5, and
this family was actively evaluated in the past.18,28,31,33,35 The
compounds RbPb2Br5, CsPb2Cl5, CsPb2Br5, and InPb2I5
possess similar tetragonal structures, and the existence of the
wide-range solid solutions (Rb,Cs)Pb2Br5 and CsPb2(Cl,Br)5
seems to be possible. However, anion substitution in
CsPb2(Cl,Br)5 solid solutions provides giant variations of the
unit cell volume, and this is an indicator of strong variations of
the electronic structure and optical characteristics on the
transformation from CsPb2Cl5 to CsPb2Br5 (Table S1).
Therefore, in this study, the crystal structures of
CsPb2(Cl1−xBrx)5 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) were
defined by Rietveld analysis. The compounds crystallize in the
tetragonal system, space group I4/mcm, with the unit cell
parameters close to those of CsPb2Cl5. Their optical band gaps
were determined by UV−vis spectroscopy, and the band
structures were further calculated by the full-potential method
within the generalized gradient approximation (GGA).

■ EXPERIMENTAL SECTION
Materials and Synthesis. All starting reagents were used without

any additional purification: Cesium chloride (CsCl, 99.99%) and lead
chloride (PbCl2; analytical reagent) were purchased from Shanghai
Aladdin Biochemical Technology Co., Ltd. Hydrogen chloride (HCl;
38%) and hydrobromic acid (HBr; 48%) were purchased from Beijing
Chemical Works. The CsPb2(Cl1−xBrx)5 solid solutions were
synthesized through the hydrothermal method in a haloid acid

solution at different HCl/HBr ratios. Thus, 0.75 mmol of PbCl2 and
0.75 mmol of CsCl were placed in a poly(tetrafluoroethylene)
(PTFE) reactor, and, subsequently, a mixture of HCl (5 mL for
CsPb2Cl5, 4 mL for CsPb2Cl4Br, 3 mL for CsPb2Cl3Br2, 2 mL for
CsPb2Cl2Br3, 1 mL for CsPb2ClBr4, and 0 mL for CsPb2Br5), HBr (0
mL for CsPb2Cl5, 1 mL for CsPb2Cl4Br, 2 mL for CsPb2Cl3Br2, 3 mL
for CsPb2Cl2Br3, 4 mL for CsPb2ClBr4, and 5 mL for CsPb2Br5) and
10 mL of deionized water was slowly added to the PTFE reactor.
After the hydrothermal reaction at 453 K for 24 h, the temperature
was naturally decreased to room temperature, and the final powder
product was filtered and finally dried at 373 K under vacuum.

Characterization. Powder X-ray diffraction (XRD) measurements
were carried out using a D8 Advance diffractometer (Bruker,
Germany) operating at 40 kV and a current of 40 mA with Cu Kα
radiation (λ = 1.5406 Å). When the XRD patterns were measured for
phase composition analysis, the scanning rate was 4°/min. For
Rietveld analysis, the powder XRD patterns were collected using the
same device, but, in this case, the 2θ step size was 0.013° and the
counting time was as high as 1 s/step. The Rietveld refinement was
performed using the package TOPAS 4.2.37 The morphology and
crystallite size of the CsPb2(Cl1−xBrx)5 samples were observed with
the help of scanning electron microscopy (SEM; JEOL JSM-6510).
The diffuse-reflectance spectra were recorded at room temperature
using a Varian Cary 5 spectrophotometer over the UV−vis−near-
infrared range.

Computational Methods. To investigate the ground-state
properties of the CsPb2(Cl1−xBrx)5 compounds, first-principle
calculations were implemented using the full-potential method
(Wien2k code38) in the GGA [Perdew−Burke−Ernzerhof (PBE/
GGA)] to optimize the available cell parameters and atomic positions.
The Becke−Johnson potential39 was applied to evaluate the ground-
state properties in the relaxed structures of the CsPb2(Cl1−xBrx)5
compounds. The following parameters were used in the ab initio
calculations: in the interstitial region, the basis functions were
expanded up to RMTKmax = 7.0 and inside the atomic spheres for the
wave function. lmax = 10. The charge density was Fourier-expanded up
to Gmax = 12 (atomic units, au)−1. In the irreducible Brillouin zone
(IBZ), the self-consistency was obtained using 1000 k ⃗ points. The
self-consistent calculations were converged because the system total
energy was stable within 0.00001 Ry. The electronic properties were
calculated using 5000 k ⃗ points over the IBZ. The input parameters
required for calculating the total and partial density of states (TDOS
and PDOS) were the energy eigenvalues and eigenfunctions, which
were the natural outputs of a band-structure calculation. Thus, from
the band-structure calculation, the PDOS and TDOS were obtained
by the modified tetrahedron method.40

■ RESULTS AND DISCUSSION

Micromorphology and Structure Characterization.
The XRD pattern recorded for CsPb2Cl5 is shown in Figure
1. This complex halide crystallizes in the tetragonal structure in
space group I4/mcm. The XRD patterns obtained for the Br-
containing compounds with the CsPb2(Cl1−xBrx)5 (x = 0.2,
0.4, 0.6, 0.8, and 1) compositions are very similar to that of
CsPb2Cl5 and, respectively, the same structure type can be
considered for all crystals. The crystal structures of all samples
CsPb2(Cl1−xBrx)5 were obtained by Rietveld analysis, and the
related information can be found in Figure S1 and Tables S2
and S3. The main parameters of the refinements are
summarized in Table 1. The updated CIFs of
CsPb2(Cl1−xBrx)5 (x = 0.2, 0.4, 0.6, 0.8, and 1) are available
through CSD. Then, it is interesting to compare the cell
parameters determined for CsPb2Cl5 and CsPb2Br5 to the
available literature data listed in Table S1. As to CsPb2Cl5, the
cell parameters determined in the present study are
considerably bigger than those reported earlier.17 However,
as to CsPb2Br5, the parameter a refined in the present study is
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significantly lower than that obtained in ref 29. Supposedly, the
cell parameters are very sensitive to the real defect structure of
the crystals. Besides, it should be mentioned that the value a =
6.002 Å earlier obtained for CsPb2Br5 in ref 41 is evidently
wrong.
The typical CsPb2(Cl1−xBrx)5 structure is depicted in Figure

1b. This is a 2D structure with Cs+ cations between the Pb2+

polyhedron layers. The Pb2+ coordination by halogen ions is
not trivial. As a representative example, the CsPb2Cl5 structure
can be considered by the bond-valence method.42 Indeed, the
bond valence sum calculated for the bond lengths d(Pb−Cl) in
the range of 2.740(2)−3.222(2) Å is equal to 2.28, which is
close to the 2+ formal valence state of the Pb2+ ion. Therefore,
in order to build a PbCln polyhedron, we should take all d(Pb−
Cl) bonds in the range of 2.740(2)−3.222(2) Å, and such a
construction leads to the bicapped trigonal prism PbCl8
instead of the tetrahedron PbCl4 mentioned elsewhere.28

The bond valence sum for the four short d(Pb−O) bond
lengths gave only the value of 1.66. The CsPb2Cl5 morphology
evaluated by SEM is shown in Figure 1c. The low-resolution
SEM images demonstrate the nearly uniform distribution of
the particle sizes. The powder sample contains well-faceted
nonagglomerated tetragonal particles with a side length of 5−
10 μm and a thickness of 2−5 μm. Commonly, the presence of
well-faceted microcrystal shapes is a robust indicator of a high
structural quality of the powder samples, and this general
relationship is evidently valid for the CsPb2(Cl1−xBrx)5 samples
synthesized in the present study.43−45

The chemical formulas obtained from the Rietveld refine-
ment can be written as CsPb2Cl5, CsPb2Cl3.57(2)Br1.43(2),
C sPb 2C l 2 . 3 9 ( 2 ) B r 2 . 6 1 ( 2 ) , C s Pb 2C l 1 . 7 7 ( 2 ) B r 3 . 2 3 ( 2 ) ,
CsPb2Cl0.93(2)Br4.07(2), and CsPb2Br5, which are close to the
nominal compositions controlled by the HCl/HBr ratio in the
synthesis. The refined values of the Br concentration x′ per
suggested nominal x values can be observed in Figure 2a. One
can see that the deviation from the ideal linear function x′ = x

is small, and it can be concluded that the desired compounds
were obtained. Moreover, the cell parameters and cell volume
increases with increasing x, as can be seen in Figure 2b−d, also
prove the solid solution formation because the ion radius of
Cl− is smaller than that of Br−.
The refined values of Br− occupancies in the two anion sites

Cl1/Br1 and Cl2/Br2 are different, as shown in Figure 2e. It is
evident that the Cl1 site is preferable for the Br− ion
incorporation in comparison to the Cl2 site. This effect can be
explained by the bigger average bond length d(Cl1/Br1−Pb/
Cs) = 3.32 Å than d(Cl1/Br1−Pb/Cs) = 3.25 Å in the initial
CsPb2Cl5 compound, and the Br− ion prefers a bigger cage.
However, because the difference between these average bond
lengths is not very big, Br− ions partly substitute Cl− in both
anion sites. To confirm the elemental uniformity of
CsPb2(Cl1−xBrx)5, the Cs, Pb, Br, and Cl element maps for
selected regions of the CsPb2Cl5, CsPb2Cl2Br3, and CsPb2Br5
samples were recorded, and the patterns are shown in Figure 3.
It can be seen that the constituent element distributions are
uniform over the crystal area for all three selected samples with
different chemical compositions.
In order to investigate the optical band-gap behavior, the

UV−vis diffuse-reflectance spectra of CsPb2(Cl1−xBrx)5 were
determined (Figure 4a). The band gaps of the
CsPb2(Cl1−xBrx)5 compounds can be estimated using the
equation46

F R h A h E( ) ( )n
gν ν[ ] = −∞ (1)

where hν is the photon energy, A is a constant, Eg is the band
gap, n = 2 for a direct transition and 1/2 for an indirect

Figure 1. (a) Measured (black), calculated (red), and difference
(gray) XRD patterns of the CsPb2Cl5 sample. (b) Crystal structure of
CsPb2(Cl1−xBrx)5 halides. (c) SEM image of CsPb2Cl5 microcrystals.

Table 1. Main Parameters of the Processing and Refinement of CsPb2(Cl1−xBrx)5 Samples with x = 0, 0.2, 0.4, 0.6, 0.8, and 1

x x′ (refined Br content) space group cell parameters (Å), cell volume (Å3) Rwp, Rp, RB (%), χ2

0 0 I4/mcm a = 8.13020(8), c = 14.7666(2), V = 976.07(2) 7.17, 5.47, 3.17, 1.40
0.2 0.287(5) I4/mcm a = 8.2201(2), c = 14.9462(4), V = 1009.92(5) 5.89, 4.61, 1.49, 1.28
0.4 0.522(5) I4/mcm a = 8.2894(1), c = 15.0595(3), V = 1034.79(4) 6.82, 5.21, 2.74, 1.35
0.6 0.646(6) I4/mcm a = 8.3643(2), c = 15.1404(4), V = 1059.25(6) 7.98, 6.13, 3.51, 1.39
0.8 0.814(6) I4/mcm a = 8.4207(2), c = 15.1785(4), V = 1076.28(6) 7.93, 6.14, 3.78, 1.36
1 1 I4/mcm a = 8.4765(3), c = 15.1974(6), V = 1091.95(8) 6.10, 4.68, 3.04, 1.86

Figure 2. (a) Refined values x′ (red circles) of the Br concentration in
the samples per nominal x levels. Cell parameters (b) a and (c) c and
(d) cell volume V dependent on x. (e) Occupancy values for Br− in
two anion sites in CsPb2(Cl1−xBrx)5 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1).
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transition, and F(R∞) is the Kubelka−Munk function given
as47

F R R R K S( ) (1 ) /2 /2= − =∞ (2)

where R, K, and S designate the reflection, absorption, and
scattering coefficients, respectively. Using the linear extrap-
olation of F(R∞) × 2hν = 0, it is possible to estimate the
optical band-gap value of a crystal compound. Therefore, the
diffuse-reflectance and Tauc plots showing the band-gap
characteristics for the CsPb2(Cl1−xBrx)5 compounds are
shown in Figure 4a−g. In Figure 4a, the trend of the diffuse-
reflectance curves for the solid solution CsPb2(Cl1−xBrx)5 is
basically the same, and the reflectivity increases with increasing
wavelength until the peak is reached and it remains unchanged.
As x gradually increases, the reflection curve moves toward
longer wavelengths. However, the absorption onset is not quite
as sharp in the diffuse-reflectance plots. We believe that this
change can be attributed to the indirect optical band gap of the
materials. It is mentioned in the literature that the lower-
energy transition relates to excitation through the band gap,
and the higher-energy features appear to be due to exciton
transitions from trap states lying above the conduction-band
edge.48 Following this approach, to determine the band gap,
we have used the lower absorbance energy onset in the
CsPb2(Cl1−xBrx)5 compounds, and the values of 4.46, 4.10,
3.97, 3.91, 3.88, and 3.80 eV were obtained for CsPb2Cl5,
CsPb2Cl4Br, CsPb2Cl3Br2, CsPb2Cl2Br3, CsPb2ClBr4, and
CsPb2Br5, respectively. Thus, in the CsPb2(Cl1−xBrx)5

compounds, the band gap drastically decreases with increasing
Br/Cl ratio.

Band-Structure Calculation. The calculated electronic
band structures of the CsPb2Cl5, CsPb2Cl4Br, CsPb2ClBr4, and
CsPb2Br5 compounds are shown in Figure 5a−d. These plots

explore the influence of increasing Br content on the band
dispersion. It shows that there is a significant band-gap
reduction with increasing Br content. The obtained electronic
band structure indicates that the investigated compounds are
characterized by the indirect energy band gaps because the
location of conduction-band minimum is at the Γ point of the
Brillouin zone and the valence-band maximum (VBM) is at the
N point of the Brillouin zone. We set the zero point of the
energy (Fermi level, EF) at the VBM. It should be pointed out
that when x = 0.4 and 0.6, it is difficult to accurately calculate
the band gaps because of the complicated occupations of Br
and Cl. The calculated band-gap values, in comparison with
the experimental results, are shown in Figure 4h and Table 2.
As is evident, a very good relationship between the calculated
and measured values takes place.
To gain deeper insight into the electronic structure, we have

calculated the PDOS for each orbital of the CsPb2Cl5,
CsPb2Cl4Br, CsPb2ClBr4, and CsPb2Br5 compounds, as
shown in Figure 6a−h. The calculated DOS confirms our
previous result that there is a reduction of the band gap with
increasing Br content. It is clear that there is a significant
influence of the Br content on the dispersion of each orbital.
Also, the composition variation influences hybridization
between the orbitals, as is clearly illustrated.
It is interesting to highlight that hybridization may induce

the appearance of covalent bonding depending on the degree
of hybridization, which is more favorable for the carrier
transport than the ionic one.48 We make use of the calculated
PDOS to clarify the chemical-bonding character for these
compounds. In the valence bands between −7.0 eV and EF, we
have obtained a total number of electrons per electronvolt (e/
eV) for each atom orbital in CsPb2Cl5, CsPb2Cl4Br,
CsPb2ClBr4, and CsPb2Br5 as follows: Cs p orbital, 33.0,
33.0, 33.0, and 54 e/eV; Pb s orbital, 3.6, 4.0, 5.4, and 4.3 e/
eV; Cl p orbital, 5.2, 3.1, and 4.0 e/eV; Pb p orbital, 1.8, 1.2,
2.0, and 1.5 e/eV; Br p orbital, 3.2, 5.0, and 4.8 e/eV; Pb d
orbital, 0.1, 0.75, 0.1, and 0.09 e/eV; Cl s orbital, 0.17, 0.13,
and 0.14 e/eV. Thus, following the obtained total number of
electrons per electronvolt, one can conclude that some
electron density from the Pb, Br, Cs, and Cl atoms is
transferred into the valence band and contributes to the
covalence interactions between the atoms, according to each
atom contribution to the valence band. In the covalence
interactions, the strength/weakness arises because of the
degree of hybridization and electronegativity differences
between the atoms. Respectively, the calculated DOS helps

Figure 3. Element mapping images obtained for Cs, Pb, Cl, and Br of
selected areas of the (a) CsPb2Cl5, (b) CsPb2Br5, and (c)
CsPb2Cl2Br3 samples.

Figure 4. (a) Diffuse-reflectance spectra for CsPb2(Cl1−xBrx)5 and the
band-gap change map. (b−g) Tauc plots showing the characteristics
of the indirect band gap of the CsPb2(Cl1−xBrx)5 compounds. (h)
Experimental and calculated band-gap values of the CsPb2(Cl1−xBrx)5
compounds.

Figure 5. (a−d) Calculated electronic bands of CsPb2(Cl1−xBrx)5 (x =
0, 0.2, 0.8, and 1) at the GGA/PBE level.
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us to analyze the nature of the bonds following the classical
chemical concept.

■ CONCLUSIONS
In the present study, 2D halides CsPb2(Cl1−xBrx)5 (x = 0, 0.2,
0.4, 0.6, 0.8, and 1) were prepared through the hydrothermal
method. The crystal structures of Br-containing compounds
were defined for the first time. The optical band gaps of the
CsPb2(Cl1−xBrx)5 compounds were studied by UV−vis spec-
troscopy, and it is observed that the band gap can be efficiently
tuned via the chemical composition variation. The electronic
band-structure calculations reveal that the investigated
compounds possess indirect energy band gaps, and this is in
a good agreement with the experimental observation.
Furthermore, the calculated electronic band structures and
DOS confirm our experimental observation that there is a
band-gap reduction with increasing Br content. From the
calculated PDOS, it is found that some electrons from the Pb,
Br, Cs, and Cl atoms were transferred into the valence band,
and they contributed to the covalence interactions between the
ions. Thus, it can be concluded that the proposed algorithm of
the hydrothermal synthesis is universal and it can be applied to
different halide solid solutions with Cl/Br substitution,
including Rb+ and Tl+ compounds. This opens a mechanism
for searching new optoelectronic crystalline materials with
tunable band gaps.
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